
CAT(0) 큐브 기하학과 삼투 현상

최인혁

Abstract. 이 논문에서는 CAT(0) 큐브 군의 케일리 그래프 상에서의 삼투 현상을 CAT(0) 큐브 복

합체의 언어로 분석한다. 이를 통해 저자와 서동균이 [CS25]에서 증명한 무한 클러스터의 갯수에 관한

결과를 재증명한다. 이와 함께, 군 위에서의 삼투 현상 이론 및 CAT(0) 큐브 기하학의 기초를 소개한다.

(Abstract in English) In [CS25], the author and Donggyun Seo proved the existence of infinitely

many infinite clusters in a random subgraph of certain Cayley graphs. We provide an alternative

proof of this result for CAT(0) cubical groups in terms of halfspaces.

This paper is expository, aiming at an invitation to percolation on infinite groups and/or CAT(0)

cubical geometry.

핵심 단어. 삼투 현상, 케일리 그래프, CAT(0) 큐브 복합체

1. 서론

기하군론의 핵심 철학 중 하나는, 어떤 군이 어떤 거리공간에 등거리사상으로 작용할 때, 그 작용의

성질로부터 군의 기하학을 읽어내는 것이다. 이때 흔히 사용되는 거리공간 중 CAT(0) 큐브 복합체

(CAT(0) cube complex)라는 것이 있다. 본 논문에서는 CAT(0) 큐브 복합체에 진정으로, 여-컴팩트하

게,그리고기약적으로작용하는 (proper, cocompact and irreducible action)군의기하학을설명한다.

이를 바탕으로, 그러한 군의 케일리 그래프 위에서의 삼투 현상이 만족하는 성질을 하나 증명한다.

이는 더 일반적인 세팅에서 이미 증명된 바 있음을 밝혀 둔다. 구체적으로 [CS25]에서 저자와 서

동균은 비원통적이게 쌍곡적인 군(acylindrically hyperbolic group)에 대해 해당 결과를 증명했다. 본

논문에서 다루는 모든 군은 비원통적이게 쌍곡적이므로, 아래의 정리 A은 새로울 것이 없다. 허나 정

리 A의 증명을 CAT(0) 큐브 기하학으로 새롭게 적어낼 수 있다는 것이 요지이다. 따라서 본 논문은

(1) 큐브 기하학으로 독자를 초대하는 한편, (2) 쌍곡기하로 증명한 확률론 결과를 큐브 기하학으로

재해석하는 의의가 있다.

먼저 기하학적인 배경을 설정하겠다. 유한 생성 군 G와 그 (대칭적인) 유한 생성 집합 S가 주어졌을

때, G의원소들을꼭짓점으로하고, S의원소로연관된원소쌍마다모서리를그릴수있다.다시말해,

g, h ∈ G가 g−1h ∈ S일 때마다 gh이라는 모서리를 그리겠다는 말이다. 이 그래프 Γ = Cay(G,S)를 S

에 대한 G의 케일리 그래프(Cayley graph)라고 부른다.

다음으로 확률과정을 하나 도입하겠다. 먼저 0과 1 사이 실수 p를 하나 정하자. 이제 앞면이 나올

확률이 p, 뒷면이 나올 확률이 1− p인 동전을 Γ의 각 모서리에 하나씩 둔다. 모든 동전을 일제히 던져,

앞면이 나온 모서리는 남기고 뒷면이 나온 모서리는 삭제한다. 이때 각 동전의 결과는 독립적이라는

가정을 하겠다. 이런 삭제 과정 이후에 남은 부분그래프를 Γ[p]라고 적겠다. 그러면 Γ[p]는 결정적인

그래프가 아닌 확률 변수가 된다. 이 확률적인 그래프의 연결 성분들 중, 무한히 큰 성분이 몇 개가

생기는지를 답하고자 한다. 이 논문에서는 다음을 증명한다.
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Theorem A. CAT(0) 큐브 복합체 X 및 유한 생성 군 G를 하나씩 생각하자. 이때, G가 X에 진정

으로, 여-컴팩트하게, 그리고 기약적으로 작용한다고 가정하자. 더하여, G 안에는 정수군 Z와 동형인
유한 지수 부분군(finite-index subgroup)을 가지지 않는다고 가정하자.

그러면 G의 유한 생성 집합 S 각각마다 실수 0 < p < 1이 존재하여 G의 케일리 그래프 Γ =

Cay(G,S)의 p-랜덤 부분그래프 Γ[p]의 무한 연결성분이 무한히 많을 확률이 1이다.

위에서 다룬 확률 과정을 삼투 과정(percolation process)이라고 부른다. 그래프 위에서의 삼투

과정과 CAT(0) 큐브 기하학에 관한 방대한 이론을 다 소개할 수는 없겠으나, 위 정리를 증명하는 데

필요한기초만큼은모두설명하겠다.여기에새로운것은전혀없고,다음참고문헌들에서추린것이다.

• Geoffrey Grimmett, Percolation [BK89].

• Hugo Duminil-Copin, Introduction to Bernoulli percolation [DC18].

• Wolfgang Woess, Random walks on infinite graphs and groups [Woe00].

• Russell Lyons and Yuval Peres, Probability on trees and networks [LP16].

• Thomas Hutchcroft, Percolation on hyperbolic grpahs [Hut19].

• Michah Sageev, Ends of group pairs and non-positively curved cube complexes [Sag95].

• Pierre-Emmanuel Caprace and Michach Sageev, Rank rigidity for CAT(0) cube complexes

[CS11].

• Anthony Genevois, Algebraic properties of groups acting on median graphs [Gen24].

삼투 과정론은 다음 두 장에서 논의한다. 2장에서는 삼투 과정론을 빠르게 소개한 뒤 논의를 전

개할 배경을 설명한다. 3장에서는 CAT(0) 큐브 복합체 위의 좋은 군 작용으로부터 기대할 수 있는

기하학적인 성질을 두 개 소개하고, 이 성질들을 이용해 삼투 과정에 관한 결과를 유도한다.

이어서 CAT(0) 큐브 기하학을 다룬다. 4장에서는 CAT(0) 큐브 복합체와 사실상 동등한 객체라고

볼 수 있는 중점그래프(median graph)를 소개한다. 5장에서는 중점그래프 기하학에서 아주 중요한

개념인 초평면(hyperplane), 반공간(halfspace) 및 그 사슬(chain)을 공부한다. 그후 삼투 과정에 필

요한 CAT(0) 큐브 복합체의 기하학적인 성질, 이를테면 마법 보조정리(명제 6.1)를 6장 및 7장에서

증명한다. 8장에서는 좀 더 자세한 CAT(0) 큐브 기하학을 다룬다.

이 논문에서 새로운 것은 오직 6장 및 7장뿐이니 원한다면 3.1절만 본 뒤 이것으로 넘어가도 괜찮다.

또, 삼투 과정론 부분과 CAT(0) 큐브 기하학 부분은 따로따로 보아도 크게 무리가 없다.

2. 배경 설명

이 장에서는 우리가 다룰 문제를 설정하고 그 역사를 개괄하는데, 그 어떤 것도 증명하지 않을 것이

다. 내용적으로는 2.1절만 읽으면 4장 이후를 읽는 데 지장은 없다. 그럼에도, 삼투 과정을 처음 접하는

독자들은 이 장 전체를 가볍게 훑어 보았으면 한다.

2.1. 그래프와 군 이 논문에서 그래프(graph)란 꼭짓점 집합 V와 모서리 집합

E ⊆
(
V
2

)
:= {S ⊆ V : #S = 2}

이라는두데이터를결합한개념이다.이관습에서는어떤모서리가한꼭짓점에만매달려있거나,혹은

여러 개의 모서리가 같은 두 점 사이를 잇는 것은 허용하지 않는다.

어떤 모서리 e = {v, w} ∈ E가 주어졌을 때 v 및 w를 e의 끝점(endpoint)이라고 부른다. 이 경우

관습적으로 e = vw와 같이 적는다. 또, 어떤 두 모서리 e, f ∈ E가 끝점을 하나 공유할 때, 두 모서리가
2



인접해 있다(adjacent)고한다.두꼭짓점 v, w가어떤모서리로이어져있을때도두꼭짓점이인접해

있다고 하고, v ∼ w로 적는다.

꼭짓점 부분집합 A ⊆ V(Γ)가 주어져 있을 때,

∂EA :=
{
xy ∈ E(Γ) : x ∈ A이고 y /∈ A

}
를 A의 경계 혹은 가장자리(boundary)라고 부른다. 위 정의에서는 모서리를 모은 반면

∂VA := ∂EA ∩A =
{
x ∈ A : x ∼ y인 A 밖의 꼭짓점 y /∈ A가 존재함

}
또한 A의 경계 또는 가장자리라고 부른다. 맥락상 혼동의 여지가 없을 때는 간단히 ∂A라고 적겠다.

그래프 Γ = (V(Γ), E(Γ))의 모서리 일부 E ′ ⊆ E(Γ)를 가지고 만든 다른 그래프 Γ′ = (V, E ′)를 Γ의

부분그래프(subgraph)라고 부른다. 이때 다음 표기법을 사용하겠다:

Γ \ Γ′ :=
(
V(Γ), E(Γ) \ E ′

)
.

그래프 Γ의 어떤 꼭짓점들 v0, v1, . . . , vn에 대해, 만약 e1 := v0v1, . . . , en := vn−1vn이 모두 Γ의

모서리로 나타난다면, 그래프 Γ′ := ({v0, . . . , vn}, {e1, . . . , en})를 Γ 위의 길이 n짜리 경로(path)라고

부른다. 이때 len(Γ′) = n으로 정의한다.

위에서 만약 경로 Γ′의 시작점과 끝점이 같다면, Γ′를 회로(circuit)라고 부른다. 다시 말해, 어떤

꼭짓점들 v1, . . . , vn에 대해 만약 e1 := vnv1, . . . , en := vn−1vn이 모두 Γ의 모서리로 나타난다면,

Γ′ := ({v0, . . . , vn}, {e1, . . . , en})를 Γ 위의 길이 n짜리 회로라고 부른다. 만약 여기에 더해 v1, . . . , vn

이 모두 서로 다른 꼭짓점이라면, Γ′를 길이 n짜리 사이클(cycle) 혹은 n-사이클이라고 부른다.

그래프 Γ에서 두 집합 A,B ⊆ V(Γ)가 Γ 안의 어떤 경로로 이어져 있으면 A ↔Γ B라고 적는다.

이제 Γ가 연결되어 있다(connected)는 것은 임의의 x, y ∈ V(Γ)에 대해 x ↔Γ y라는 뜻이다. 어떤

그래프의 각각의 꼭짓점 혹은 모서리마다 그것을 포함하는 연결된 부분그래프를 찾아줄 수 있는데, 이

를 그 꼭짓점 혹은 모서리의 연결성분(connected component)이라고 한다. 모든 그래프의 꼭짓점

집합 및 모서리 집합은 연결성분들로 분할된다.

그래프 Γ가 이분 그래프(bipartiate graph)라는 것은, Γ의 모든 모서리가 A의 어느 점과 B의

어느 점 사이를 잇도록 하는 V(Γ)의 분할 A tB가 존재한다는 뜻이다.

사실 2.1. 그래프 Γ가 이분 그래프인 것과, Γ에 홀수 길이 사이클이 없다는 것은 동치다.

연결그래프 Γ의 꼭짓점들에 자연스러운 거리 구조를 줄 수 있다. 두 꼭짓점 x, y ∈ V(Γ)에 대해

d(x, y) := min
{
len(P ) : P는 x와 y를 잇는 경로

}
로 정의하는 것이다. 그러면 d(·, ·)은 삼각 부등식과 비자명성(nondegeneracy)을 만족한다. 따라서

d(·, ·)은 거리 구조가 되고, 이를 조합적 거리(combinatorial metric), l1-거리 혹은 그래프 거리(graph

metric)라고 부른다. 즉 그래프는 자연스럽게 거리공간으로 볼 수 있다.

어떤 꼭짓점 부분집합 A ⊆ V(Γ) 및 양수 k > 0에 대해

Nk(A) :=
{
y ∈ V(Γ) :어떤 a ∈ A에 대해 dΓ(a, y) ≤ k임

}
을 A의 반지름 k짜리 근방(neighborhood)이라고 부른다.

이제 군 얘기를 하겠다. 군(group)이란 합성 및 역연산이 가능하게끔 연산이 갖춰진 구조를 의미

한다. 구체적으로, id라는 특별한 원소를 포함하는 집합 G에 이항 연산 · : G2 → G가 더해져,

(1) (결합 법칙) 모든 g, h, k ∈ G에 대해 (g · h) · k = g · (h · k)이고,
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(2) (항등원의 존재성) 모든 g ∈ G에 대해 g · id = id · g = g이며,

(3) (역원의 존재성 )모든 g ∈ G 각각마다 고유한 짝 원소 g−1 ∈ G이 존재해 g · g−1 = g−1 · g = id

이다.

를 만족할 때, (G, ·, id)를 군이라고 부른다. 만약 id ∈ H ⊆ G에 ·을 제한했을 때 (H, ·, id)가 군을 이룬

다면, H를 G의부분군(subgroup)이라고부르고 H ≤ G와같이표기한다.이때, G는 {[gH] : g ∈ G}
라는동치류들로분해되는데,이동치류들의갯수를H의지수(index)라고부른다.이지수가유한하면

H는 G의 유한 지수 부분군이라고 불리는 것이다.

어떤 군 G의 부분집합 S ⊆ G가 대칭적(symmetric)이라는 것은, S의 모든 원소에 대해 그 역원도

S에 속한다는 뜻이다. G의 부분집합 S가 G의 (대칭) 생성 집합(generating set for G)라는 것은,

S를 포함하는 G의 가장 작은 부분군이 G 전체라는 것이다. 이는 각 g ∈ G마다 g = sε11 · · · sεnn 을
구현하는 S의 원소 유한 개 s1, . . . , sn 및 ε1, . . . , εn ∈ {1,−1}가 존재한다는 것과 동치이다. 이때 g를

만드는 데 필요한 S의 원소 갯수의 최솟값을 g의 S-단어 노름(S-word norm)이라고 적고 ‖g‖S라고
표기한다. 마지막으로, 유한한 생성 집합을 가지는 군을 유한 생성군(finitely generated group)

이라고 부른다.

수학 세상에는 정말 다양한 군이 있다. 자명한 군(trivial group) 1 = {id}도 있고, Z /nZ와 같은
유한군(finite group)도 있다. 가장 간단한 무한군에는 정수군 Z = (Z,+, 0)이 있을 것이다. 이러한

군들은 다음과 같이 나타날 때가 많다. 어떤 수학적인 구조 X가 주어졌을 때, X에서 X로 향하는 사

상들 중 되돌리기가 가능하면서 (예를 들어 단사함수/위상동형사상/가역행렬 등이면서) X의 성질을

보존하는 것들을 다 모으면, 이 모임은 자연스럽게 군을 이룬다. 예를 들면, Z라는 군은 수직선 위의
아핀 변환 중 역변환이 가능하면서 정수점들을 정수점들로 보내는 것들의 모임으로 볼 수 있다.

실은 모든 군은 어떤 그래프의 대칭을 모은 것으로 이해할 수 있다. (대칭) 생성 집합 S가 주어진

군 G를 생각하자. 서론에서 도입했듯, G의 모든 원소를 꼭짓점으로 가지고 S의 원소로 연관된 모든

순서쌍을 모서리로 이은 그래프 Γ = Cay(G,S)를 S에 대한 G의 케일리 그래프(Cayley graph of

G with respect to S)라고 부른다. 이때 그래프 거리는 자연스럽게 S-단어 노름으로 주어지는즉,

dΓ(g, h) := ‖g−1h‖S이다. 생성 집합 S에 대한 의존성을 더 명확히 표기하기 위해 dS(g, h)라고 적기도

한다. 이때 만들어지는 그래프가 국소적으로 유한(locally finite)하려면, 즉 유한한 반경을 가지는

모든 공이 꼭짓점 유한 개만을 포함하려면, S가 유한 집합이어야만 한다. 이는 필요충분조건이다.

앞으로 유념할 군이 두 개가 있다. 먼저, d차원 정수 격자군 Zd는{
v = (v1, . . . , vd) : vi ∈ Z

}
로 정의된다. 이 격자군의 유한 생성 집합 중에는 {ei = (δij)

d
j=1 : i = 1, . . . , d}가 있다. 이 d개의 “방향

이동”으로 다른 방향 이동을 생성해낼 때, 그 순서는 크게 상관이 없다. 즉, ei + ej − ei − ej = 0

임을 알고 있다. 사실은 이 등식만 잘 이해하고 있으면, Zd 안에서의 모든 등식(이를테면 (3, 1) =

(2, 1)− (1, 3) + (2, 4) 나위)을 유도할 수 있다. 더 깊게 들어가지는 않겠으나, 이것이

Zd ' 〈s1, . . . , sd | sisjs−1
i sj = id〉

이라고 적는 이유이다. 이때 우변을 Zd의 표현(presentation)이라고 부른다.

그렇다면

Fd := 〈s1, . . . , sd | − 〉

은 어떤 군을 얘기하는 것일까? 이 군은 s1, . . . , sd 및 그 역글자 s−1
1 · · · s

−1
d 로 적을 수 있는 모든 단

어들의 집합인데, 어떤 글자와 그 역글자가 인접할 때 항등원과 동치가 된다는 기본 등식 (sis
−1
i =
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s−1
i si = id) 외에 그 어떤 추가 규칙도 없는 군이다. 이 군을 차수 d짜리 자유군(free group of rank

d)이라고 부르고, 이때 {s1, . . . , sd}는 이 군을 자유롭게 생성한다(freely generate)고 말한다. 차수

2짜리 자유군의 케일리 그래프가 어떻게 생겼는지 그려 보고 그림 1와 비교해 보라.

Figure 1. 차수 2짜리 자유군의 표준적인 케일리 그래프

일반적으로,어떤군 G의모든원소쌍 g, h ∈ G마다 gh = hg,즉 ghg−1h−1 = id라는등식이성립할

때, G를 가환군(abelian group)이라고 부른다. 가환군보다 더 일반적인 군으로는 멱영군(nilpotent

group), 가해군(solvable group) 등이 있는데, 이들의 정의는 생략하겠다.

마지막으로, 군의 성장(growth)을 살펴 보겠다. 유한 생성 군 G의 유한 생성 집합 S를 고정했을 때,

케일리 그래프 G = Cay(G,S)의 반지름 R짜리 공 안에는 꼭짓점이 얼마나 많이 들어 있는지 물을 수

있다. 이를테면

lim inf
R→+∞

ln #{g ∈ G : ‖g‖S ≤ R}
R

> 0?

라는 질문을 던질 수 있다. 만약 답이 “예”라면, 공 안의 원소 개수는 공의 반지름에 지수함수적으로

증가한다는 얘기가 된다. 사실 이 질문은 S의 선택지와는 무관하다. 이말인즉, 군 G가 주어졌을 때,

만약 유한 생성 집합 한 개에 대한 위 질문의 답이 “예”라면, 다른 유한 생성 집합을 골라 물어도 답이

“예”라는 것이다. 이런 “예” 군을 지수함수적으로 성장한다(exponentially growing)고 부른다. 대

표적으로, 자유군은 지수함수적으로 성장하고 정수 격자군은 그렇지 않다. 지수함수적으로 성장하는

부분군을 가지는 모든 군은 지수함수적으로 증가한다. (주의: 부분군 안의 단어 거리는 부모 군의 단어

거리와는 상당히 다를 수 있음에 주의하라.)

