Counting pseudo-Anosovs and fully irreducibles

Inhyeok Choi

Cornell University

53rd Barrett Lectures: Recent Development in Geometric Group Theory

Inhyeok Choi (Cornell University)

Counting for WPD actions

April 19, 2025 1 / 29

④ Geometry

Inhyeok Choi (Cornell University)

Counting for WPD actions

■トイヨト ヨ つへへ April 19, 2025 2 / 29

Setup

- G: group
- \mathcal{P} : property about group elements

Example

- $G = \mathbb{Z}/4\mathbb{Z}$
- $\mathcal{P} =$ "having order 2"

$$G = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$$

Inhyeok Choi (Cornell University)

Counting for WPD actions

April 19, 2025 3 / 29

3

A D N A B N A B N A B N

Finite group

• Basically, we just count.

Inhyeok Choi (Cornell University)

Counting for WPD actions

בּאַלַבּא בּ י∕יקי April 19, 2025 4/29

Infinite group

Example

- $G = \mathbb{Z}$
- $\mathcal{P} =$ "being identity"
- $\mathcal{P} =$ "being even"
- $\mathcal{P} =$ "being prime"

$$\mathbb{Z} = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

Infinite group

Setup

- G: group generated by $S \subseteq G$
- \mathcal{P} : some property
- $\|\cdot\|_{\mathcal{S}}: \mathcal{G} \to \mathbb{Z}_{\geq 0}$ gives an exhaustion
- $B_S(n) := \{g \in G : \|g\|_S \le n\}$

Problem

$$\lim_{n\to+\infty}\frac{\#B_{\mathcal{S}}(n)\cap\mathcal{P}}{\#B_{\mathcal{S}}(n)}=?$$

Inhyeok Choi (Cornell University)

Counting for WPD actions

April 19, 2025 6 / 29

3

A D N A B N A B N A B N

Disclaimer

- Only care about *finitely generated groups*
- Focus on the word metrics
- No random walks

Missing many important work by Maher, Sisto, Taylor, Tiozzo, Yang, ...

(日) (四) (日) (日) (日)

Groups

F_2 , $Mod(\Sigma)$, $Out(F_N)$, $F_2 \times F_3$

What about $\pi_1(\Sigma)$, braid groups, CAT(0) (cubical) groups, 3-manifold groups, small cancellation groups, handlebody group, Torelli group, Aut(F_N), ...

イロト 不得下 イヨト イヨト 二日

• Elliptics, parabolics, loxodromics

Dani '05, Gekhtman-Taylor-Tiozzo '18 Let S be a finite generating set of F_2 . Then

$$\lim_{n \to +\infty} \frac{\#(B_{\mathcal{S}}(n) \cap \{\text{loxodromics}\})}{\#B_{\mathcal{S}}(n)} = 1.$$

Inhyeok Choi (Cornell University)

Counting for WPD actions

April 19, 2025 9 / 29

(日) (四) (日) (日) (日)

Something like F_2

• $\mathsf{PSL}(2,\mathbb{Z}) \simeq \mathbb{Z}_2 * \mathbb{Z}_3$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hyperbolic group

- $G \curvearrowright X$, G: hyperbolic, X: hyperbolic
- Elliptics, parabolics, loxodromcis

Dani '05, Gekhtman-Taylor-Tiozzo '18

Let G be a hyperbolic group with a non-elementary action on a hyperbolic space X. Let S be a finite generating set of G. Then

$$\lim_{n \to +\infty} \frac{\#(B_{\mathcal{S}}(n) \cap \{\text{loxodromics}\})}{\#B_{\mathcal{S}}(n)} = 1.$$

In fact, there exists $\epsilon > 0$ such that

$$\frac{\#\{g\in B_{\mathcal{S}}(n):\tau_{\mathcal{X}}(g)\geq\epsilon n\}}{\#B_{\mathcal{S}}(n)}\lesssim e^{-\epsilon n}.$$

$F_2 \times F_3$

- $G \curvearrowright X$, G: f.g. group, X: hyperbolic
- <u>Weakly hyperbolic groups</u> (Maher-Tiozzo '18)
- $F_2 \times F_3 \frown F_2$: $(a, b) \cdot c := a \cdot c$

Gekhtman-Taylor-Tiozzo '18 (cf. Kim)

Consider the action of $G = F_2 \times F_3$ on the Cayley graph of $Cay(F_2)$. Then \exists finite generating sets S and S' of G such that

$$\lim_{n \to +\infty} \frac{\#(B_{\mathcal{S}}(n) \cap \{\text{loxodromics}\})}{\#B_{\mathcal{S}}(n)} = 1,$$
$$\lim_{n \to +\infty} \frac{\#(B_{\mathcal{S}'}(n) \cap \{\text{loxodromics}\})}{\#B_{\mathcal{S}'}(n)} < 1.$$

< □ > < 同 > < 回 > < 回 > < 回 >

Takeaway

- Genericity problem is not Ql-invariant in general.
- Even when the QI map is G-equivariant, or even when the group is fixed and the word metric changes.