2.2. 삼투 현상 이제 그래프 상의 삼투 현상(percolation)을 논하겠다. 배경이 되는 연결그래프 Γ =(
V(Γ), E(Γ)

)
를 하나 고정한 뒤, 그 부분그래프들의 공간

Ω :=
{

Γ′ =
(
V(Γ), E ′

)
: E ′ ⊆ E(Γ)

}
를 생각하겠다. 각각의 모서리 e ∈ E(Γ)마다, Ω를 분할하는 두 집합 {Γ′ ⊆ Γ : e ∈ Γ′}와 {Γ′ ⊆ Γ : e /∈
Γ′}을 생각할 수 있다. 이들을 통상 {ω : e가 열려 있음} 및 {ω : e가 닫혀 있음}이라고 부른다. 이런

집합들을 모든 e ∈ E(Γ)에 대해 모아, 그것으로 생성되는 가장 작은 σ-대수를 Ω에 얹어 주겠다.
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이제 매개변수 0 ≤ p ≤ 1을 하나 고정하자. 각각의 모서리 e ∈ E(Γ)를 독립적으로 열거나 닫되

Pp
(
{e가 열려 있음}

)
= p, Pp

(
{e가 닫혀 있음}

)
= 1− p

라고 설정함으로써 확률측도 Pp를 Ω에 얹어줄 수 있다. 즉, “전체 그래프의 (100p)%”짜리 랜덤 부분

그래프를 생각하는 것이다. 이 확률변수를 Γ[p]라고 적겠다.

이 개념을 조금 덜 형식적으로 표현하면 다음과 같다. 그래프 Γ의 각 모서리마다 앞면이 나올 확률

p,뒷면이나올확률 1−p짜리동전을하나씩짝지어놓고,동전을일제히독립적으로던진다음앞면에

해당하는 모서리만 남기자. 이때 남는 부분그래프는 Ω의 다양한 원소가 될 수 있는데, 각 결과가 나올

확률은 매개변수 p에 의존한다. 이러한 확률적 부분그래프를 Γ[p]로 표시한다.

더 실제에 가까운 비유를 하자면, 여러 분자가 처음에는 Γ 모양으로 결합해 균질한 결정을 이루고

있는 상황을 떠올리자. 서서히 온도를 높였을 때 각각의 분자결합이 일정 확률(= 1 − p)로 끊어질

것이다. 이때 결정이 어떤 모양으로 쪼개질지는 확률적인데, 이를 모사하는 것이 Γ[p]이다. 이때 각

분자결합이 끊어질지 말지는 독립적이라는 가정을 달았다는 점에 주목하라. 이러한 수학적인 모델은

Simon R. Broadbent와 John M. Hammersley가 [BH57]에서 처음 도입했다.

위 모델에서는 배경 그래프의 각 모서리가 생존하거나 혹은 제거되는데, 이를 베르누이 결합 삼투

과정(Bernoulli bond percolation process)이라고부른다.각꼭짓점이생존하거나혹은제거되는

자리 삼투 과정(site percolation process)또한물리적인삼투현상을모사하는모델이다.이외에도

각 모서리를 그대로 두거나 제거하는, 말하자면 길이 1 혹은 무한대를 부여하는 규칙 대신, 확률적인

길이를 주어 그래프의 변형된 거리 구조를 탐색하는 첫 통과 삼투 과정(first passage percolation)

등이 있다. 본 논문에서는 베르누이 결합 삼투 과정에 초점을 두겠다. 삼투 과정에 더 관심이 있는

독자는 Geoffrey Grimmett의 책 [Gri89]을 참조하면 좋겠다.

참고 2.2. 어떤 연결그래프 Γ의 전체 대칭군 Aut(Γ)가 Γ의 임의의 두 꼭짓점 v, w ∈ Γ를 연결지을 수

있을 때, 즉 g = g(v, w) ∈ Aut(Γ)가 존재해 v = g · w일때, Γ를 꼭짓점 전이적(vertex-transitive)

이라고 부른다. 이는 곧 V(Γ) 내의 Aut(Γ)-궤도가 오직 한 개라는 뜻이다. 더 나아가, 만약 V(Γ) 내의

Aut(Γ)-궤도가 유한 개라면 Γ를 준전이적(quasi-transitive)이라고 부른다.

논의의 편의상, 앞으로는 그래프 중 유한 생성 군의 케일리 그래프에만 한정해서 얘기를 진행하겠

다. 그러나, 추후 언급할 정리들 중 상당수는 케일리 그래프보다 더 일반적인 경우, 즉 꼭짓점 전이적

혹은 준전이적 그래프에 대해서도 증명된 것이다. 이는 원 논문을 참조하는 것을 추천한다.

2.3. 삼투 과정의 상전이 가장 먼저 평면 격자 그래프 Γ = Z2 위에서의 삼투 과정을 살펴 보자. 이때,

매개변수 p가 클수록 확률적으로 더 많은 모서리가 살아남기에, p가 1에 가까우면 원래 그래프 Γ가

거의 그대로 남는다고 예상할 수 있다. 이에 반해, p가 0에 가까우면 원래 그래프의 대부분이 삭제되고

작은 자투리만 남을 듯하다. 이 상반되는 예상의 측도로서

“크기가 무한한 연결성분이 발생하는가?”

를 물을 수 있다. 평면 격자 그래프에 관해서는 다음이 알려져 있다:

• p ≤ 1/2일 때는 Γ[p]에 무한 연결성분이 발생할 Pp-확률이 0인 반면,

• p > 1/2일 때는 Γ[p]에 무한 연결성분이 발생할 Pp-확률이 1이다.

이러한 의미에서, 매개변수 p가 1/2에 다다를 때 평면 격자상의 삼투 과정은 상전이(phase tran-

sition)을 겪는다고 얘기할 수 있다. 이때 기준이 되는 값 1/2를 임계 변수(critical parameter)라고

부르고, pc(Γ)라고 적는다. 즉, Γ = Z2일 때 pc(Γ) = 1/2이다.
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일반적인 그래프 Γ에서 삼투 과정을 진행하면 무한 연결성분이 발생할 확률이 0도 1도 아닌 값을

가질 수도 있다. 하지만 이는 굉장히 비균질한 그래프에서만 가능한 현상이며, 군의 케일리 그래프

같이 균질한 그래프에서는 결코 이런 일이 일어나지 않는다는 것이 알려져 있다. 간결한 논의를 위해

이제부터는 군의 케일리 그래프 위에서의 삼투 과정만 묘사하겠다.

케일리 그래프 Γ = Cay(G,S)를 하나 생각하자. 어차피 Γ의 모양은 어느 기점을 기준으로 보나 똑

같으니(이것이 우리가 바라던 균질성이다), 항등원 원소 id ∈ G를 기점으로 삼겠다. 삼투 과정 그래프

Γ[p]에서 id의 연결성분을 Cid라고 적겠다. 이 기점 연결성분이 무한히 클 확률을

θ(p) := Pp
(
#Cid = +∞

)
로 적겠다. 이때 다음이 성립한다.

사실 2.3 (보조정리 3.1 참고). θ(p)는 p ∈ [0, 1]에 대한 단조증가함수이다.

또한, p가 상당히 작은 양수일 때 (이를테면 0 < p ≤ 1
#2S일 때) θ(p) = 0임을 확인할 수 있다. 즉,

θ(p)는 첫 구간 동안에는 0이라는 값에 머물다가, 어느 시점부터 0보다 커지게 된다. 이 시점을 Γ의

임계 변수(critical parameter)라고 정의한다. 즉,

pc(Γ) := inf
{
p ∈ [0, 1] : θ(p; Γ) > 0

}
으로 정의하겠다. 이제 케일리 그래프의 균질성 때문에 다음과 같은 사실이 성립한다:

사실 2.4 (보조정리 3.4 참고). 어떤 케일리 그래프 Γ의 임계 변수가 pc라고 하자. 그러면,

• 각 0 ≤ p < pc에 대해 Pp (Γ[p]가 무한 연결성분을 하나도 가지지 않음) = 1이고, 또

• 각 pc < p ≤ 1에 대해 Pp (Γ[p]가 무한 연결성분을 하나 이상 가짐) = 1이다.

즉, 임계점 상전이는 임의의 케일리 그래프에서도 일어나는 것이다. 여기에 첨언할 것은, pc가 1인

그래프도많다는사실이다.예를들어그림 4의수직선그래프에서,좌측/우측반직선상의무한히많은

모서리가 끊어지는 순간 무한 연결성분은 생기지 않는다. 이러한 상황은 p < 1일 때는 100% 생긴다.

따라서 pc(Z) = 1이다. 이는 비단 수직선 그래프뿐만 아니라, Z의 그 어느 케일리 그래프를 가져와도
마찬가지다. 일반적으로 Z를 유한 지수 부분군으로 가지는 군의 케일리 그래프에서는 pc = 1이다.

이것이 pc = 1인 예시 전부이지 않을까 하는 것이 Itai Benjamini와 Oded Schramm의 추측이다.

추측 2.5. [[BS96]] 정수군 Z를 유한 지수 부분군으로 가지지 않는 유한 생성군의 케일리 그래프 Γ는

반드시 pc(Γ) < 1을 만족한다.

이 추측은 지수함수적으로 성장하는 군에 대해서는 Russell Lyons가, 유한 표현을 가지는 군에 대해

서는 Eric Babson과 Itai Benjamini가 대답한 바 있다 ([Lyo95], [BB99]). 그 특수한 경우로 자유군의

케일리 그래프에 대해 pc < 1임을 관찰하는 것은 어려운 일이 아니다. 이로부터, 자유군을 부분군으로

가지는 군의 케일리 그래프에 대해 pc < 1이라는 사실도 금방 따라 나온다.

사실 2.6. 차수 2짜리자유군을부분군으로가지는유한생성군의케일리그래프 Γ는반드시 pc(Γ) < 1

을 만족한다.

이는 방금 말한 결과보다는 약하지만 우리 목적에는 충분하다. 따라서 사실 2.6만을 나중에 증명하

겠다.
7



또다른 상전이로 넘어가기 전에, 임계점 상전이를 더 자세히 들여다 보겠다. 먼저, θ(p)의 양상이

p = pc를 기점으로 변한다고는 했지만, 과연 pc에서의 값은 얼마일까? 즉, θ(pc)는 0일까 혹은 양수

일까? 다르게 말하자면, 임계 변수 p = pc에서 Γ[p]는 무한 연결성분을 가질것인가? (“임계점 삼투가

일어날 것인가?”라고 묻기도 한다.) 앞에서 본 평면 격자 Z2의 경우, θ(pc) = θ(1/2)은 0이라는 것이

Harry Kesten의 유명한 결과이다 ([Kes80]; Theodore Harris의 [Har60]도 참조). 놀랍게도, 아직까지

3차원 정수 격자 Z3에서는 θ(pc)가 양수인지 0인지 알려진 것이 없고 이는 중요한 미해결 문제이다.

다음으로,주어진케일리그래프 Γ및매개변수 0 ≤ p ≤ 1에대해,기점 id의연결성분이평균적으로

얼마나 큰지 물을 수 있다. 이에

χp := Ep[#Cid] =
∑
g∈G

Pp(id↔ g) =

{ ∑∞
n=0 n · Pp[#Cid = n] θ(p) = 0인 경우

+∞ θ(p) > 0인 경우

라는 값을 감수율(susceptibility)이라고 부르겠다. 아까 정의한 θ(p)와 마찬가지로,

사실 2.7 (보조정리 3.1 참고). χp는 p ∈ [0, 1]에 대한 단조증가함수이다.

정의상 p > pc일때 χp = +∞이고, p가충분히작은양수일때 χp < +∞임을관찰하는것도어렵지
않다. 하지만 그 사이에는 어떤 값을 가지는지 자명하지 않다. 참고로 값이 거의 확실하게 유한한 확률

변수라도 기댓값이 무한대일 수 있기에, θ(p) = 0이라고 해서 χp < +∞인 것이 바로 따라나오는 것은
아니다. 이는 증명이 필요한 사실로, Michael Aizenman과 David Barsky가 d차원 격자 그래프에서

먼저 관찰했고 Tonći Antunović와 Ivan Veselić이 케일리 그래프를 포함하는 더 일반적인 그래프에

대해 증명했다.

사실 2.8. [[AB87], [AV08]] 케일리 그래프 Γ의 임계 변수 pc가 주어졌을 때, 각 0 ≤ p < pc에 대해

χp는 유한한 값을 갖는다. 더하여, p↗ pc일 때 χp ↗ +∞이다. 특히 χpc = +∞이다.

이 정리의 좀더 현대적인 증명으로 Hugo Duminil-Copin 및 Vincent Tassion의 논증[DCT16]과

Hugo Vanneuville의 방법론[Van25]이 있다.

이외에도, (1) χp가 p↗ pc일때정확히어떤속도로발산하는지, (2) p↘ pc일때 θ(p)는정확히어떤

속도로 0에착지하는지, (3) p = pc일때 Cid의크기확률분포가대략어떻게되는지등을물을수있다.

지면 관계상 더 깊이 들어가지는 않겠지만, 이렇게 p가 임계 변수 근처일 때 Γ[p]의 기점 연결성분의

크기 및 모양 정보를 알고자 하는 것이 삼투 과정 이론의 근본 중 하나이다.

2.4. 무한 연결성분의 갯수 지금까지, p가어떤영역(pc < p ≤ 1)에들어있을때 Γ[p]에거의확실하게

무한 연결성분이 나타난다는 것을 얘기했다. 그렇다면 과연 몇 개나 등장할까? 한 개? 두 개? 열 개?

아니면 무한 개? 그리고 p의 값에 따라 이 갯수는 어떻게 변할까?

만약 논의를 케일리 그래프에 좁히지 않았다면 이 질문들은 답하기 매우 난감하다. 그러나 케일리

그래프에 대해서는 어느 정도 만족스러운 답이 알려져 있다. 첫째로, 케일리 그래프 Γ와 p ∈ [0, 1]이

주어졌을 때, Γ[p]가 가질 수 있는 무한 연결성분의 갯수는 거의 확실하게 고정된다. 또, 그 갯수는

반드시 0개, 1개 혹은 “무한히 많다”이다. 다시 말해,

사실 2.9. 유한 생성 군의 케일리 그래프 Γ와 p ∈ [0, 1] 각각마다 N∞(Γ, p) ∈ {0, 1,+∞}가 존재해

Pp
{

#{Γ[p] 안의 무한 연결성분들} = N∞(Γ, p)
}

= 1

이다.
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Figure 2. 무한 연결성분의 (거의 확실한) 갯수의 가장 일반적인 개형

이 사실은 C. M. Newman과 Lawrence S. Schulman이 [NS81]에서 증명했다.

이제 다음을 정의하자.

pu[Γ] := inf
{
p ∈ [0, 1] :거의 확실하게 Γ[p]가 무한 연결성분을 정확히 하나 가지고 있다

}
.

이 상수를 Γ의 유일성 한계(uniqueness threshold)라고 부른다. 정의로부터 pc ≤ pu임은 바로 따

라나온다. 또, pc < p < pu인 p에 대해서는, Γ[p]는 거의 확실하게 무한 연결성분을 가지지만 유일한

무한 연결성분을 가지지는 않는다. 따라서 N∞(Γ, p) = +∞여야 할 것이다. 이제 다음 정리가 진짜

비자명한 사실이다. 이 사실은 Itai Benjamini와 Oded Schramm이 유명한 서베이 논문 [BS96]에서

추측했고, Olle Häggström과 Yuval Peres가 케일리 그래프들에 대해 [HP99], Roberto H. Schonmann

이 좀 더 일반적인 그래프들에 대해 증명했다 [Sch99].

사실 2.10. 케일리 그래프 Γ의 유일성 한계 pu가 주어졌을 때, 각각의 pu < p ≤ 1에 대해

Pp
(
Γ[p]에 무한 연결성분이 유일하게 존재한다

)
= 1

이다. (엄밀히 말하면, 이 사실 자체는 우리 증명에 꼭 필요하지는 않다.)

다시 말해, (pu, 1] 전 구간에서 거의 확실하게 Γ[p]는 유일한 무한 연결성분을 가진다. 따라서, N∞

는 일반적으로 도식 2과 같은 개형을 만족한다.

이렇게 보면, N∞에 관해서는 상전이가 두 번 일어나는 것이 가장 일반적인 그림이다. 허나 그것

은 (0, pc), (pc, pu) 및 (pu, 1)이 모두 비자명한 구간일 때의 얘기이다. 이중 0 < pc는 항상 보장된다.

그렇다면 pu < 1은 어떨까? 이는 모든 군이 만족하지는 않는다. 예를 들어 1에 묘사되어 있는 4차수

정규 나무 그래프 T4에서는, p가 1보다 조금이라도 작으면 Γ[p]에서 모서리가 군데군데 사라져 있을

것인데, 모서리가 하나 사라질 때마다 전체 그래프를 둘로 나누게 된다. 이렇게 똑똑 부러뜨리기 쉬운

그래프의 랜덤 부분그래프에서는 유일한 연결성분은 결코 기대할 수 없고, 더 나아가 무한 연결성분

또한 유일하지 않게 된다. 이를 통해 pu(T4) = 1임을 알 수 있다.
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어떤 그래프의 유한 개의 모서리만 삭제해도 그래프를 여러 연결성분으로 끊어낼 수 있는 경우, 그

그래프의 끝이 여러 개(not one-ended)라고 부른다. 일반적으로 이런 케일리 그래프들은 pu = 1을

가진다는 것을 어렵지 않게 확인할 수 있다.

그렇다면 나머지 케일리 그래프들은 어떨까? 앞에서 언급한 [BS96]에서 Itai Benjamini와 Oded

Schramm은 다음을 물었다:

문제. 끝이 하나짜리인 케일리 그래프의 경우 항상 pu < 1인가?

이 질문은 아직까지 완전한 답이 알려져 있지 않다. 그러나, 끝 하나짜리인 이 케일리 그래프를 만

들어내는 군이 만약 유한 표현(finite presentation)을 가진다면 pu < 1임은 알려져 있다. 이는 Eric

Babson과 Itai Benjamini의 결과이다 [BB99].

한편, pc < pu에 관해서는 어떤 것이 알려져 있을까? 먼저, 앞에서 얘기한 Z2의 경우, N∞(p) = +∞
인 p가 존재하지 않고, 또 pc = pu = 1/2이다. 이는 2차원에 국한된 얘기가 아니다. 더 높은 차원 d를

가지는 Zd에 대해서도 마찬가지로 pc = pu가 성립한다. 이 사실은 Michael Aizenman, Harry Kesten

및 Charles M. Newman이 1987년에 증명한 중요한 결과이다[AKN87]. 일반적으로, (무한한) 가환군

(abelian group), 멱영 군(nilpotent group)을 포함하여 지수함수보다 느리게 성장하는 군(group with

subexponential growth)의 케일리 그래프에서는 모두 동일한 현상이 나타난다. 이것에 밀접하게 관련

된 것이 케일리 그래프의 유한 부분집합들의 “부피” 대비 “표면 면적”의 경합이다. 이에 개념 하나를

도입하겠다.

정의 2.11. 어떤 케일리 그래프 Γ의 Cheeger 상수는

ι(Γ) := inf

{
#∂EK

#K
=

#{vw ∈ E(Γ) : v ∈ K,w /∈ K}
#K

: K는 V(Γ)의 유한 부분집합

}
와 같이 정의된다. 그래프 Γ가 평균가능하다(amenable)는 것은 그 Cheeger 상수가 0이라는 뜻이고,

평균불가능하다(nonamenable)는 것은 그 Cheeger 상수가 양수라는 뜻이다.

여기서 Cheeger상수의정확한값은그다지중요하지않을때가많다.그보다더중요한것은 Cheeger

상수가 0보다 크냐 아니냐이다. 정수군 Z 및 그 직접곱 Zd를 포함해서, 모든 가환군, 멱영 군 및 지수

함수보다 느리게 성장하는 군의 케일리 그래프들은 평균가능하다. 이들에 대해 다음이 알려져 있다.

명제 2.1 ([AKN87], [BK89], [GKN92]). 모든 평균가능한 케일리 그래프 Γ와 모든 0 ≤ p ≤ 1에 대해,

거의 확실하게 Γ[p]는 무한 연결성분을 기껏해야 한 개 가진다. 즉, N∞(p; Γ) = ∞인 p는 존재하지

않는다. 특히, pc(Γ) = pu(Γ)이다.

이 명제는 상술했듯 먼저 Zd에서 Michael Aizenman, Harry Kesten 및 Charles M. Newman이

증명했다. 곧이어 R. M. Burton 및 Michael S. Keane이 다른 증명을 제시했는데, Alberto Gandolfi,

Michael S. Keane 및 Charles M. Newman이 그 논증을 평균가능한 케일리 그래프로 확장했다.

그렇다면 반대로, pc < pu인 그래프는 어떤 것들이 있을까? 앞에서 언급한 pu = 1인 예시들, 즉

끝이 한 개보다 많은 그래프들을 제외한 첫 예시는 Geoffrey Grimmett과 Charles M. Newman이 다룬

(정규 d차 나무 그래프) × Z로 이는 자유군 × Z의 표준적인 케일리 그래프이다 [GN90]. 이 그래프는

(0, pc), (pc, pu), (pu, 1) 세 구간이 모두 공집합이 아닌 첫 예시이다.

이 예시의 발견 이후 I. Benjamini와 O. Schramm가 제기한 추측을 소개한다.

추측 2.12 ([BS96, Conjecture 6]). 모든 평균불가능한 케일리 그래프 Γ에 대해 pc(Γ) < pu(Γ)이다.
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이는그래프의연결성에관한조합적인개념인평균불가능성과, Γ[p]가무한히많은무한연결성분을

가지게끔 하는 p가 무한히 많다는(!) 확률론적인 성질이 정확하게 일치한다는 추측이다. 실은, 그 어느

케일리그래프 Γ를가져와도, N∞(p; Γ) = +∞이게끔하는 p가하나라도 존재하는것과 pc(Γ) < pu(Γ)

는 동치이다. 이는 명제 2.1에 더해, Γ가 평균불가능할 경우 Γ[pc]는 (거의 확실하게) 무한 연결성분을

하나도 갖지 않는다는 사실 때문이다 [BLPS99].

2.5. 추측 2.12의 현황과 본 논문의 목표 사람들은 다양한 케일리 그래프를 놓고 추측 2.12을 연구해

왔다. Steven Lalley가 종수가 큰 곡면군(high-genus surface group)이 쌍곡평면에 그리는 평면 그래프

(planar graph)에 대해 pc < pu임을 증명한 뒤 [Lal98], 추측 원작자인 I. Benjamini와 O. Schramm

은 쌍곡평면 위에 여-컴팩트하게 그려진 임의의 케일리 그래프에 대해 pc < pu를 증명했다 [BS01].

위 두 결과에서는 케일리 그래프의 평면성이 중요한 역할을 했다. 그런데 여기서 짚고 넘어갈 것이

있다. 어떤 의미에서 곡면군은 매우 2차원스럽지만, 그런 곡면군도 평면적이지 않은 케일리 그래프를

얼마든지 가질 수 있다. 예를 들어 오각형 완전그래프 K5를 부분그래프로 가지는 케일리 그래프를

잡을 수 있다. 곡면군의 이런 케일리 그래프에 대해서도 pc < pu임을 어떻게 볼 수 있을까?

여기서 한 가지 짚고 넘어갈 점이 있다. 질문 및 추측 2.12은 그래프의 확률론적인 성질과 어떤 기하

학적인 성질이 동치라고 주장하는데, 이 기하학적인 성질은 그래프의 세세한 연결성에는 전혀 관심이

없고 거시적인 모양새만을 따지는 성질이다. 이것이 이 질문 및 추측을 한층 흥미롭게 만드는 요소다.

이를테면 평면성은 그래프의 거시적인 구조와 국소적인 구조 둘 다에 의존하는 성질이다. 그에 반해

그래프의 끝의 개수 혹은 평균불가능성은 (겉보기에는 그렇지 않을 수 있지만) 그래프의 거친 모양만

에 달린 성질이라는 것이 알려져 있다. 특히, 어떤 군의 한 케일리 그래프가 끝이 여러 개이거나 혹은

평균불가능하면, 그 군의 모든 다른 케일리 그래프 또한 마찬가지라는 것이 알려져 있다. 유한 생성

집합을 특이하게 잡아 K100을 부분그래프로 가지게끔 한다고 해도 끝의 개수 혹은 평균불가능성은

뒤틀 수 없다는 얘기다.

따라서, 추측 2.12을 접근할 때 주어진 군의 특정 케일리 그래프가 아닌 모든 케일리 그래프에 대해

대답할수있다면더욱좋을것이다.이관점과같이알아둘만한사실이하나있다.모든 평균불가능한

군 각각마다 pc(Γ) < pu(Γ)를 만족하는 케일리 그래프 Γ를 하나씩은 잡아줄 수 있다는 것으로, Igor

Pak과 Tatiana Smirnova-Nagnibeda의 결과이다 [PSN00]. 이렇게 특수하게 만든 케일리 그래프의

pc < pu로부터, 같은 군의 다른 임의의 케일리 그래프의 pc < pu를 유도해 낼 수 있는지는 미지수다.

그러면그모든케일리그래프가 pc < pu를만족하는군은어떤것이있을까?이방향으로는 Damien

Gaboriau와 Russell Lyons가 다룬, 첫번째 l2-베티 수가 죽는 군들의 케일리 그래프가 있다 [Gab05],

[Lyo00], [Lyo13]. 이 개념의 정의를 여기서 도입하는 것은 무리일 듯하고, 그 예시들만을 몇 개 들겠다.

Gaboriau와 Lyons가 각각의 케일리 그래프에 대해 pc < pu를 보인 군의 예시에는

• 자유군 및 무한군의 자유곱 군(free product);

• 종수 2 이상인 곡면군;

• 평균가능한 군들에 대해 아말감한 자유곱 군

등이 있다. 그에 반해, Gaboriau 및 Lyons가 다루지 않는 군에는

• 자유군들의 직접곱;

• SL(2,Z)(n,Z); 더하여, n차수 리 군 안의 격자들 (n ≥ 3)

• 쌍곡 곡면의 사상류 군(mapping class group) Mod(Σg);

• 자유군의 외자기동형사상 군(outer automorphism group) Out(FN );

• 자유곱이 아닌 직교 아틴군(right-angled Artin group)
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등이 있다. 또, Kazhdan 성질 (T)를 가지는 군들 중에서도 위 이론이 적용되는 군의 예시는 아직

발견되지 않았다.

그 다음으로 살펴볼 것은 Thomas Hutchcroft가 [Hut19] 및 [Hut20]에서 공부한 군들이다. 이중 두

번째 논문에서는 어떤 특징적인 대칭성을 가지는 케일리 그래프들에 대해 pc < pu를 증명한다. 여기서

특징적인대칭성이라함은,그래프 Γ의대칭군 Aut(Γ)에충분히큰부분군 H가존재한다는것인데,충

분히 크기에 H가 Γ의 모든 꼭짓점 사이를 거의 자유롭게 오갈 수 있지만, 몇몇 꼭짓점들을 편향적으로

고정하는 비대칭성도 가진다는 뜻이다. 더 깊이 논하지는 않겠으나, 이 비대칭성 이론으로 Hutchcroft

는 모든 d ≥ 3 및 k ≥ 1에 대해 (Td : d차수 정규 나무그래프) × Zk의 pc < pu를 증명해 냈다. 다

만, 이러한 비대칭성은 그래프의 국소적인 구조에 의존하는 성질로, 어떤 군의 한 케일리 그래프에서

찾아냈을 때 다른 케일리 그래프에서도 반드시 찾아낼 수 있는 것은 아니다.

이에 반해 첫번째 논문에서는 특정 군들의 모든 케일리 그래프에 대해 논한다. 이는 다음과 같다.

정리 2.13. [[Hut19]] 정수군 Z와 동형인 유한 지수 부분군이 없고 무한한 Gromov 쌍곡적인 군 G의

모든 케일리 그래프 Γ에 대해, pc(Γ) < pu(Γ)이다.

Gromov 쌍곡성(Gromov hyperbolicity)은 d차원 쌍곡공간 Hd, K < −a2의 곡률을 가지는

단순연결 다양체 및 나무 그래프를 모두 아우르는 기하군론 핵심 개념이다. Gromov 쌍곡군의 정의

역시 구체적으로 적지는 않겠지만, Hd에 진정으로 여-컴팩트하게 작용하는 군(즉 여-컴팩트 격자)을

예시로 생각하면 좋다. 특히, 닫힌 쌍곡다양체들의 자유군들은 모두 Gromov 쌍곡적이다.

Gromov 쌍곡성을 한층 더 일반화한 비원통적인 쌍곡성(acylindrical hyperbolicity)은 더욱 정

의하기쉽지않지만, Gromov쌍곡군과쌍곡곡면의사상류군,자유군의외자기동형사상군,자유곱이

아닌 직교 아틴 군을 모두 포함하는 개념이라고 생각할 수 있다. 이러한 군들에 대해 저자와 서동균은

다음을 증명했다.

정리 2.14. [[CS25]] 정수군 Z와 동형인 유한 지수 부분군이 없고 비원통적으로 쌍곡적인 G의 모든

케일리 그래프 Γ에 대해, pc(Γ) < pu(Γ)이다.

이 논문에서는 곧 얘기할 CAT(0) 큐브 복합체 혹은 중점그래프에 작용하는 군들에 대해 살펴볼 것

이다.이러한군들과 Gromov쌍곡군간에는밀접한관계가있다.먼저, Gromov쌍곡군이라는개념과

우리가 고려할 CAT(0) 큐브 군의 개념은 서로를 포함하지는 않는다. 하지만 둘 다에 해당하는 중요한

대상이 있는데, 바로 3차원 닫힌 쌍곡다양체의 기본군들이다. 이 군들 안에는 쌍곡군과 동형인 부분군

들이 구겨지지 않고 잘 들어가 있다는 것을 Jeremy Kahn과 Vladimir Marković가 보였는데 [KM12],

이런 쌍곡군들을 타일링 재료로 삼아 군이 자유롭게(freely) 또 여-컴팩트하게 작용하는 CAT(0) 큐브

복합체를 구성해줄 수 있다는 것을 Nicolas Bergeron과 Daniel T. Wise가 증명했다[BW12]. 사실은,

모든 3차원 닫힌 쌍곡다양체는 원 위의 쌍곡 곡면 다발을 유한군으로 자른 것으로 이해할 수 있는데,

이를사실상의 다발 만들어내기 정리(virtual fibring theorem)라고한다 [Ago13]. Ian Agol이이를

증명하기 위해 긴요하게 사용했던 재료가 바로 Bergeron과 Wise의 CAT(0) 큐브 복합체라고 할 수

있다.

CAT(0) 큐브 군의 또다른 예시는 직교 아틴군과 직교 콕세터군(right-angled Coxeter group)

이 있다. 이들 군은 정해진 몇 가지 종류의 관련자(relator)로 이루어진 유한 표현을 가지고 있는데, 이

표현에 따라 자연스럽게 Salvetti 복합체 및 Davis 복합체라는 CAT(0) 큐브 복합체를 건설할 수 있다.

또 이들 군은 이들 복합체에 진정으로 또 여-컴팩트하게 작용한다. 일반적으로 직교 아틴군에는 자유

군 Fn과 동형인 부분군 및 정수 직접곱 군 Zn과 동형인 부분군이 온갖 곳에서 얽혀 있기에, Gromov
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쌍곡적이지 않은 경우가 많다. 따라서 이번 논문에서는 이러한 군들을 쌍곡기하 대신 CAT(0) 큐브

기하학으로 이해해볼 것이다.

3. 삼투 과정 이론

이 장에서는 정리 A의 증명을 몇 가지 단계로 세분할 것이다. 증명에 필요한 기하학적인 관찰들을

먼저 3.1절에서 기술하겠다. 이 기하학적인 재료들만 있으면 확률론 논증을 통해 정리 A를 이끌어낼

수 있다는 것이 Thomas Hutchcroft의 이론인데 [Hut19], 이 이론을 3.2절 및 3.3절 에서 설명하겠다.

CAT(0) 큐브 기하학을 깊이 파고들지 않고 군 위의 삼투 현상 이론만을 읽고 싶은 독자들은 이

장까지만 읽으면 충분하다. 한편, 확률론 테크닉보다는 CAT(0) 큐브 기하학에 관심이 있는 독자들은

3.1절만 읽은 뒤 다음 장으로 넘어가도 좋다.

3.1. 우리가 증명해야 할 기하학적인 사실들 군 G의 유한 생성 집합 S에 대한 케일리 그래프 Γ =

Cay(G,S)를 하나 고정했을 때, G의 유한 부분집합이 Γ상에서 어떻게 배치되어 있는지에 관한 성질

두 개를 기술하겠다. 아직 우리는 CAT(0) 큐브 기하학을 만나지 않았기에 길잡이 역할을 할 예시가

필요한데, 정수 격자 군 Z2보다는 자유군 F2 = 〈a, b〉을 상상하는 편이 도움이 될 것이다. 그러니 일단

G = F2 및 S = {a, a−1, b, b−1}로 두고 설명하겠다.

자유군 F2의 유한 부분집합의 예시로

A := N100(id) =
{
a1a2 · · · aN : N ≤ 100, {a1, . . . , a100} ⊆ S

}
를생각해볼수있다.이부분집합의대부분,즉 98%이상은두께 4짜리가장자리껍질N100(id)\N96(id)

에 몰려 있다. 이 껍질 위의 점 u를 아무 것이나 고정하자. 그러면 u에서 바라본 집합 A는 상당히 한

방향에쏠려있다.예를들어, u로부터네걸음걸어나오는방법은총 4×33 = 108가지가있다.그러나,

거의 대부분의 a ∈ A에 대해, u에서 a를 향해 Γ 위에서 걸어 나갈 때 첫 네 걸음은 a에 거의 의존하지

않고, 108가지 중 정해진 단 한 가지로 고정된다. 이를 구체적으로 논하기 위해

Au :=
{
a ∈ A : ua와 u(id)의 첫 네 걸음이 일치함

}
를 정의하면, A의 최소 98%에 해당하는 u ∈ A \ N96(id)에 대해 A \ Au는 N12(p)에 포함되어 있고

그 크기는 4 · 311 이하이다. 다시 얘기하면, A에서 예외적인 원소 4 · 311만 제외하면 모두 u 관점에서

보았을 때 같은 방향에 몰려 있다. 여기서 4 · 311이라는 숫자는 엄청 크기는 하지만, 이 숫자는 “네

걸음”이라는 변수에만 의존하지 A의 반지름과는 무관하다는 것에 유의하라.

더 나아가, u에서 바라보는 대신 u와 거리 4 안에 있는 점으로부터 바라보면, A는 정말로 한 방향

에 쏠려 있다고 말할 수 있다. 다시 말해, A의 최소 98%에 해당하는 u ∈ A \ N96(id)에 대해서는,

dS(u, v) < 4인 점이 존재해 Av ⊇ A가 된다는 것이다.

위 관찰에서 우리는 대부분의 u ∈ A에 대해 A ' Au임을 얘기했다. 여기서 A ' Au라는 사실이

왜 유용한지 보기 위해, p-랜덤 그래프 Γ[p] 안에서의 u의 연결 성분 Cu를 살펴 보겠다. 이때, Cu는 u

기준에서 보았을 때 id 방향으로도 어느 정도 뻗어 있겠지만, 그것과 동등한 확률로 다른 방향으로도

뻗어 있을 것이다. 즉 직관적으로 #(Cu ∩ Au)는 #Cu의 1/108밖에 안 되어야 할 것이다. 또 Au와 A

는 기껏해야 점 유한 개밖에 차이나지 않으니, #Cu가 아주 큰 경우 (즉 p ↗ pc일 때) #(Cu ∩ A)는

#Cu의 1/100밖에 안 되어야 할 것이다. 이것이 우리가 원하는 상황이다.

위 사실을 다른 방식으로 표현해 보겠다. 점 u = a100 ∈ N100(id) \ N96(id)를 고정하면, u에

서 id로 향하는 첫 네 걸음은 모두 a−1 방향이다. 따라서 u에서 Au로 이어지는 모든 경로는 네
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점 ua−1, ua−2, ua−3, ua−4을 지나야 한다. 이때 예를 들어 (a−1) · (a−1) = a−2라는 관계가 성립

하니 a−1, a−2, a−3, a−4는 서로 자유롭게 독립적(freely independent)이라고 볼 수는 없다. 하지만,

a−1, a−2, a−3, a−4 각각으로부터 거리 1에 있는 점 a−1b, a−2b, a−3b, a−4b는 자유롭게 독립적이다.

더일반적으로,임의의점 u ∈ N100(id)\N96(id)에서 id로향하는첫네걸음이순서대로 s1, s2, s3, s4 ∈
S라고 했을 때, u에서 Au로 이어지는 모든 경로는 us1, . . . , us1s2s3s4 네 점을 지나야 한다. 이때

{s1, s1s2, s1s2s3, s1s2s3s4}자체는자유롭게독립적이지않을수있다.하지만, ti ∈ S\{s−1
1 , s−1

i , si+1}
를 하나씩 잡으면 {

s1t1, s1s2t2, s1s2s3t3, s1s2s3s4t4
}

는자유롭게독립적이다.이는어떤의미에서 Au가 u로부터 “한방향”에치우쳐있다는것을시사한다.

놀라운 점은, A ⊆ G가 둥근 공 모양이 아니어도 위와 같은 현상을 기대할 수 있다는 것이다. 이를

위해 몇 가지 개념을 정의하겠다.