(日) (四) (日) (日) (日)

Interlude: $\mathbb{Z} * \mathbb{Z}^2$

- Right-angled Artin groups, or more generally relatively hyperbolic groups
- Ø Gekhtman-Taylor-Tiozzo '20, Yang '20
- More generally, groups with strongly contracting elements in the word metric

3

イロト イポト イヨト イヨト

$\mathsf{Mod}(\Sigma)$

- $\mathsf{Mod}(\Sigma) := \mathsf{Homeo}^+(\Sigma) / \mathsf{Homeo}_0(\Sigma)$
- Infinite
- Finitely generated
- Resembles hyperbolic group? (non-amenability, Tits alternative, etc.)
- Not (relatively) hyperbolic; thick
- HHG?

イロト イポト イヨト イヨト

$\mathsf{Mod}(\Sigma)$

Nielsen-Thurston '40s, '70s Finite-order / reducible / pseudo-Anosov

Folklore conjecture (Farb '06)

In Mod(Σ), pseudo-Anosovs are generic elements.

Answered by Rivin '07, Maher '11, somehow by C. '24, C. '24, C. '24, C. '25

・ 何 ト ・ ヨ ト ・ ヨ ト

$Out(F_N)$

- $\operatorname{Out}(F_N) = \operatorname{Aut}(F_N) / \operatorname{Inn}(F_N)$
- Resembles hyperbolic group? or $SL(n, \mathbb{Z})$?
- Not (relatively) hyperbolic, not an HHG

Bestvina-Handel '92

Finite-order / reducible / irreducible / fully irreducible

- 20

< □ > < 同 > < 回 > < 回 > < 回 >

$Out(F_N)$

?? Is a typical outer automorphism fully irreducible?

Answered by Sisto '16, Maher-Tiozzo '18 , somehow by C. '25

Inhyeok Choi (Cornell University)

Counting for WPD actions

April 19, 2025 18 / 29

э

(日) (四) (日) (日) (日)

Best scenario for some S

C. '24

Let G be a finitely generated group with a non-elementary action on a Gromov hyperbolic space X.

Then \exists finite generating set *S* of *G* and $\epsilon > 0$ such that

$$\frac{\{g \in B_{\mathcal{S}}(n) : \tau_X(g) \leq \epsilon n\}}{\#B_{\mathcal{S}}(n)} \lesssim e^{-\epsilon n}.$$

Ingredient: ping-pong + Gouëzel's pivoting '22 cf. Wiest '17, Cumplido-Wiest '18 cf. Yang '20, Ding-Martínez-Granado-Zalloum '24

Inhyeok Choi (Cornell University)

April 19, 2025 19 / 29

$Mod(\Sigma)$ with any S

C. '25

For any finite generating set S of $Mod(\Sigma)$, we have

$$\frac{B_{\mathcal{S}}(n) \cap \{\text{non-pseudo-Anosovs}\}}{\#B_{\mathcal{S}}(n)} \lesssim n^{-k}. \quad (k = 1, 2, \ldots)$$

Ingredient: weakly contracting property (Behrstock '06, Duchin-Rafi '09)

$Out(F_N)$ with any S

C. '25

For any finite generating set S of $Out(F_N)$, we have

$$\lim_{n \to +\infty} \frac{B_{\mathcal{S}}(n) \cap \{\text{fully irreducibles}\}}{\#B_{\mathcal{S}}(n)} = 1$$

Ingredient: WPD property (Bestvina-Fujiwara '02; Bestvina-Feighn '10, '14)

Inhyeok Choi (Cornell University)

April 19, 2025 21 / 29

3

< □ > < 同 > < 回 > < 回 > < 回 >

More than 3 theorems

- More specific info: principal stratum/atoroidal/triangular
- Many subgroups: Torelli group, handlebody group, ...
- Group extension: Braid group (!)
- *Quasi-isometries*: CAT(0) groups, groups QI to (some) 3-manifold groups, ...

3

イロト イポト イヨト イヨト

Behrstock's inequality

Inhyeok Choi (Cornell University)

Counting for WPD actions

April 19, 2025 23 / 29

э

Geometric separation

3

Geometric separation

	X	f(D, M)	Density of non-loxodromics
<i>F</i> ₂	$Cay(F_2)$	constant in M	$\lesssim \lambda^{-n}$ for some $\lambda > 1$
$Mod(\Sigma)$	$\mathcal{C}(\Sigma)$	linear in M	$\lesssim n^{-k}~(orall k)$
Out (F_N)	\mathcal{FF}_N	finite	tends to 0
$F_2 \times F_3$	$Cay(F_2)$	$+\infty$	can be bounded away from 0

- 2

$F: \mathcal{BAD}_{\epsilon,L}(n) \times [n] \to B_S(n)$

April 19, 2025 26 / 29

3

$O(\epsilon n)$ -to-1 injectivity of F

Inhyeok Choi (Cornell University)

Counting for WPD actions

April 19, 2025 27 / 29

æ

Questions

What is f(D, M) for $Out(F_N)$? for other AHG?

Are pseudo-Anosovs exponentially generic in $Mod(\Sigma)$?

Are Morse elements generic in hyperbolic-like groups?

Inhyeok Choi (Cornell University)

Counting for WPD actions

April 19, 2025 28 / 29

э

Thank you very much!

3