정의 3.1. 군 G의 어떤 부분집합 A ⊆ G가 나무스럽다(branching)는 것은 곧 A가 자유롭게 독립적

이라는 뜻이다. 그말인즉, 만약 a1, . . . , an, a
′
1, . . . , a

′
m ∈ A에 대해

a1 · · · an = a′1 · · · a′m

이면 반드시 n = m이고 각각의 i에 대해 ai = a′i여야 한다.

이제 G의 어떤 유한 생성 집합 S를 고정하자. 어떤 부분집합 A′ ⊆ G 및 D > 0에 대해 A′가 D-

나무스럽다(D-roughly branching)는 것은, A′가 어떤 나무스러운 집합 A의 D-근방에 포함된다는

뜻이다. 다시 말해,

A′ ⊆
{
as1 · · · sn : a ∈ A, 0 ≤ n ≤ D, si ∈ S

}
이게끔 하는 나무스러운 집합 A가 존재한다는 것을 의미한다.

적당한 상수 D에 대해 D-나무스러운 집합을 간략히 대충 나무스럽다고 부르겠다.

정의 3.2. 유한 생성 집합 S가 고정된 어떤 군 G를 생각하자. 이때, (g0, g1, . . . , gn)이 S-경로라는

것은, 각각의 i = 1, . . . , n에 대해 g−1
i−1gi ∈ S라는 것이다.

세 집합 A,B,C ⊆ G에 대해, 만약 A와 C를 잇는 모든 S-경로가 B를 지나야 한다면 B를 A와 C

사이 장벽(barrier between A and C)라고 적겠다.

정의 3.3. 유한 생성 집합 S가 갖춰진 군 G를 생각하자. 이때 G가 마법 보조정리(magic lemma)

를 만족한다는 것은 어떤 K > 0가 존재하고, 각각의 D > 0마다 대충 나무스러운 부분집합 B가

존재하며, 또 각각의 ε,D,D′ > 0마다 어떤 숫자 N = N(ε,K,D,D′)가 존재하여 다음이 성립한다는

것이다.

임의의 유한 집합 A ⊆ G마다 A의 (100− ε)%를 차지하는 부분집합 A′ ⊆ A이 존재하는데, 각각의

a ∈ A′마다 어떤 K-나무스러운 부분집합 두 개

B(a) = B1(a) t . . . tBD(a), B′(a) = B′1(a) t . . . tB′D(a)

가 존재해 {
y ∈ A : B1(a), . . . , BD(a) 각각이 id와 a−1y 사이 장벽임

}
∪{

y ∈ A : B′1(a), . . . , B′D(a) 각각이 id와 a−1y 사이 장벽임
}
∪{

y ∈ A : B \ND′(id)가 id와 a−1y 사이 장벽임
}

은 A의 원소 중 많아야 N개를 놓친다.
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정의 3.4. 군 G가 대충 반전 가능하다(roughly flippable)는 것은 다음을 만족하는 부분집합 유한

개 A1, . . . , AN ⊆ G 및 원소 유한 개 g1, . . . , gN ∈ G이 존재한다는 뜻이다.

먼저, 각각의 i에 대해, id와 gi 사이를 잇는 S-경로이면서 전반부는 giA
c
i 바깥에, 후반부는 Ai

바깥에 위치하는 어떤 경로 γi가 있다.

더하여,임의의유한집합 A ⊆ G마다 A의절반을차지하는부분집합 A′ ⊆ A이존재하는데,각각의

a ∈ A′마다 어떤 i가 존재해

A ⊆ aAi ( agiA
c
i

가 성립한다.

위 정의에서 γi의 조건이 조금 까다로울 수 있는데, 예를 들어 dS(id, gi) > 2dS(id, Aci )인 경우에는

그냥 id와 gi 사이 아무 dS-최단 경로나 잡으면 된다.

위 성질들은 G의 기하학적 모양에 관한 것이고, 확률론적인 요소는 하나도 없다. 이 논문의 핵심 중

하나인 기하학 명제는 다음과 같다.

명제 3.1. 유한 생성 군 G가 어떤 중점그래프 Γ에 진정으로 작용하고 또 정규 1차수 대칭을 가진

다고 가정하자(정의 7.1 참조). 예를 들어 Γ상의 G-작용이 진정이고 여-컴팩트하며 기약적이면 항상

그러하다. 또, G 안에는 Z와 동형인 유한 지수 부분군이 없다고 가정하자.

그러면 G는 각각의 유한 생성 집합에 대해 마법 보조정리를 만족하고, 또 대충 반전 가능하다.

이 사실이 삼투 현상에 관련이 있는 이유가 아래에 적혀 있다.

명제 3.2. 자유군을 부분군으로 가지는 유한 생성 군 G의 케일리 그래프 Γ가 마법 보조정리를 만족

하고, 또 G가 대충 반전 가능하다고 가정하자. 그러면 pc(Γ) < pu(Γ)가 성립한다.

이 절의 나머지 동안에는 명제 3.2을 증명하겠다. 이어지는 장에서는 명제 3.1을 공부한다.

3.2. 기초적인 확률론 이 절의 내용은 [Gri89]의 2장 및 8장, 그리고[DCT16]의 1절을 발췌해 번역한

것이다.

유한집합 혹은 가산집합 E를 하나 생각한 뒤

Ω := {0, 1}E = {E에서 {0, 1}로 향하는 함수},

B(Ω) := {Ω의 보렐 부분집합들}

로 두겠다. 또, 0 ≤ p ≤ 1이라는 매개변수가 주어졌을 때, 각 e ∈ E마다 평균 p짜리 베르누이 확률 측도

µe를 잡은 뒤 그 곱측도 Pp = ⊗e∈Eµe를 생각하면, 확률공간 (Ω,B(Ω),Pp)을 만들 수 있다.

그래프 Γ상의 삼투 과정을 위와 같은 확률공간에서 모사할 수 있다. 모서리 집합 E(Γ)를 E로 활용
하고, 확률변수 Γ : ω 7→ Γ(ω)를

Γ(ω) :=
(
V(Γ), E(ω) := {e : ω(e) = 1}

)
(∀ω ∈ Ω)

로 잡아주면 Γ는 우리가 바라던 p-랜덤 부분 그래프 Γ[p]가 된다.

어떤 사건 A ∈ B(Ω)가 증가적(increasing)이라는 것은,[
ω ∈ A

]
∧
[
ω ≤ ω′

]
⇒ ω′ ∈ A (∀ω, ω′ ∈ Ω)

라는 것이다. 어떤 가측함수 F : Ω → R이 증가적이라는 것은 각각의 t마다 {ω : F (ω) > t}가 증가적
이라는 것이다. 달리 말해, ω ≤ ω′이면 F (ω) ≤ F (ω′)라는 것이다.
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보조정리 3.1. 실수 두 개 0 ≤ p1 ≤ p2 ≤ 1을 생각하자. 그러면 모든 증가적인 사건 A ∈ B(Ω)에

대해 Pp1(A) ≤ Pp2(A)이다. 또, 모든 증가적인 확률변수 X ≥ 0에 대해 Ep1 X ≤ Ep2 X이다.

Proof. 두 확률공간 (Ω,Ppi) 한번에 다루기 위해

(Y,P) :=
(
[0, 1], Leb

)E(Γ)

를 생각하자. 또 Ψi : Y → Ω는 다음과 같이 두는데, Y의 원소 y에 대해, Ψi(y)의 e-좌표는 y(e)가 pi

보다 작으면 1, 아니면 0으로 정의한다. 이렇게 하면 Ψ∗i P의 각 좌표는 1일 확률이 pi이고, 서로 다른

좌표값들은 독립적이다. 이를 통해 Ψ∗i P와 Ppi가 같은 분포를 가진다는 것을 알 수 있다.

따라서 Ppi(A)는 Ψi(A)의 P값이다. 그런데 A가 증가적이므로 Ψ1(y) ∈ A이면 Ψ2(y) ≥ Ψ1(y) 또한

A의 원소이다. 이는 곧

Ppi(A) = P
(
Ψ1(A)

)
≤ P

(
Ψ2(A)

)
= Pp2(A)

를 의미한다. 이로써 첫번째 주장을 얻는다.

또한 확률변수 X가 어떤 증가적인 사건의 특성함수(characteristic function)인 경우의 두번째 주

장도 얻었다. 이러한 특성함수들의 양수 계수 선형결합(∗)에 대해서도 마찬가지 부등식이 성립한다.

임의의 증가적인 확률변수 X에 대해 0 ≤ f1 ≤ f2 ≤ . . . , limi fi = X이게끔 (∗) 성질을 만족하는 fi

들을 잡아줄 수 있다. 이 함수열에 대해 단조수렴정리를 적용하면 일반적인 두번째 주장도 얻는다. �

이로부터 사실 2.3 및 2.7을 간단히 확인할 수 있다.

사실 2.3 및 2.7의 증명 연결그래프 Γ의 두 점 x, y ∈ V(Γ)에 대해,

{ω : x↔Γ(ω) y} 및 {ω : #Cx = +∞}

는 증가적인 사건이다. 이 사건들에 보조정리 3.1을 적용하면 바라던 사실들을 얻는다. �

또다른 응용으로서 사실 2.6를 증명해 보자.

사실 2.6의 증명.. 먼저자유군 F2 = 〈a, b〉의표준생성집합 S = {a, a−1, b, b−1}에대한케일리그래프
위에서 θ(0.91) > 0임을 보이겠다. 이를 위해

AR(k) :=
{
ω : #{v ∈ ∂NR(id) : id↔Γ(ω)∩NR(id) v} ≥ k

}
를 정의하자. 이 사건은 NR(id) 안의 모서리의 개폐 여부에만 의존하고 바깥의 모서리는 신경쓰지

않음을 유의하라. 따라서 NR(id) 안의 모서리 개폐 여부만을 명시하는 사건들의 모임

ER := {A ⊆ Ω :모든 ω, ω′ ∈ A 및 e ⊆ NR(id)에 대해 ω(e) = ω′(e)}

를 정의하자. 이제 주장할 것은,

주장 3.5. 매개변수 p가 5/6보다 클 때, 각각의 R, k ≥ 0 및 A ∈ ER ∩AR(k)에 대해

Pp(AR+1(2k)|A) ≥ 1− 10(1− p)
k

이것을 증명하기 위해 A를 하나 고정하고, A의 부분그래프들 안에서 id와 연결된 ∂NR(id) 위의

점들을 {v1, . . . , vN}라고 하겠다. 이들과 NR+1(id)를 연결하는 모서리는 정확하게 3N개 (혹은 R = 0
16



일 때는 4N개) 있는데, 이 모서리들 중 M개가 열리면 id와 연결된 NR+1(id)의 꼭짓점 갯수도 정확히

M개가 될 것이다. 따라서, 이항분포 B(3N, p)에 대해 체비셰프 부등식을 적용하면

Pp(AR+1(2k)|A) = P(B(3N, p) ≥ 2k) ≥ P(B(3k, p) ≥ 2k)

= 1− P
(
B(3k, p) ≤ 3kp− (3kp− 2k)

)
≥ 1− V ar(B(3k, p))

(3kp− 2k)2
≥ 1− 2.5k(1− p)

(0.5k)2

임을 알 수 있다. 이로써 주장이 따라나온다.

주장 3.5을 반복해서 적용하면,

Pp(AR(2R)) ≥
R∏
i=1

(
1− 10(1− p)

2i

)
≥ 1−

R∑
i=1

10(1− p)
2i

≥ 1− 10(1− p)

이다. 이 값은 p > 9/10일 때 균일하게 0보다 크다. 따라서, R ≥ 0에 대한 AR(2R)의 교집합 또한 양의

확률을 가지고, 이는 곧 θ(p) > 0이라는 뜻이다.

이제 유한 생성 집합 S를 갖춘 군 G에 자유 부분군 H ' F2 = 〈a, b〉가 들어 있는 경우를 생각하자.

편의상 군 동형사상 ρ : 〈a, b〉 → H를 고정해 두겠다. 이때 u ∈ {a, b} 각각마다 id와 ρ(u)를 연결하는

경로 γu를 Γ = Cay(G,S) 안에 잡아줄 수 있는데 그 길이를 Lu로 적겠다. 이제 F2의 표준적인 케일리

그래프의 각 가로변에 점 Lh − 1개를 추가해 길이를 Lh로 늘이고, 각 세로변에 점 Lv − 1개를 추가해

길이를 Lv로 늘인 그래프 T를 생각하자. 이제 g ∈ F2는 ρ(g) ∈ V(Γ)로 보내고, v ∈ {a, b}에 대해
g ∼ gv ∈ V(F2) 사이 선분은 g · γv로 보냄으로써 T에서 Γ로 향하는 사상 ρ를 만들 수 있다.

이 사상 ρ는 어떤 의미에서 진정하다. 더 구체적으로, u, v ∈ {a, b}를 고정했을 때, ρ(g)γu와 γv

가 서로 만나게끔 하는 g ∈ F2의 갯수는 많아야 유한하다. 실제로, 그러한 ρ(g)의 S-단어 노름은

2(diamS(γa) + diamS(γb)) 이하이고, 그러한 것은 유한 개밖에 없다. 또 ρ가 단사 사상이기에 가능한

g의 갯수도 유한한 것이다. 이는 곧

M := sup
f∈E(Γ)

#ρ−1(f) + sup
v∈V(Γ)

#ρ−1v < +∞

임을 알 수 있다.

이제 0.9 < q < 1을 정한 뒤 p = 1− (1− q)M을 잡자. 물론 p는 0과 1 사이에 있다., f ∈ ρ(E(T ))에

대해 다음과 같은 개폐 법칙을 적용하자:

f ∈ ρ(E(T )) ↔ e ∈ ρ−1(f)가 하나라도 연결되어 있음.

그러면 T에 q-삼투 과정을 걸었을 때 ρ(T )의 각 모서리에 유도되는 개폐 여부는 독립적이고, 열릴

확률은 1− (1− q)#ρ−1(f)이다. 이제 보조정리 3.1을 생각하면,

Pp
(
Γ(ω) ⊆ Γ의 id-연결성분이 무한히 큼

)
≥ Pq

(
ρ(Γ(ω) ⊆ T )의 id-연결성분이 무한히 큼

)
라는것을알수있다.그리고 ρ가 (T의꼭짓점위에서)기껏해야M대 1사상이므로, Γ(ω) ⊆ T가무한
연결성분을 가질 때마다 ρ(Γ(ω))가 무한 연결성분을 가짐을 알 수 있다. 따라서

Pp
(
Γ(ω) ⊆ Γ의 id-연결성분이 무한히 큼

)
≥ Pq

(
Γ(ω) ⊆ T의 id-연결성분이 무한히 큼

)
> 0

임을 알 수 있다. 이로써 증명이 끝났다. �
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증가적인 사건에 관해 한 가지를 첨언하겠다. 우리가 다룰 Ω상의 확률변수 중 상당수는 사실 E =

{e1, e2, . . .}의 유한 집합에 의해 결정되는 확률변수들의 증가적인 극한으로 나타난다. 그중 한 예시로,

어떤 그래프 Γ = (V, E) 위에서의 삼투 과정을 생각해 보자. 이때 꼭짓점 부분집합 A,B ⊆ V를 하나
고정했을 때,

fA,B :=
∑

a∈A,b∈B
1{

a↔Γ(ω)b
}

을 생각해 보자. 이제 En := {e1, . . . , en}으로 두면, fA는

fk;A,B :=
∑

a∈A,b∈B
1{

id↔Γ(ω)∩Ena
}

라는단조증가하는확률변수열의극한이다.이때각 k에대해 fk;A,B 기껏해야모서리유한개 e1, . . . , ek

의 개폐 여부에만 의존함을 알 수 있다. 즉, Ep(fk;A,B)가 p에 대해 연속이라는 것은 분명하다. 또한

Ep(fk;A,B) 및 Ep(fA,B)는 모두 단조증가한다. 이 경우, 극한 함수인 Ep(fA,B)는 좌연속이어야 한다.

이를 기록해 두겠다.

보조정리 3.2. 그래프 Γ = (V, E) 및 A,B ⊆ V에 대해

χp(A↔ B) :=
∑

a∈A,b∈B
Pp(a↔ b)

는 p에 대해 좌연속이다. 즉, 임의의 p0에 대해

χp0(A↔ B) = lim
p↗p0

χp(A↔ B)

이다.

이제 Theodore Harris가 [Har60]에서 처음 다루고 Cees Fortuin, Pieter Kasteleyn 및 Jean Ginibre

가 [FKG71]에서 일반화한 Harris-FKG 부등식을 소개하겠다.

보조정리 3.3. 두 증가적인 사건 A,B에 대해

Pp(A ∩B) ≥ Pp(A)Pp(B)

가 성립한다.

Proof. 두번째 주장, 즉 확률변수에 관한 것만을 집합 E의 크기에 대해 귀납적으로 증명하겠다. 먼저

E = {e1}가 원소 하나짜리 집합일 때는 다음 부등식만 확인하면 된다: 실수 a1 ≤ a2 및 b1 ≤ b2에 대해

(3.1)
(1− p)a1b1 + pa2b2 ≥ (1− p)a1b1 + pa2b2 − p(1− p)(a2 − a1)(b2 − b1)

=
(
(1− p)a1 + pa2

)(
(1− p)b1 + pb2

)
.

이제 E = {1, . . . , n}에대한주장을가정하고 E = {1, . . . , n+1}에대해주장을증명하겠다.이를위

해 X와 Y가 {1, . . . , n+1}위에서의증가적인확률변수라고하자.이때각 w = (ω1, . . . , ωn) ∈ {0, 1}n

및 Z ∈ {X,Y }에 대해 조건부 기댓값

Ep[Z|w] = (1− p)Z(w, 0) + pZ(w, 1)
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을 정의할 수 있다. 그러면 Ep[Z|·]가 {0, 1}n 위에서의 증가적인 확률변수라는 것은 바로 관찰할 수
있다. 또한, 각 w ∈ {0, 1}n에 대해

Ep[XY |w] := (1− p)X(w, 0)Y (w, 0) + pX(w, 1)Y (w, 1)

≥
(
(1− p)X(w, 0) + pX(w, 1)

)(
(1− p)Y (w, 0) + pY (w, 1)

)
= Ep[X|w]Ep[Y |w]

이다. 이때 사용한 것은 Z(w, 0) ≤ Z(w, 1) (Z ∈ {X,Y }) 및 부등식 3.1이다. 이를 이용해

Ep(XY ) = Ep[Ep[XY |ω1, . . . , ωn]]

≥ Ep
[
Ep[X|ω1, . . . , ωn] · Ep[X|ω1, . . . , ωn]

]
≥ Ep

[
Ep[X|ω1, . . . , ωn]

]
· Ep

[
Ep[Y |ω1, . . . , ωn]

]
(∵귀납가정)

≥ EpX Ep Y

를 관찰할 수 있다. 이로써 E = {1, . . . , n+ 1}에 대한 증명이 끝났다.

�

다음 부등식을 소개하기에 앞서 증인이라는 개념을 도입하겠다. 어떤 증가적인 사건 A ⊆ Ω =

{0, 1}E 및 그 사건의 원소 ω ∈ A가 주어졌다고 하자. 어떤 0 ≤ W ≤ ω가 ω 안의 A측 증인(witness

for A in ω)이라는 것은

1W := {ω′ ∈ Ω : ∀e ∈ E [W (e) = 1⇒ ω′(e) = 1]} ⊆ A

가 성립한다는 것이다. 이해를 돕기 위해 그래프 삼투 과정에서의 언어로 다시 표현해 보겠다. 어떤

조건 A를 만족하는 ω ∈ Ω가 주어졌을때, Γ(ω)에서 열려 있는 모서리 몇 개를 모은 집합 W이 ω를

위한 A의 증인이라는 것은 다음을 뜻하는데, W의 원소인 모서리가 모두 열려 있는 Γ의 부분그래프는

반드시 A를 만족한다는 것이다.

이제, 두 증가적인 사건 A,B에 대해

A ◦B :=
{
ω ∈ Ω : supp f ∩ supp g = ∅이게끔 ω 안의 A측 증인 f ≤ ω과 B측 증인 g ≤ ω를 잡을 수 있음

}
=
{
ω ⊆ {0, 1}E : ω 안에는 서로 만나지 않는 A측 증인 및 B측 증인이 공존함

}
으로 정의하겠다. 이제 J. van der Berg와 Harry Kesten이 [vdBK85]에서 도입한 BK 부등식을 서술할

준비가 끝났다.

사실 3.6. 모든 원소가 유한한 증인을 가지는 증가적인 사건 A,B에 대해,

Pp(A ◦B) ≤ Pp(A)Pp(B)

가 성립한다.

우리가 진짜 활용할 것은 다음 두 따름정리이기에, 이들 증명만 소개하겠다.

따름정리 3.1. 그래프 Γ의 꼭짓점 v1, . . . , vN , u1, . . . , uN ∈ V(Γ)를 생각하자. 그러면

(3.2)

Pp
(
ω : Γ(ω) 안의 N개의 서로 다른 연결 성분 C1, . . . , CN가 존재해 vi, ui ∈ Ci임

)
≤

N∏
i=1

Pp(vi ↔ wi)

가 성립한다.
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Proof. 편의상 N = 2일 때만 증명하겠다. 더 일반적인 N에 대해서도 쉽게 확장된다.

임의의 K ⊆ E(Γ)에 대해

N(K) := {e : e는 어떤 K의 원소와 최소 한 꼭짓점을 공유함} = K ∪ {e : ∃f ∈ K[e ∼ f ]}

라고 두겠다. 그러면 식 3.2의 좌변이

(3.3) ∑
v1,u1∈C1⊆Γ

∑
v2,u2∈C2⊆Γ\N(C1)

P[C1, C2 둘 다 각각 Γ(ω)의 연결성분임]

=
∑

v1,u1∈C1⊆Γ

P[C1가 Γ(ω)의 연결성분임] ·
∑

v2,u2∈C2⊆Γ\N(C1)

P[C2가 Γ(ω) \N(C1)의 연결성분임]

보다 작거나 같다. 이때 등호가 성립하는 이유는 C1 및 C2가 결정되었을 때, “C1이 Γ(ω)의 한 연결

성분임” 및 “C2가 Γ(ω) \ N(C1)의 한 연결성분임”은 각각 N(C1)의 모서리들 및 N(C2) \ N(C1)의

모서리들의 개폐 여부에 의존하는 것으로, 독립적인 사건이기 때문이다. 물론 C1이 그 무엇이든,∑
v2,u2∈C2⊆Γ\N(C1)

P[C2가 Γ(ω) \N(C1)의 연결성분임] = Pp[v2 ↔Γ(ω)\N(C1) u2] ≤ Pp[v2 ↔Γ(ω) u2]

임은 분명하다. 이로부터 식 3.3의 우변이∑
v1,u1∈C1⊆Γ

P[C1가 Γ(ω)의 연결성분임] · Pp(v2 ↔ u2) = Pp(v1 ↔ u1)Pp(v2 ↔ u2)

보다 작거나 같음을 알 수 있고 증명이 끝난다. �

두번째 따름정리를 기술하기 전에, 앞에서 정의한 장벽 개념을 기억하라.

따름정리 3.2. 점 x를 포함하고 y는 포함하지 않는 집합 A ⊆ G에 대해 다음이 성립한다:

(3.4)

Pp(x↔ y) ≤
∑
a∈∂A

∑
b∈∂Ac

Pp(x↔A a)Pp(a↔ b)Pp(b↔ y)

≤
∑
a∈∂A

Pp(x↔A a)Pp(a↔ y).

Proof. 먼저 x ↔ y인 임의의 부분그래프 Γ(ω)에 대해 A ∩ Γ(ω) 안에서의 x의 연결성분 C와 점

a ∈ C ∩ ∂A 및 그 이웃 b ∈ ∂Ac를 찾을 수 있어 b↔Γ(ω)\N(C) y임을 관찰하자. 실제로, x↔Γ(ω) y임을

구현하는 경로 x = x0, x1, . . . , xn = y를 하나 잡고, xi ↔Γ(ω)∩A x인 가장 큰 i를 잡으면 xi+1 /∈ A여야
한다. 이 xi 및 xi+1가 a 및 b의 역할을 한다는 것은 분명하다.

이는 곧

Pp(x↔ y) ≤
∑

x∈C⊆A

∑
a∈C∩∂A

∑
b∈∂Ac

Pp

(
A ∩ Γ(ω) 안에서의 x의 연결성분이 C이고,

ab가 켜져 있으며 Γ(ω) \N(C)에서 b와 y가 연결됨

)

임을 의미한다. 물론 C, a, b가 주어졌을 때, A 안에서의 x의 연결성분이 C인 것과 a↔ b인 것, 그리고

Γ(ω)\
(
N(C)∩A

)
에서 a와 y가연결되어있다는것은각각 N(C)∩A, ab및 E(Γ)\N(C)의모서리들에
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의존하는 것으로 독립적인 사건이다. 이로써

Pp(x↔ y) ≤
∑

x∈C⊆A

∑
a∈C∩∂A

∑
b∈∂Ac

Pp (C가 A ∩ Γ(ω)의 연결성분임) · Pp
(
ω(ab) = 1

)
Pp
(
a↔

Γ(ω)\
(
N(C)∩A

) y)
≤

∑
x∈C⊆A

∑
a∈C∩∂A

∑
b∈Ac,a∼b

pPp (C가 A ∩ Γ(ω)의 연결성분임) · Pp (b↔ y)

=
∑

a∈∂A,b∈∂Ac,a∼b
pPp(x↔A a)Pp(b↔ y)

임을 알 수 있다. �

다음 순서인 루쏘의 공식을 소개하기에 앞서 또다른 개념을 도입하겠다. 모서리 e ∈ E 및 상태
ω ∈ Ω가 주어졌을 때, {f ∈ E : f 6= e} 위에서 ω와 일치하는 상태는 정확히 두 개가 있다. 하나는 e가

켜져 있고 다른 하나는 e가 꺼져 있을 텐데, 전자를 ωe, 후자를 ωe로 적겠다. 즉 ωe, ωe 중 하나는 ω와

일치하고, 다른 하나는 정확히 ω에서 e의 상태만 바꾼 것이다.

이제 증가적인 사건 A ⊆ Ω 및 상태 ω ∈ Ω에 대해, e가 ω에서 사건 A를 위한 중추적인 역할을 한다

(e is pivotal in ω for A)는 것은 ωe ∈ A이고 ωe /∈ A임을 의미한다. 그리고

{e가 A에 중추적임} =
{
ω : e가 ω에서 사건 A를 위한 중추적인 역할을 함

}
와 같이 줄여 적는다.

마지막으로, 단조증가함수 f : [0, 1]→ R 및 p0 ∈ (0, 1)에 대한 디니 도함수(Dini derivative)(
d

dp

)
+

f

∣∣∣∣
p=p0

:= lim inf
ε→0+

f(p0 + ε)− f(p0)

ε

을 기억하자. 이제 Grigory Margulis와 Lucio Russo가 정립한 다음 공식을 소개할 수 있다.

명제 3.3. 증가적인 사건 A 및 p0 ∈ (0, 1)에 대해(
d

dp

)
+

Pp(A)

∣∣∣∣
p=p0

≥
∑
e∈E

Pp (e가 A에 중추적임)

=
1

1− p0

∑
e∈E

Pp
(
ω(e) = 0이고 e가 A에 중추적임

)
이다.

Proof. 먼저 E가 유한집합일 때를 다루겠다. 이 경우에,

d

dp
Pp(A) =

d

dp

∑
ω∈A

p
∑

e ω(e)(1− p)#E−
∑

e ω(e)

=
∑
ω∈A

(
1

p

∑
e

ω(e)− 1

1− p

(
#E −

∑
e

ω(e)
))
· p

∑
e ω(e)(1− p)#E−

∑
e ω(e)

=
1

p(1− p)
∑
e∈E

Ep[(ω(e)− p) · 1ω∈A]

임은계산을통해바로확인할수있다.여기서 e ∈ E 및 ω|E\e값을하나고정했을때 Ep[(ω(e)−p)1ω∈A]

가 얼마인지를 계산해 보자. 이 값은 ωe ∈ A 및 ωe /∈ A일 때에만 p(1 − p)라는 양수 값을 가진다. 두

상태 ωe 및 ωe가 동시에 A에 속하거나 혹은 동시에 배제되는 경우에는, Ep[(ω(e)− p)1ω∈A] = 0이다.
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마지막으로, ωe ∈ A 및 ωe /∈ A인 경우는 없다. 이는 A가 증가적인 사건이기 때문이다. 이로부터

우변이
∑

e∈E Pp (e가 A에 중추적임)이라는 사실을 알 수 있다.

다음으로 E가 가산 무한집합인 경우, 유한 부분집합 E ′ ⊆ E을 임의로 잡을 수 있다. 이때, E ′안의
모서리는 확률 p0 + ε로 열고, E ′ 밖의 모서리는 확률 p0로 여는 확률을 P′p0,ε라고 했을 때

Pp0+ε(A) ≥ P′p0,ε(A) ≥ Pp0(A)

가 성립한다. 이는 A가 증가적인 사건이기 때문이다. 이제 위와 같은 계산을 하면(
d

dp

)
+

Pp(A)

∣∣∣∣
p=p0

≥ lim
ε→0+

P′p0,ε(A)− Pp0(A)

ε
=
∑
e∈E ′

Pp (e가 A에 중추적임)

임을 알 수 있다. 이제 E를 향해 E ′를 키움으로써 원하는 부등식을 얻는다. �

이제 감수율 χp := Ep #Cid의 거동에 관한 사실 2.8을 증명할 준비가 끝났다. 아래 증명은 Hugo

Duminil-Copin과 Vincent Tassion의 현대적인 논증을 가져온 것이다 [DCT16]. 하지만 마굴리스-루쏘

공식을 이용하지 않는 Hugo Vanneuville의 논증도 참조하기를 추천한다 [Van25].

명제 3.4. 유한 생성 집합 S이 갖춰진 무한군 G의 케일리 그래프 Γ = Cay(G,S)의 임계변수

pc := inf
{
p ∈ [0, 1] : θ(p) := Pp(id↔Γ(ω) ∞) > 0

}
을 생각하자. 그러면 χp := Ep #Cid는 p < pc일 때 유한하고 p = pc에서는 무한하다.

Proof. 임의의 유한 집합 A ⊆ G마다

εA(p) := p
∑

x∈∂A,y∈∂Ac,x∼y
Pp(id↔A x)

를 정의하자. 그리고

p유한 := sup {p ∈ [0, 1] :어떤 유한 집합 id ∈ A ⊆ G에 대해 εA(p) < 1임}

을 정의하자. 다음 주장들을 차례로 보이겠다.

주장 3.7. 각 p < p유한일 때 χp는 유한하다.

이 주장을 보이기 위해 p < p유한을 하나 잡겠다. 그러면 εA(p) < 1인 유한 집합 A가 존재한다.

다음으로, 유한 집합 H ⊆ G를 임의로 잡자. 그러면

χp,H(u) :=
∑
h∈H

Pp(u↔ h)

는 u ∈ G가 그 무엇이든 #H < +∞라는 상한을 가진다. 즉 supy∈G χp,H(y)는 유한하다. 이제 임의의

u ∈ G에 대해 따름정리 3.2를 적용하면

χp,H\uA(u) ≤ p
∑

x∈∂A,y∈∂Ac,x∼y
Pp(0↔A x) · χp,H\uA(y)

임을 알 수 있다. 또한, χp,uA(u) ≤ #(uA) = #A임은 분명하다. 이로부터,

χp,H(u) ≤ εA(p) · sup
y∈G

χp,H(y) + #A
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임을 알 수 있다. 여기서 supy∈G χp,H(y)가 유한하다는 것을 이미 알기 때문에,

sup
y∈G

χp,H(y) ≤ #A

1− εA(p)

라는 결론을 내릴 수 있다. 물론 이는 χp,H(id) ≤ #A/(1− εA)임을 얘기해 준다. 그런데 이 부등식은

H의 정체에 관계없이 성립하므로, H를 키움으로써 χp ≤ #A/(1− εA) < +∞까지 알 수 있다.

위 증명은 특히, p = 1에서는 εA(p) < 1인 유한 집합 id ∈ A ⊆ G가 없어야 한다는 것을 보여 준다.

군 G가 무한군이기에 χ1 = +∞이기 때문이다.

주장 3.8. 매개변수가 p = p유한일 때 χp = +∞이다.

이것을 확인하기 위해, p = p유한 및 각 n에 대해∑
‖g‖S=n,‖h‖S=n+1,g∼h

Pp(id↔ g) ≥ 1/p유한

임을 기억하라. 물론, ‖g‖S = n인 각각의 g에 대해 ‖h‖S = n + 1, g ∼ h인 h의 갯수는 기껏해야 #S

개이다. 따라서 ∑
g∈
(
Nn(id)

)c Pp(id↔ g) ≥ 1

p#S

이다. 이를 n = 1, 2, . . .에 대해 모두 합하면 발산하기에 주장이 따라 나온다.

이제 남은 것은 p유한 = pc임을 증명하는 것이다. 즉, 다음을 증명해야 한다:

주장 3.9. 매개변수 p가 p유한보다 조금이라도 크면 θ(p) > 0이다.

임의의 n에 대해,(
d

dp

)
+

Pp
(
id↔

(
Nn(id)

)c) ≥ ∑
e∈Nn(id)

Pp(e는 id↔Γ(ω)∩Nn(id)

(
Nn(id)

)c
에 중추적임)

=
1

1− p
∑

id∈A⊆Nn(id),x∼y,x∈A 63y

Pp

(
xy는 id↔Γ(ω)∩Nn(id)

(
Nn(id)

)c
에 중추적이고

A =
{
x : x 6↔

(
Nn(id)

)c}
임

)

=
1

1− p
∑

id∈A⊆Nn(id),x∼y,x∈A 63y

Pp

(
x↔Γ(ω)∩A y이고

A =
{
x : x 6↔

(
Nn(id)

)c}
임

)
이다. 이때, 고정된 A ⊆ Nn(id) 및 x ∈ A 63 y로 이루어진 모서리 xy에 대해, {x ↔A y}는 A 안의

모서리에 의존하고,
{
A =

{
x : x 6↔

(
Nn(id)

)c}
임
}
는 정확히 ∂A 및 A 밖의 모서리에 의존한다. 즉,

이 두 사건은 독립적이고, 두 사건이 동시에 일어날 확률은 각각의 확률의 곱이다. 이는 곧 p ≥ p유한일
때

d

dp
Pp
(
id↔

(
Nn(id)

)c) ≥ 1

1− p

(
inf
A
εA(p)

)
·

∑
id∈A⊆Nn(id)

Pp
(
A =

{
x : x 6↔

(
Nn(id)

)c}
임
)

≥ 1

1− p
∑

id∈A⊆Nn(id)

Pp
(
A =

{
x : x 6↔

(
Nn(id)

)c}
임
)

이라는 사실을 의미한다. 그런데 우변의 합은 {id가 N c
n(id)에 이어지지 않음}이라는 사건을 분할한

것이다. 따라서, fn(p) := Pp
(
id↔

(
Nn(id)

)c)
는 ( ddp)+fn(p) ≥ 1− fn(p)라는 방정식을 p ≥ p유한에서
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만족한다. 이로부터 p ∈ (pc, 1] 구간에서 fn(p) ≥ 1− e−(p−pc) > 0임을 얻는다. 같은 범위의 p에 대해

θ(p) = limn fn(p) ≥ 1 − e(p−pc) > 0을 얻는 것은 물론이다. 이로써 p유한 = pc임을 확인할 수 있고

증명이 끝난다. �

이제 무한 연결성분의 갯수 N∞의 거동을 살펴볼 차례이다. 이 증명에서는 군의 작용이 필수적이다.

보조정리 3.4. 케일리 그래프 Γ = Cay(G,S)에 대한 p-삼투 확률분포 Pp는 군 G의 작용에 불변하며

에르고딕하다.

Proof. 먼저 유한 개의 모서리 e1, . . . , en의 개폐 여부에만 의존하는 사건 A 및 군 원소 g ∈ G에 대해
Pp(A) = Pp(gA)임은 분명하다. 이제

P := {유한 개의 모서리에만 의존하는 사건},L := {G의 작용에 확률값이 불변인 사건}

로 정의하면 P는 L이라는 λ-체계(λ-system)에 포함되는 π-체계(π-system)이다. 따라서 Dynkin의

π–λ 정리에 의해 L은 모든 보렐 집합을 포함한다. 이로써 Pp의 군 작용 불변성이 증명되었다.

두 집합 A,B ⊆ E의 대칭차(symmetric difference) A∆B := (A\B)∪ (B \A)를 기억하라. 이제

L :=
{
A : P의 원소 나열 {An}n>0이 존재해 lim

n
Pp(A∆An) = 0

}
를 잡으면 L 또한 λ-체계이다. 역시 Dynkin의 π–λ 정리에 의해 L은 모든 보렐 집합을 포함한다.

이제 Pp의 G-에르고딕성을 증명하기 위해 G-불변인 임의의 사건 A를 하나 잡자. 또 임의의 ε > 0

을 하나 잡자. 그러면 A ∈ L이므로 Pp(A \ A′) < ε인 A′ ∈ P를 잡을 수 있다. 이때 A′는 어떤 유

한 개의 모서리 e1, . . . , en의 개폐 여부에만 의존한다. 이때 Cay(G,S)에 G가 진정으로 작용하기에

{g : 어떤 i, j에 대해 g(ei) = ej}는 유한 집합인 반면 G에는 원소가 무한히 많으므로 이 집합 바깥

에 있는 h ∈ G를 잡을 수 있다. 그러면 A′와 hA′는 서로 겹치지 않는 모서리 집합들에 의존하므로

독립적인 사건이다. 이는 곧

Pp(A) = Pp(A ∩ hA) =2ε Pp(A′ ∩ hA′) = Pp(A′)Pp(hA′) =2ε+ε2
(
Pp(A)

)2
임을 의미한다. 이것이 임의의 0 < ε < 1에 대해 성립하려면 Pp(A)는 0 또는 1이어야 한다. 이로써

에르고딕성이 증명되었다. �

사실 2.4는이보조정리로부터바로따라나온다.무한연결성분의갯수라는확률변수는 G의작용에

불변이기 때문이다. 마지막으로, 사실 2.9을 증명하겠다.

사실 2.9의 증명 모순을 이끌어내기 위해, 어떤 p 및 어떤 케일리 그래프 Γ = Cay(G,S) 및 어떤

N ∈ {0, 1, 2, 3, . . .}에 대해 거의 확실하게 Γ[p]이 N개의 무한 연결성분을 가진다고 가정해 보자. 즉

N = +∞인 상황을 배제하고 시작하는 것이다. 이 증명에서,

Bk := {vw ∈ V(Γ) : v, w ∈ Nk(id)}

로 나타내겠다. 또, i = 0, 1에 대해 {ω :모든 e ∈ Bk에 대해 ω(e) = i임}을 ik로 나타내겠다.

이제 각각의 정수 k ∈ Z>0에 대해,

Ek;열림 := {ω : Γ(ω)는 N개의 무한 연결성분을 가짐} ∩ 1k,

Ek;닫힘 := {ω : Γ(ω)는 N개의 무한 연결성분을 가짐} ∩ 0k,

Ek;유일 := {ω : Γ(ω) \Bk의 무한 연결성분 중 Nk(id)와 닿아 있는 것은 한 개 이하임}
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을 정의하겠다. 먼저, Ek,열림의 여집합은 1ck와 {Γ(ω)의 무한 연결성분이 N개가 아님}의 합집합인데,

전자의 확률은 1 − p#Bk이고 후자의 확률은 0이다. 따라서 Pp(Ek,열림) = p#Bk이다. 비슷한 이유로

Pp(Ek,닫힘) = (1− p)#Bk이다.

다음으로, Ek;유일은 E(Γ) \Bk의 모서리들에만 의존한다. 만약 Eck;유일이 양수 확률을 가진다면,

Pp
(
Eck;유일 ∩ 0k

)
= Pp

(
Eck;유일

)
Pp
(
0k
)

= Pp
(
Eck;유일

)
(1− p)#Bk > 0

이다. 이 집합과 Ek;닫힘은 0k의 부분집합이면서 그 확률의 합이 Pp(0k) = (1−p)#Bk보다 크므로, 둘의

교집합 또한 양수 확률을 가져야 한다. 그런데 Eck;유일 ∩ Ek;닫힘은

E′ := {ω : Γ(ω) \Bk의 무한 연결성분은 정확히 N개이고 그중 Nk(id)와 닿아 있는 것이 하나 이상임}

에포함되어있으므로, E′ 또한양수확률을가진다.여기서 E′는 E(Γ)\Bk의모서리들에만의존하므로,

Pp(E′ ∩ 1k) = Pp(E′)P(1k) > 0

이다. 그런데 E′ ∩ 1k의 무한 연결성분의 갯수는 N − 1개 이하이다. Γ(ω) \Bk의 무한 연결성분 최소
두 개가 Bk의 모서리들에 의해 연결되기 때문이다. 이는 곧 Pp(Ek;열림) < pk임을 의미해 모순이다.

따라서, P(Ek;유일) = 0이다. 이것이 모든 k에 대해 성립하므로,

∪kEk;유일 = {ω : Γ(ω)의 무한 연결성분은 한 개 이상임}

또한 확률이 0이다. 이는 곧 N = 0 혹은 N = 1임을 의미하고, 이로써 증명이 끝난다. �

3.3. 행렬 해석 이절과다음절에서는 [Hut19]의이론을설명하겠다.다만세세한점을일부부연한다.

어떤 유한 생성되는 무한군 G의 (대칭적인) 유한 생성 집합을 선택해 만든 Cayley 그래프 Γ를 이

절 내내 고정하겠다. 이때 Γ의 꼭짓점 집합 V(Γ)는 G와 같다. 또, Γ의 정의에 사용된 유한 생성 집합의

크기를 D로 적겠다. 그러면 Γ는 모든 점에서의 차수가 D로 동일한 정규 그래프(regular graph)이다.

이 절의 핵심은 행렬의 L2-노름이다. 먼저, G-차원 벡터 v ∈ RG에 대해

‖v‖2 :=

√∑
g∈G

(
v(g)

)2
로 두고, ‖ · ‖2-노름이 유한한 벡터의 공간을 L

(G)
2 로 표기하겠다. 이때, 코시-슈바르츠 부등식에 의해

‖
∑

i v‖2 ≤
∑

i ‖v‖2임을 유의하라.

이제 G 위에 정의된 음이 아닌 대칭행렬 M : RG×G≥0 에 대해

‖M‖2→2 := sup

{
‖Mf‖2
‖f‖2

: f ∈ L2(G), f 6= 0

}
으로정의하겠다.이때 ‖M1M2‖2→2 ≤ ‖M1‖2→2 ·‖M2‖2→2임은쉽게확인할수있다.사실은비슷하게

‖M‖1→1 := sup
v∈G

∑
u∈G

M(u, v)

를 정의할 수 있다. 이때 다음을 확인하자.

사실 3.10. 모든 음이 아닌 대칭행렬 M : RG×G≥0 에 대해

‖M‖2→2 ≤ ‖M‖1→1.

이다. 특히, ‖M‖1→1이 유한할 때 M은 L2(G) 위에서의 연속 작용소이다.
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아래 증명은 [Woe00]의 10.A절에서 발췌한 것이다.

Proof. 스칼라배를 감안했을 때, ‖M‖1→1 ≤ 1인 경우에만 증명하면 충분하니 그 경우에 집중하겠다.

이때 임의의 n ≥ 0에 대해 Mn은 각 항이 유한한 값을 가지는 음이 아닌 행렬이고 ‖Mn‖1→1 ≤ 1

이라는 것은 바로 확인할 수 있다.

먼저, L2(G)의 조밀한 부분공간인 유한 서포트 가지는 음이 아닌 벡터들의 공간

c0(G) :=
{
f ∈ RG≥0 : #{g : f(g) 6= 0} < +∞

}
및 음이 아닌 벡터들의 공간 P (G) := RG≥0을 생각하겠다. 임의의 f1, f2 ∈ P (G)에 대해

(3.5) 〈f1,Mf2〉 =
∑
u∈G

f1(u) ·
∑
v∈G

M(u, v)f2(v) =
∑
v∈G

f2(v) ·
∑
u∈G

M(v, u)f1(u) = 〈Mf1, f2〉

임을 기억하라.

먼저벡터 f ∈ c0(G)∩P (G)을하나생각하겠다.즉,유한개의원소 g1, . . . , gN ∈ G및 c1, . . . , cN > 0

이 존재하여 g = gi일 때 f(g) = ci, 그리고 g /∈ {g1, . . . , gN}일 때 f(g) = 0이라고 하겠다. 증명하고자

하는것은 〈Mf,Mf〉 ≤ 〈f, f〉이다.만약Mf = 0이라면이부등식은바로따라나온다.따라서그렇지

않은 경우에 집중하겠다.

이때, 〈Mnf,Mnf〉 = 〈f,M2nf〉 =
∑N

i=1

∑N
j=1 ciM

2n(gi, gj)cj는 유한합이기에 그 값은 유한해야

한다. 더하여, 코시-슈바르츠 부등식에 의해

〈Mn+1f,Mn+1f〉2 = 〈Mnf,Mn+2f〉2 ≤ 〈Mnf,Mnf〉 · 〈Mn+2f,Mn+2f〉

임을 얻는다. 가정인 f 6= 0 6= Mf를 초기 경우로 삼고 이 부등식을 귀납적으로 적용하면, 각 n에 대해

Mnf가 0벡터가 아님을 알 수 있다. 또한, an := 〈Mnf,Mnf〉
〈Mn−1f,Mn−1f〉가 단조증가수열임을 알 수 있다:

(3.6)
〈Mf,Mf〉
〈f, f〉

≤ 〈M
2f,M2f〉

〈Mf,Mf〉
≤ 〈M

3f,M3f〉
〈M2f,M2f〉

≤ . . . .

이제 귀류법을 적용하기 위해 a1 > 1이라고 가정해 보자. 그러면

am1 >

(∑N
i=1 ci

)2

〈f, f〉
가 성립하게끔 하는 충분히 큰 m을 잡을 수 있다. 이 m에 대하여

〈Mmf,Mmf〉 = 〈f, f〉 ·
m∏
i=1

ai >

(
N∑
i=1

ci

)2

임을 알 수 있다. 그런데,

〈Mmf,Mmf〉 = 〈f,M2mf〉 =

N∑
i=1

ci ·
N∑
j=1

M2m(gi, gj)cj

≤
N∑
i=1

ci ·

 N
max
j=1

cj ·
∑
j

M2m(gi, gj)


≤

N∑
i=1

ci ·
N

max
j=1

cj ≤

(
N∑
i=1

ci

)2
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가 성립하기에 이는 모순이다. 따라서 a1 ≤ 1, 즉 ‖Mf‖2 ≤ ‖f‖2이다.

이제 f가 L2(G) ∩ P (G)의 원소일 때 〈Mf,Mf〉 ≤ 〈f, f〉임을 증명해 보겠다. 이때 G를 적당히

{g1, g2, . . .}라고 정렬하고,

fn(gj) =

{
f(gj) j = 1, . . . , n

0 j > n

라는 근사 벡터를 만들면 각 fn은 c0(G) ∩ P (G)의 원소이다. 따라서 방금 증명했듯 〈Mfn,Mfn〉 ≤
〈fn, fn〉이다. 또한,

〈f, f〉 =

∞∑
j=1

f(gj)
2 = lim

n→+∞

n∑
j=1

f(gj)
2 = lim

n→+∞
〈fn, fn〉

이고, 또한 M,f ≥ 0이라는 점을 사용하면

〈Mf,Mf〉 =

∞∑
i=1

∞∑
j=1

f(gi)f(gk)M
2(gi, gk) = lim

n→+∞

n∑
i=1

n∑
j=1

f(gi)f(gk)M
2(gi, gk) = lim

n→+∞
〈Mfn,Mfn〉

임을 얻는다. 이를 결합하면 바라던 부등식 〈Mfn,Mfn〉 ≤ 〈fn, fn〉을 얻는다.

남은 경우는 f가 L2(G) \ P (G)에 살 때인데, 이때 각 계수에 절대값을 씌워 만든 벡터 |f |는

〈Mf,Mf〉 ≤
〈
M |f |,M |f |

〉
≤
〈
|f |, |f |

〉
= 〈f, f〉

를 만족한다는 것을 알 수 있다. 이로써 증명이 끝난다. �

이제 각 p ∈ [0, 1]마다 G에서 G로 향하는 대칭행렬 Tp : G2 → R≥0을 다음과 같이 잡겠다:

Tp(u, v) := Pp(u↔ v) := Pp(u↔ v).

앞에서 행렬의 L2-노름을 정의하였는데, 이를 이용해

p2→2 := sup {p : ‖Tp‖2→2 <∞}

를 정의하겠다. 참고로, p ∈ [0, pc)인 경우에는 각 u ∈ G에 대해∑
v∈G

Tp(u, v) =: χp < +∞

임을 알 수 있다. 이는 곧 ‖Tp‖2→2 ≤ ‖Tp‖1↔1 ≤ χp < +∞라는 얘기인즉, p1↔1 ≤ pc ≤ p2→2이다.

이제

pu := inf
{
p: 거의 확실하게 Γ[p]가 무한 연결성분을 정확히 한 개 가지고 있음

}
이었음을기억하라.이때 pc ≤ pu임은이미알려져있다.또한,각각의 p > pc마다 Pp(C(id)가 무한히 큼)

는 양수라는 것을 기억하라. 이 값을 εp라고 표시하자. 각각의 q > pu마다, Γ[p]가 무한 연결성분을 정

확히 한 개 가질 확률이 1인 q > p ≥ pu가 존재한다. 그 p에 대해, 임의의 u, v ∈ Γ에 대해

Pp(u↔ v) ≥ Pp(u가 (유일한) 무한 연결성분에 포함됨)·Pp(v가 (유일한) 무한 연결성분에 포함됨) ≥ ε2p > 0

이다. 즉, Tp는 각 항이 ε2p보다 큰 무한 행렬인 것이다. 이는 곧

χq ≥ χp =
∑
g∈G

Pp(id↔ g) ≥
∑
g∈G

ε2p = +∞

임을 의미한다. 비슷한 이유로, ‖Tq‖2→2 또한 무한대이다. 따라서 p1→1 ≤ p2→2 ≤ pu이다.
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우리의목표는 pc < p2→2를증명하는것,다시말해 pc = p2→2인경우를배제하는것이다.이목표에

다다를 수 있는 기준을 이제부터 살펴보겠다. 먼저,

A(u, v) :=

{
1 Γ 안에서 u ∼ v
0 그 외의 경우

라는 행렬을 정의하자. 이 행렬을 인접성 행렬(adjacency matrix)이라고 부른다. 이 절 첫머리에, Γ

가 D차수 정규 그래프임을 강조했다. 따라서 ‖A‖2→2 ≤ ‖A‖1→1 = D이다. 이제 다음을 관찰하겠다.

보조정리 3.5. 각각의 0 ≤ p < p2→2에 대해

‖Tp‖2→2 ≥
1− p

D(p2→2 − p)
가 성립한다.

Proof. 이를 귀류법으로 증명하기 위해, 어떤 q > p2→2에 대해

‖Tp‖2→2 <
1− p

D(q − p)
라고 가정한 뒤 모순을 이끌어내겠다.

이번증명에서는 Γ = (V(Γ), E(Γ))를복제하겠다.즉, Γ(1),Γ(2)는 Γ와똑같이생긴그래프이다.이때

e ∈ E(Γ)에 대응하는 Γ(i)의 모서리를 e(i)라고 표기하겠다. 꼭짓점에 대해서도 비슷하게 하겠다.

이제, Γ(1)에서는 p-삼투 과정을, Γ(2)에서는 q−p
1−p -삼투 과정을 독립적으로 진행한 뒤 포개어 융합

하겠다. 더 엄밀하게 말하자면, Γ(1)[p]와 Γ(2)[ q−p1−p ]를 독립적으로 진행한 뒤, Γ′ ⊆ Γ를 다음과 같이

정의한다는 것인데, 어떤 모서리 e ∈ E(Γ)가 Γ′에서 열려 있을 필요충분조건은 e(1)가 Γ(1)에서 열려

있거나 혹은 e(2)가 Γ(2)에서 열려 있다는 것이다.

이렇게 하면, Γ′에서 어떤 모서리 e ∈ E(Γ)가 닫혀 있을 확률은 (1− p) · (1− q−p
1−p) = 1− q이다. 또

Γ의 각 모서리의 Γ′에서의 개폐 여부는 독립적이다. 따라서 Γ′는 q-삼투 과정을 모사하는 모델이다.

이때 임의의 u, v ∈ G에 대해

{
u↔Γ′ v

}
⊆
∞∑
N=0

∑
{vi,ui}Ni=1⊆G


순서쌍

(
u

(1)
0 , v

(1)
1

)
, . . . ,

(
u

(1)
N−1, v

(1)
N

)
이 서로 다른

N개의 Γ(1)-연결성분에 들어 있고,

각 i마다 v
(2)
i+1u

(2)
i+1 ∈ E(Γ(2))

: u0 = u, vN+1 = v


이다. 왼쪽 사건에 들어 있는 원소, 즉 u와 v가 어떤 Γ′-경로로 이어져 있는 경우에, u와 같은 Γ(1)-연결

성분에 있으면서 P상에서 가장 나중에 오는 점을 v1이라고 잡으면 v1과 그 다음 점은 Γ(1)에서 이어져

있을 수 없고 따라서 Γ(2)의 모서리로 연결되어 있기 때문이다.

이제 각 N 및 {vi, ui}Ni=1 ⊆ G에 대해, (u0 = u, vN+1 = v로 설정했을 때)

(3.7)

P


Γ(1) 안의 서로 만나지 않는 경로

P0, . . . , PN이 존재해 u
(1)
i ↔Pi v

(1)
i+1이고,

v
(2)
i+1u

(2)
i+1 ∈ E(Γ(2))

: u0 = u, vN+1 = v

 ≤
N∏
i=0

Pp(ui ↔ vi) ·
(
q − p
1− p

)N
·
N∏
i=1

A(vi, ui)

인데, 그 이유를 설명하겠다. 먼저, Γ(1)에서의 연결 여부와 Γ(2)에서의 연결 여부는 독립이다. 더하여,

P
(

Γ(1) 안의 서로 만나지 않는 경로 P0, . . . , PN이 존재해 u
(1)
i ↔Pi v

(1)
i+1임

)
≤

N∏
i=0

Pp(ui ↔ vi)
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인 것은 BK 부등식(혹은 따름정리 ??)에 의한 것이다. 또, v
(2)
1 u

(2)
1 , . . ., v

(2)
N u

(2)
N 각각이 E(Γ(2))에

속하는 사건은 모두 독립적이고 각각의 확률은 A(vi, ui) ·
(
q−p
1−p

)
이다. 이로써 식 3.7의 설명이 끝난다.

이를 요약하면

Tq(u, v) = Pq(u↔ v) ≤
∞∑
N=0

Tp

(
q − p
1− p

ATp

)N
(u, v)

임을 알 수 있다. 따라서,

(3.8)

‖Tq‖2→2 ≤

∥∥∥∥∥
∞∑
N=0

(
q − p
1− p

)N
Tp(ATp)

N

∥∥∥∥∥
2→2

≤
∞∑
N=0

(
q − p
1− p

)N ∥∥Tp(ATp)N∥∥2→2

≤ ‖Tp‖2→2 ·
∞∑
N=0

(
q − p
1− p

‖A‖2→2‖Tp‖2→2

)N
임을 확인할 수 있다. 이때, ‖A‖2→2 ≤ D라는 것은 일전에 확인했다. 따라서

q − p
1− p

‖A‖2→2‖Tp‖2→2 ≤
q − p

(1− p)
D‖Tp‖2→2 < 1

이다.이는식 3.8우변의급수가수렴한다는것을의미한다.하지만 q > p2→2이기에좌변은무한대여야

하고, 이는 모순이다. 이로써 증명이 끝난다. �

이제, 각각의 0 ≤ p < pc에 대해

ι(Tp) := inf

{∑
u∈A,v/∈A Pp(u↔ v)

χp#A
: A는 G의 유한집합

}
= 1− sup

{∑
u,v∈A Pp(u↔ v)

χp#A
: A는 G의 유한집합

}
를 정의하자. 이는 등주상수(isoperimetric constant)라고 불린다. 아래 증명은 [Woe00, Prop I.4.3]

혹은 [LP16, Lem 6.8]에서 가져온 것이다.

보조정리 3.6. 각각의 0 < p < pc에 대해 다음 식이 성립한다:

‖Tp‖2→2 ≤ χp
√

1− ι(Tp)2.

Proof. 먼저, 각각의 f ∈ c0(G) ∩ P에 대해

(3.9) ι(Tp)‖f‖1 ≤
1

2χp

 ∑
v,w∈G

|f(v)− f(w)|Pp(v ↔ w)


가 성립한다는 것을 보이겠다. 먼저, 우변은∑

v,w∈G:f(v)>f(w)

(
f(v)− f(w)

)
Pp(v ↔ w)χ−1

p =
∑
w∈G

∑
v∈G:f(v)>f(w)

χ−1
p Pp(v ↔ w) ·

∫ f(v)

f(w)
1 dt

=

∫ ∞
0

 ∑
v,w:f(w)≤t<f(v)

χ−1
p Pp(v ↔ w)

 dt

= χ−1
p ·

∫ ∞
0

 ∑
v∈{f>t},w/∈{f>t}

Pp(v ↔ w)

 dt
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임을 알 수 있다. 이때, 피적분항은 등주상수로 다스릴 수 있다. 즉,

χ−1
p ·

∫ ∞
0

 ∑
v∈{f>t},w/∈{f>t}

Pp(v ↔ w)

 dt ≥ χ−1
p

∫ ∞
0

ι(Tp) · χp#{u : f(u) > t} dt

= ι(Tp)
∑
u∈G

f(u) = ι(Tp)‖f‖1

이기에 주장이 증명되었다.

이제 임의의 f ∈ c0(G) ∩ P에 대해 부등식 3.9을 활용하면

ι(Tp)
2‖f‖42 = ι(Tp)

2‖f2‖21 ≤
1

4χ2
p

 ∑
v,w∈G

|f2(v)− f2(w)|Pp(v ↔ w)

2

=
1

4χ2
p

 ∑
v,w∈G

∣∣f(v)− f(w)
∣∣(f(v) + f(w)

)
Pp(v ↔ w)

2

≤ 1

4χ2
p

 ∑
v,w∈G

Pp(v ↔ w)
(
f(v)− f(w)

)2 ·
 ∑
v,w∈G

Pp(v ↔ w)
(
f(v) + f(w)

)2 (∵코시-슈바르츠)

을 얻는다. 이때,∑
v,w∈G

Pp(v ↔ w)
(
f2(v) + f2(w)± 2f(v)f(w)

)
=
∑
v∈G

χpf
2(v) +

∑
w∈G

χpf
2(w)± 2〈f, Tpf〉 = 2χp〈f, f〉 ± 2〈f, Tpf〉

이다. 이로부터

‖f‖42ι(Tp)2 ≤ ‖f‖42 −
〈f, Tpf〉2

χ2
p

임을 알 수 있다. 이는 다시 말해

χ2
p

(
1− ι(Tp)2

)
≥ 〈f, Tpf〉

2

〈f, f〉2

임을 의미한다. 또 〈|f |, Tp|f |〉 ≥ 〈f, Tpf〉이므로, 이 계산은 임의의 f ∈ c0(G)에 대해서도 유효하다. 마

지막으로, c0(G)는 L2(G) 안에서 조밀하고 Tp는 연속 작용소이므로 이 계산은 f ∈ L2(G)에 대해서도

유효하다. 따라서

K := sup

{
|〈f, Tpf〉|
‖f‖2

: f ∈ L2(G) \ {0}
}

는 χp
√

1− ι(T 2
p )보다 작거나 같다.

이제 K ≥ ‖Tp‖2→2만 확인하면 된다. 이를 위해 임의의 f ∈ L2(G)를 가져온 뒤 g = Tpf로 두자.

그러면 임의의 t > 0에 대해

4〈tg, Tpf〉 = 〈Tp(f + tg), f + tg〉 − 〈Tp(f − tg), f − tg〉

≤ K|f + tg|2 +K|f − tg|2

이므로

4〈g, Tpf〉 ≤ 2K

(
1

t
‖f‖22 + t‖g‖22

)
(∀t > 0)
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가 되어야 한다. 이것이 가능하려면 4〈g, Tpf〉 ≤ 4K‖f‖2‖g‖2여야 하고, 이로부터

〈Tpf, Tpf〉
‖f‖22

≤ K · ‖Tpf‖2
‖f‖2

≤ K2

임을 알 수 있다. 이로부터 K ≥ ‖Tp‖2→2가 증명되었다. (사실 둘은 같은 값이다.) �

3.4. 명제 3.2의 증명 보조정리 3.5 및 3.6를 결합하면, 0 ≤ p < pc 각각에 대해

1

D
≤ 1

1− p
(p2→2 − p) · χp

√
1− ι(Tp)2

임을 알 수 있다. 또, 우리가 다루는 군들은 자유군을 부분군으로 가지기에 사실 ??에 의해 pc < 1이다.

따라서, 만약 p2→2 = pc < 1이 성립한다면,

lim
p↗pc

(pc − p)χp ·
√

1− ι(Tp)2 =
1

D(1− pc)
> 0

이어야만 한다.

이를 감안했을 때, pc < p2→2를 통해 명제 3.2를 증명하기 위해서는 다음 명제 3.5와 명제 3.6만

증명하면 되고, 이것이 이 절의 내용이다.

명제 3.5. 자유 부분군을 가지는 대충 반전 가능한 군 G와 그 유한 생성 집합 S를 하나 고정하자.

그러면 케일리 그래프 Γ = Cay(G,S)의 임계 변수 pc = pc(Γ)에 대해,

lim sup
p↗pc

(pc − p)χp < +∞

가 성립한다.

Proof. 구간 p = [0, pc)위에서 χp는단조증가함수였다는것을기억하라.우리목표는어떤양수 C > 0

에 대해 (
d

dp

)
+

χp ≥ Cχ2
p

구간 p ∈ [0.5pc, pc) 위에서 성립한다는 것을 보이는 것이다. 실제로, 위 부등식만 있으면

χ−1
p = −

(
χ−1
pc − χ

−1
p

)
≥ −

∫ pc

p

(
d

dp

)+

χ−1
p dp =

∫ pc

p
χ−2
p

(
d

dp

)
+

χp dp = C(pc − p)

가 동일한 구간에서 성립함을 확인할 수 있다.

이제 감수율의 디니 도함수를 계산해 보겠다. 마굴리스-루쏘의 공식에 의해,

(3.10)

(
d

dp

)
+

∑
g∈G

Pp(id↔ g) ≥ 1

1− p
∑
g∈G

∑
e∈E(Γ)

Pp (e가 id↔ g에 중추적이고 닫혀 있음)

=
1

1− p
∑
g∈G

∑
v,w∈G,v∼w

Pp (id↔ v ∧ v 6↔ w ∧ w ↔ g)

=
1

1− p
∑
g∈G

∑
v,w∈G,v∼w

Pp
(
v−1 ↔ id ∧ id 6↔ v−1w ∧ v−1w ↔ vg

)
=

1

1− p
∑
g,h∈G

∑
s∈S

Pp (h↔ id ∧ id 6↔ s ∧ s↔ g)

임을 알 수 있다. 여기서 세번째 줄에서는 확률이 v−1 ∈ G의 작용에 불변임을 사용했다.
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다음으로, 군 G가 대충 반전하다는 사실을 구현하는 부분집합 A1, . . . , AN ⊆ G 및 원소 g1, . . . , gN

을 잡자. 이제 임의의 유한집합 A ⊆ G 및 임의의 원소 a ∈ G마다

I(a,A) :=

{
1 A ⊆ aAi ( agiA

c
i이게끔 하는 i가 존재함

0 그외의 경우

를 정의하자. 군 G가 대충 반전 가능하기에,
∑

a∈A I(a,A)는 항상 #A의 절반 이상이다.

이제, 삼투 과정을 위한 확률공간 Ω 위에서 함수 F : Ω×G→ R을 다음과 같이 잡아 주겠다:

F (ω, a) := I
(
a,Cid(ω)

)
· 1a∈Cid(ω).

그러면 p의 값이 그 무엇이든∑
a∈G

Ep F (ω, a) = Ep
∑

a∈Cid(ω)

I
(
a,Cid(ω)

)
≥ Ep

(
1

2
#Cid(ω)

)
=

1

2
χp

임을 알 수 있다. 그런데 좌변의 항은∑
a∈G

Ep F (ω, a) =
∑
a∈G

Ep F (ω, a−1) = Ep
∑

a:a−1∈Cid(ω)

I
(
a−1, Cid(ω)

)
= Ep

∑
a:id∈Ca(ω)

I
(
id, Ca(ω)

)
= Ep

∑
a∈Cid(ω)

I
(
id, Ca(ω)

)
= Ep

[
#Cid(ω) · I

(
id, Cid(ω)

)]
=

N∑
i=1

Ep
[
#Cid(ω) · 1Cid(ω)⊆Ai(giAc

i

]
임을 알 수 있다. 이 부등식들을 조합하면, 어떤 i ∈ {1, . . . , N}가 존재하여

Ep
[
#Cid(ω) · 1Cid(ω)⊆Ai(giAc

i

]
≥ 1

2N
χp

가 성립함을 알 수 있다. 마찬가지 이유로,

Ep
[
#Cgj (ω) · 1Cgi (ω)⊆giAi

]
≥ 1

2N
χp

임을 알 수 있다. 또한, 확률변수 #Cid(ω) · 1Cid(ω)⊆Ai
및 #Cgi(ω) · 1Cgi (ω)⊆giAi

는 독립적인 변수이다.

이들은 각각 Ai 및 giAi라는 서로 겹치지 않는 모서리 집합에 의존하기 때문이다. 따라서,

Ep
[
#Cid(ω) ·#Cgi(ω) · 1Cid(ω)⊆Ai ∧ Cgi (ω)⊆giAi

]
≥ 1

4N2
χ2
p

라는 계산을 얻는다.

이제, 적당한 0 < L′ < L에 대해, id에서 gi를 잇는 S-경로 γi = (v0, v1, . . . , vL)이면서 v0, . . . , vL′ ∈
giAi 및 vL′+1, . . . , vL ∈ Aci인 그러한 경로를 하나 잡자. 이는 g1, . . . , gN 및 A1, . . . , AN에 대해 얹혀진

가정이었다. 이제 v := vL′과 v′ = vL′+1을 잡고, γi의 v 이전 부분을 [v0v], v′ 이후 부분을 [v′gi]로

적겠다.

이제 어떤 양수 cp에 대해

Ep
[
(#Cv)(#Cv′)1v 6↔v′

]
≥ cp Ep

[
#Cid(ω) ·#Cgi(ω) · 1Cid(ω)⊆Ai ∧ Cgi (ω)⊆giAi

]
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임을 보이겠다. 이를 위해, 우변에서 다루는 상태 ω ∈ Ω를 좌변에 맞게끔 변형하는 사상 F : Ω→ Ω를

정의하겠다. 먼저 Cid(ω) ⊆ Ai이고 Cgi(ω) ⊆ giAi인 ω ∈ Ω를 준비하자.

(1) 먼저, [v0v] 및 [v′gi]의 모든 모서리는 열고, vv′는 닫아 주겠다.

(2) 다음으로, [v0v]에 인접해 있는 모서리 중 최소 한 끝점이 Cid(ω)에 들어 있지 않은 모서리는

닫아 주겠다.

(3) 마찬가지로, [v′gi]에 인접해 있는 모서리 중 최소 한 끝점이 Cgi(ω)에 들어 있지 않은 모서리는

닫아 주겠다.

이 작업이 끝났을 때 만들어지는 상태를 F (ω)라고 적겠다.

위에서수행한조작은 (랜덤하지않고정확하게명시된) N1(γi)안의모서리의개폐여부만바꿨다는

사실에 주목하라. 즉, 기껏해야 #S · L개의 모서리만 조작한 것이다. 따라서 각 상태 ω마다 #F−1(ω)

의 크기는 (#S) · L 이하이고, 또 라돈-니코딤 도함수의 크기에 관해

dPp F ∗(·)
dPp(·)

≥ min

(
1− p
p

,
p

1− p

)(#S)·L

라는 부등식이 성립한다. 이제 상태 F (ω)의 그래프에서

Cid(F (ω)) = Cid(ω) ∪ [v0v]

임을 확인하고자 한다. 먼저, Cid(ω)의 임의의 점이 Γ(F (ω))에서 어떻게 들어 있는지 보기 위해, id

에서 그 점으로 향하는 Γ(ω)-경로에 속하는 모서리 e를 잡자. 이때 v′ /∈ Ai ⊇ Cid(ω)이므로 e = vv′일

리는 없기에 조작 (1)이 e를 닫을 일은 없다. 조작 (2)가 e를 닫을 일도 없다. 마지막으로, Cid(ω) ⊆ Ai
는 [v′gi]와만나지않기에,조작 (3)이 e를닫을일도없다.즉, F (ω)에서도이경로는살아있고, Cid(ω)

의 임의의 점은 Γ(F (ω))에서도 id에 연결되어 있다.

다음으로, [v0v]위의각모서리들은 (기존개폐여부와관계없이)조작에의해열리니모두 Cid(F (ω))

에 속한다. 이제 반대 방향 포함 관계를 보이기 위해, Γ(F (ω))에서 id와 연결되어 있는 점 u과, 그것

을 구현하는 Γ(F (ω))-최단 경로 (id = u0, u1, . . . , uT = u)를 생각하겠다. 이때 t = max{i : ui ∈
Cid(ω) ∪ [v0v]}라고 하자. 만약 t = T라면 이는 우리가 원하는 바이다. 만약 그렇지 않다면, ut+1은

Cid(ω)에도 [v0v]에도들어있지않은점이된다.만약 ut ∈ [v0v]라면,작업 (2)에의해 utut+1은 “강제로

닫혔어야 하기에” 모순이 생긴다. 만약 ut ∈ Cid(ω)\ [v0v]라면, ut는 Ai 안의 점이고 따라서 [v′gi] 위에

도 있을 수 없다. 즉, [utut+1]는 작업 (1)에 의해 새로 열린 모서리는 아니라는 뜻이다. 그럼에도 열려

있다는 것은 Γ(ω)에서도 열려 있었다는 뜻이고, 따라서 ut+1 ∈ Cid(ω)이어야 하는데 이는 모순이다.

이로써 t = T이고 u ∈ Cid(ω) ∪ [v0v]임을 알 수 있다.

마찬가지 이유로, Cgi(F (ω)) = Cgi(ω) ∪ [v′gi]임을 알 수 있다. 즉, 조작 F는 id 연결성분도 gi 연

결성분도 조금 더 키워 각각 v 및 v′에 연결되게끔 하지만, 두 연결성분이 여전히 서로 떨어져 있게끔

하는 조작임을 알 수 있다. 따라서, Im F := F
({
ω : Cid(ω) ⊆ Ai ∧ Cgi(ω) ⊆ giAi

})
로 두었을 때,

Ep[(#Cv)(#Cv′)1v↔v′ ] ≥ Ep
[(

#Cv(ω
′)
)
·
(
#Cv′(ω

′)
)

: ω′ ∈ Im F
]

≥ 1

maxω′∈Im F #F−1(ω′)
Ep F ∗

[
#Cid(ω) ·#Cgi(ω)1Cid(ω)⊆Ai∧Cgi (ω)⊆giAi

]
≥ 1

(#S) · dS(id, gi)
min

(
1− p
p

,
p

1− p

)(#S)·L
· 1

4N2
χ2
p
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임을 알 수 있다. 여기서, v와 v′는 gi라는 선택지로부터 결정된 인접한 꼭짓점들이다. 다시 말해,

s := v−1v′는 S의 한 원소이다. 위 좌변의 사건에 v−1를 곱해 부등식 3.10에 넣음으로써,(
d

dp

)
+

χp ≥
1

1− p
1

(#S) · L
min

(
1− p
p

,
p

1− p

)(#S)·dS(id,gi)

· 1

4N2
χ2
p (0 < p < pc)

임을 알 수 있다. 여기서 우변의 χ2
p 앞에 곱해져 있는 계수는 (0.5pc, pc) 구간 위에서 양수 하한을

가진다. (여기서는 0 < pc < 1임이 쓰였다.) 이 하한이 우리가 찾던 C이다. 이로써 증명이 끝난다. �

이제 보조정리를 몇개 증명하겠다.

보조정리 3.7. 유한 생성 집합 S가 갖춰진 군 G의 케일리 그래프 Γ = Cay(G,S)의 임계 변수가

pc = pc(Γ)라고 하자. 그러면 각각의 K < 0마다 양수 C = C(K)가 존재해, 임의의 0 ≤ p ≤ pc 및

K-나무스러운 집합 A에 대해 ∑
g∈A

Pp(id↔ g) ≤ C

가 성립한다.

Proof. 가정에 의해 A는 어떤 나무스러운 집합 A′의 K-근방에 포함되어 있다. 이때, 각각의 a ∈ A

마다 aba ∈ A′ 및 dS(id, ba) ≤ K를 만족하는 ba ∈ G가 존재한다. 이때 보조정리 3.3에 의해

Pp(id↔ aba) ≥ Pp(id↔ a↔ aba) ≥ Pp(id↔ a)Pp(id↔ ba)

가 성립한다. 이로부터∑
a∈A

Pp(id↔ a) ≤
(

min
b:dS(id,b)≤K

Pp(id↔ b)

)−1

·
∑
a∈A

Pp(id↔ aba)

≤ (#S)K ·
(

min
b:dS(id,b)≤K

Pp(id↔ b)

)−1 ∑
a′∈A′

Pp(id↔ a′)

임을 알 수 있다. 이를 감안했을 때, A가 나무스러운 경우에 대해서만 증명해도 충분하기에 그렇게

가정하겠다.

다시 보조정리 3.3에 의해

∑
a1,a2,...,aN∈A

Pp(id↔ a1 · · · aN ) ≥

∑
g∈A

Pp(id↔ g)

N

인 것은 분명하다. 그런데 A가 나무스럽기 때문에 (a1, . . . , aN ) 7→ a1 · · · aN이라는 사상이 일대일

사상이므로, 좌변은 ∑
a1,a2,...,aN∈A

Pp(id↔ a1 · · · aN ) ≤
∑
a∈An

Pp(id↔ a) ≤ χp

로 다스릴 수 있다. 이때 우변은 0 ≤ p < pc일 때 유한해야 하는데, 그러려면
∑

g∈A Pp(id ↔ g)가 1

이하여야만 한다. 이로써 p ∈ [0, pc) 위에서 바라던 부등식을 얻고, 좌연속성에 의해 (보조정리 3.2)

p = pc에서까지 연장할 수 있다. �

위 명제가 유용할 수 있는 것은 아래 따름정리 덕분이다.
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따름정리 3.3. 유한 생성 집합 S가 갖춰진 군 G의 케일리 그래프 Γ를 생각하고, K-나무스러운 집합

B ⊆ G를 생각하자.

그러면 임의의 ε > 0마다 D > 0이 존재해,∑
g∈G:B \ND(id)는 id와 g 사이의 장벽임

Pp(id↔ g) ≤ ε · χp

가 성립한다.

Proof. 보조정리 3.7에 의해 잡히는 상수 C = C(K)를 생각하자. 그러면∑
g∈B

Pp(id↔ g) ≤ C < +∞

이다. 그러면 단조수렴정리에 의해, 임의의 ε > 0에 대해∑
g∈B∩ND(id)

Pp(id↔ g) ≥ C − ε

인 D가 존재한다.

이제 A′ := {g ∈ G : id ↔G\(B\ND(id)) g}를 잡자. 그러면, id와의 사이에 B \ ND(id)로 가로막힌

원소들은 모조리 A′ 바깥에 있다. 물론 id ∈ A′이고 또 ∂A′ ⊆ B \ ND(id)이다. 이제 따름정리 3.2를

적용하면 ∑
g∈G:B \ND(id)는 id와 g 사이의 장벽임

Pp(id↔ g) ≤
∑

g∈B\ND(id)

Pp(id↔ g) · χp ≤ εχp

라는 결론을 내릴 수 있다. �

따름정리 3.4. 유한 생성 집합 S가 갖춰진 군 G의 케일리 그래프 Γ를 생각하자. 그러면 임의의 ε,K >

0마다 D > 0이 존재해 다음이 성립한다.

임의의 K-나무스러운 집합 B = B1 t . . . tBD에 대해,∑
g∈G:B1, . . . , BD 각각은 id와 g 사이의 장벽임

Pp(id↔ g) ≤ ε · χp

가 성립한다.

Proof. 보조정리 3.7에 의해 잡히는 상수 C = C(K)를 생각하자. 그리고 D > C/ε을 생각하자. 그러면

D∑
i=1

∑
g∈Bi

Pp(id↔ g)
∑
g∈B

Pp(id↔ g) ≤ C

이다. 따라서 최소한 한 i에 대해서는
∑

g∈Bi
Pp(id↔ g) < C/D < ε이다. 이제 방금과 같이 따름정리

3.2를 적용하면 부등식을 얻는다. �

이제 두번째 명제를 증명하겠다.

명제 3.6. 유한 생성 집합 S가 갖춰진 군 G가 마법 보조정리를 만족한다고 가정하자. 그러면

lim
p↗pc

(
ι(Tp) := inf

{∑
u∈K,v/∈A Pp(u↔ v)

χp#A
: A는 G의 유한집합

})
= 1

이 성립한다.
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Figure 3. (속이 꽉 차있는) 1, 2, 3차원 큐브들.

Proof. 임의의 ε > 0에 대해 η(ε) > 0을 잡아, 임의의 p ∈ (pc − η, pc) 및 유한 집합 A ⊆ G에 대해∑
u,v∈A Pp(u↔ v)

χp#A
< 10ε

임을 보이기만 하면 충분하다. 먼저, G가 마법 보조정리를 만족하게끔 하는 상수 K > 0을 택한 뒤,

ε,K > 0에 대한 상수 D > 0를 따름정리 3.4로부터 얻는다. 이제 이 D에 대해 마법 보조정리가 보장

하는 대충 나무스러운 집합 B를 고정하겠다. 마지막으로, B에 따름정리 3.3를 적용해 D′ = D(ε)을

잡자. 이제 G에 관한 마법 보조정리는 어떤 숫자 N = N(ε,D)가 보장한다. 또, 명제 3.4 및 보조정리

3.2에 의해 limp↗pc χp = +∞임을 기억하라. 따라서 χpc−η ≥ Nε−1인 η > 0을 잡는 것은 어렵지 않다.

모든 준비가 끝났다. 증명을 위해 p ∈ (pc − η, pc) 및 유한 집합 A ⊆ G를 임의로 잡겠다. 그러면

마법 보조정리에 의해 #A′ ≥ (1 − ε)#A인 부분집합 A′ ⊆ A가 존재하고, 각각의 u ∈ A′마다 어떤
K-나무스러운 부분집합 B(u) = B1(u) t . . . tBD(u) 및 B′(u) = B′1(u) t . . . tB′D(u)가 존재하여

A1(u) :=
{
v ∈ A : uB1(u), . . . , uBD(u) 모두가 각각 u와 v 사이의 장벽임

}
,

A2(u) :=
{
v ∈ A : uB′1(u), . . . , uB′D(u) 모두가 각각 u와 v 사이의 장벽임

}
,

A2(u) :=
{
v ∈ A : u(B \ND′(id))가 u와 v 사이의 장벽임

}
에 대해 #A \ (A1(u) ∪A2(u) ∪A3(u)) ≤ N이 성립한다. 이때, 따름정리 3.3 및 3.4를 적용하면∑

v∈Ai(u)

Pp(u↔ v) ≤ εχp (u ∈ A′, i = 1, . . . , 4)

임을 알 수 있다. 따라서∑
u,v∈A Pp(u↔ v)

χp#A
≤
∑

u∈A,v∈A1(u) Pp(u↔ v)

χp#A
+

∑
u∈A,v∈A2(u) Pp(u↔ v)

χp#A

+

∑
u∈A,v∈A2(u) Pp(u↔ v)

χp#A
+

∑
u∈A,v/∈A1(u)∪A2(u) Pp(u↔ v)

χp#A

≤
∑

u∈A εχp

χp#A
+

∑
u∈A εχp

χp#A
+

∑
u∈A εχp

χp#A
+

∑
u∈AN

χp#A
≤ 3ε+

N

χp
≤ 4ε

임을 알 수 있다. 이로써 증명이 끝났다. �

4. CAT(0) 큐브 복합체

유클리드 공간 Rn에서 단위 구간 [0, 1]의 n번 곱 [0, 1]n을 생각할 수 있는데, 이 모양을 n차원 (유클

리드) 큐브라고 부르겠다. (그림 3 참조.)

유클리드 큐브를 재료로 사용해 구면, 토러스 및 쌍곡면과 위상동형인 거리공간을 만드는 것은 어렵

지 않다. 예를 들어, 2차원 타일 6개를 정육면체처럼 이어 붙이면 구면과 위상동형인 거리공간을 만들

수 있다. 이 정육면체의 윗면/앞면/오른쪽 면의 중점을 각각 A,B,C라고 해보자. 그러면 점 A,B,C의
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각 순서쌍을 잇는 정육면체 표면상의 측지선이 유일하게 결정된다. 이 측지선 삼각형은 평면상에 그린

정삼각형보다 더 뚱뚱하다는 것을 알 수 있다. 이를테면, 변 AB의 중점과 변 BC의 중점 사이 거리는

삼각형 한 변의 길이의 1/
√

2인데, 평면 상에 그린 정삼각형에 대해 같은 거리를 재어 보면 삼각형 한

변의 길이의 1/
√

3으로 더 작다.

한편, 위와 같은 2차원 정육면체의 ”내부”를 채우기 위해 3차원 큐브를 추가할 수 있다. 이렇게 만들

어진 새로운 거리공간에서는, 임의의 측지선 삼각형은 그것과 변의 길이가 동일한 평면 삼각형에 비해

뚱뚱하지 않다. 이러한 공간을 CAT(0) 거리공간이라고 부른다.

이제 CAT(0) 큐브 복합체를 정의할 준비가 되었다. 유클리드 큐브를 이어 붙인 큐브 복합체 중

거리공간으로서 CAT(0)인 복합체를 CAT(0) 큐브 복합체라고 부른다.

이 정의는 간단하기는 한데, 그다지 구체적이지는 않다. 유클리드 큐브를 어떻게 이어 붙였을 때

CAT(0) 성질을 보장할 수 있을까? 이것이 실은 Misha Gromov가 CAT(0) 큐브 복합체를 다룬 이유

이다. CAT(0) 거리 공간의 예시에는 음의 곡률을 가진 리만다양체 등이 있으나, 더 다양한 CAT(0)

거리 공간을 손쉽게 만들 방법이 있으면 군을 공부할 때 도움이 될 수도 있을 것이다. 이러한 관점에

서 Gromov는 큐브를 이어붙인 공간들을 생각했고, 더 나아가, 큐브 복합체가 CAT(0)인지 아닌지는

손쉽게 체크할 수 있는 기준을 마련했다. 이 간단한 기준이 오늘날 CAT(0) 큐브 복합체의 정의로

여겨지기도 하는데, 이 정의를 소개하겠다.

정의 4.1. CAT(0) 큐브 복합체(CAT(0) cube complex)란 유클리드 큐브를 이어붙인 복합체 중

연결되어 있고(connected), 단순연결되어 있으면서(simply-connected), 각 꼭짓점에 붙어 있는 큐브들

의 모임이 깃발 복합체(flag complex)를 이루게끔 붙여 만든 폐포 복합체(cell complex)이다.

여기서 깃발 복합체라고 함은 다음을 의미한다. 어느 꼭짓점 v에 붙어 있는 모서리 e1, ..., en에 대해,

만약 각각의 서로 다른 정수 i, j ∈ {1, . . . , n}마다 ei와 ej를 동시에 포함하는 2차원 타일이 공간 속에

존재한다면, e1, ..., en 모두를 모서리로 가지는 n차원 큐브가 공간 속에 존재한다는 것이다. 예를 들어,

상술한 2차원 정육면체가 CAT(0) 큐브 복합체 안에 존재한다면, 그 정육면체의 ”내부”에 해당하는

3차원 큐브 또한 존재해야 한다는 것이다.

한편, CAT(0) 큐브 복합체의 그래프이론적인 버전을 소개하겠다. 앞에서 그래프에 줄 수 있는 자

연스러운 거리 구조인 그래프 거리를 얘기했다. 그런데 평면 격자 그래프에서도 쉽게 볼 수 있듯이,

주어진 두 점 사이 최단 경로가 꼭 유일할 필요는 없다. 그러한 최단 경로들을 모두 측지선이라고

부르겠다. 또, x와 y를 잇는 모든 측지선의 합집합을 I(x, y)라고 부르겠다.

정의 4.2. 연결된 그래프 Γ가 중점 그래프(median graph)라는 것은, 임의의 점 x, y, z ∈ V(Γ)에

대해

d(x,m) + d(m, y) = d(x, y),

d(y,m) + d(m, z) = d(y, z),

d(z,m) + d(m,x) = d(z, x)

을 만족하는 점 m ∈ V(Γ)가 유일하게 존재한다는 것이다. 달리 말하자면 I(x, y)∩ I(y, z)∩ I(z, x)가

점 하나짜리 집합이라는 것이다. 이 유일한 점 m을 x, y, z의 중점(median)이라고 부른다.

예시 4.3. (1) 수직선은 정수 점들을 꼭짓점으로 하고, 인접한 정수끼리 모서리로 이은 그래프로

볼 수 있다. 이때, 임의의 x, y, z ∈ Z에 대해 I(x, y) ∩ I(y, z) ∩ I(z, x)는 x, y, z 중 중간인

숫자로 유일하게 결정된다.
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Figure 4. 정수군 Z의 케일리 그래프로 볼 수 있는 수직선

(2) 차수 2짜리 자유군 F2의 표준적인 케일리 그래프는 각 점의 차수(degree)가 4인 나무 그래프인

데, 이 그래프에서 임의의 측지선 삼각형은 두께가 0이고, 중점이 유일하게 존재한다는 것을

확인할 수 있다. 더욱 일반적으로, 사이클이 없는 그래프, 즉 나무 그래프(tree)는 모두 중점

그래프이다.

(3) 사이클이 무수히 많은 중점 그래프도 있다. 대표적으로, 평면 격자 그래프 Z2에서 점 x =

(0, 0), y = (4, 2), z = (1, 3)을 생각해 보자. 이때 I(x, y)는 (0,0)과 (4,2)를 꼭짓점으로 가지는

수직 직사각형이 된다. I(y, z) 및 I(z, x)도 비슷한 패턴으로 그려지고, 이 세 집합의 교집합은

정확히 (1, 2) 한 점이 된다. 더 일반적으로, n차원 정수 격자 그래프 Zn 또한 중점 그래프이다.

A

B

C

Figure 5. 평면 격자 그래프 위의 세 점과 그 중점

(4) 중점 그래프가 아닌 예시도 있다. 길이 3짜리 사이클을 포함하는 그래프는 결코 중점 그래프가

될 수 없다. 삼각형의 세 꼭짓점을 위한 중점이 존재하지 않기 때문이다.

잘 생각해보면, 길이 5짜리 사이클을 가지는 그래프 또한 결코 중점 그래프가 될 수 없다.

사실은, 중점 그래프의 사이클은 항상 짝수 길이를 가진다. 다시 말해, 중점 그래프는 반드시

이분 그래프(bipartite graph)이다.

(5) 중점 그래프가 아닌 또다른 예시로는 K2,3 그래프가 있다. 이 그래프는 꼭짓점 A,B, x, y, z

및, 대문자와 소문자를 잇는 모서리 6개로 이루어져 있다. 이 그래프에서 I(x, y)는 x−A− y
측지선도, x − B − y 측지선도 포함한다. 즉, A와 B 모두 I(x, y)에 들어 있다. 마찬가지로,

A와 B는 I(y, z)에도, I(z, x)에도 들어 있다. 즉, x, y, z의 중점을 찾을 수 없는 것이 문제가

아니라, 너무 많은 후보가 있다는 것이 문제인 것이다.

일반적으로, K2,3을 부분 그래프로 가지는 그래프는 중점 그래프일 수 없다.

CAT(0)큐브복합체와중점그래프를같이이야기한이유가있다. CAT(0)큐브복합체가주어졌을

때, 2차원 이상인 큐브 조각들은 모두 지우고 1차원 큐브, 즉 모서리만 남긴 것을 1차 뼈대(1-skeleton)

이라고 부른다. 이때 이 1차 뼈대는 중점 그래프가 된다. 역으로, 중점 그래프가 주어졌을 때, 사각형

(=4-사이클)이 보일 때마다 2차원 타일을 붙여 넣고, 정육면체의 1차 뼈대가 보일 때마다 3차원 큐브

를 붙여 넣고, n차원 큐브의 1차 뼈대가 부분 그래프로 들어 있을 때마다 n차원 큐브를 붙여 넣는다고
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Figure 6. K2,3 그래프

해보자. 이렇게 만들어진 복합체는 각 꼭짓점에서 깃발 복합체 조건을 만족한다. 다시 말해, 이 복합

체는 CAT(0) 큐브 복합체이다. 요약하자면, 중점 그래프의 모임과 CAT(0) 큐브 복합체의 1차 뼈대의

모임은 정확히 똑같다. 이는 Victor Chepoi, Victor Gerasimov, Martin Roller 등 여러 저자에 의해

증명된 사실이다 ([Rol99], [Ger98], [Che00]).

지금부터는 CAT(0) 큐브 복합체를 얘기할 때 그 1차 뼈대인 중점 그래프를 같이 떠올릴 것이다. 이

경우, 유클리드 큐브들을 이어붙여 만든 CAT(0) 거리를 생각하는 대신, 1차 뼈대를 따라 정의되는 그

래프 거리를 생각하면 편리할 때가 있다. 따라서 이제 CAT(0) 거리는 잊고, 항상 1차 뼈대상의 그래프

거리를 부여하는 것으로 간주하겠다.

CAT(0) 큐브 복합체 및 중점 그래프를 얘기할 때 빠질 수 없는 도구가 바로 반공간(halfspace) 및

초평면(hyperplane)이다. 이 관점은 Michah Sageev가 박사학위논문([Sag95])에서 도입한 바 있다.

정의 4.4. CAT(0) 큐브 복합체 X에서 모서리 e를 하나 택하자. 이때, e를 관통하는 초평면(hyper-

plane) h는 다음을 만족하는 가장 작은 X의 부분집합이다.

(1) e의 중점은 h에 포함되어 있다.

(2) X를 구성하는 어떤 큐브 C ' [0, 1]n에 대해, 만약 h가 C의 어떤 모서리의 중점을 포함한다

면, 그 중점에서 그 모서리에 직교하는 (n− 1)차원 큐브 또한 h에 포함된다. 즉, 예를 들어 점

(1/2, 0, . . . , 0) ∈ [0, 1]n이 h에 포함된다면 {1/2} × [0, 1]n−1 전체 또한 h에 포함된다.

위 상황에서 초평면 h는 복합체 X를 둘로 나누는데, 예를 들어 e의 두 꼭짓점은 X \ h의 서로 다른
연결성분에 있게 된다. 이때 X \h의 한 연결성분의 닫음(closure)을 h에 면한 반공간(halfspace)이라고

부른다.

위 개념을 중점그래프의 언어로 해석하면 다음과 같다.

정의 4.5. 중점그래프 Γ 안에 4-사이클이 있을 때, 4-사이클의 변 중 맞닿아있지 않는 모서리끼리 서로

평행하다(parallel)고 부른다. 더 나아가, Γ의 모서리들 e1, . . . , en에 대해, 만약 각 i = 1, . . . , n − 1

마다 ei와 ei+1가 평행하다면, e1과 en 또한 평행하다고 부른다.

그래프 Γ의초평면(hyperplane)이란, Γ의모서리들중평행한것끼리모은극대집합을뜻한다. 다시

말해, Γ의 어떤 모서리 e를 관통하는 초평면은, e와 평행한 모서리들의 모임이다.

그래프 Γ의 초평면 h가 주어졌을 때, Γ의 꼭짓점들은 그대로 두고, 모서리 중 h에 들어있는 것들은

삭제하고 나머지만 남긴 부분그래프를 생각하자. 이 부분그래프의 연결성분을 각각 h에 면한 반공간

(halfspace)이라고 부른다.

예시 4.6. (1) 나무그래프들은모두중점그래프라고앞에서언급했다.나무그래프에는사이클이

없기 때문에, 평행한 모서리 쌍이란 존재할 수 없다. 따라서 각각의 모서리가 초평면이 된다.

각 모서리를 삭제하면 나무 그래프는 두 토막으로 나뉘는데, 이들 각각이 반공간이 된다.
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(2) 평면 격자 그래프 Z2에서 초평면들에는 두 종류가 있는데, x좌표가 서로 같은 가로 모서리의

모임이거나 혹은 y좌표가 서로 같은 세로 모서리의 모임이다.

CAT(0) 큐브 복합체의 초평면 두 개를 생각하자. 이 두 초평면은 일치하거나, 서로 만나지 않거나,

아니면 어떤 2차원 큐브에서 교차한다. (이때 이 2차원 큐브가 유일할 필요는 없다.) 중점 그래프에서

해석하자면,두초평면은일치하거나,꼭짓점을아예공유하지않거나,아니면어떤 4-사이클의네변을

평행한 것끼리 양분한다.

초평면의 성질을 더 구체적으로 적으면 다음과 같다. 이 또한 Michah Sageev가 박사학위논문에서

증명한 것이다.

사실 4.7. 중점그래프 Γ의 초평면 h를 하나 생각하자. 그러면 다음이 성립한다.

(1) 초평면 h는 전체 공간을 정확히 둘로 나누고, 따라서 h에 면한 반공간은 정확히 두 개다. 특히,

각 모서리 e ∈ h에 대해, e의 두 끝점은 서로 다른 반공간에 속한다.

(2) 초평면 h의 두 모서리 e = xy, f = vw가 주어졌을 때 d(x, v) = d(y, w)가 성립한다.

위 사실은 그냥 믿어도 상관없으나, 중점그래프의 언어로 이것을 증명하고 싶다면 8절을 보면 된

다. 이로부터 특히 알 수 있는 것은, 서로 다른 초평면 h, h′에 대해 다음 두 가지 중 정확히 하나가

성립한다는 것이다.

(1) h에 면한 두 반공간과 h′에 면한 두 반공간은 각각 서로 만난다.

(2) h에 면한 어느 한 반공간에 N(h′) 및 h′에 면한 어느 한 반공간이 들어 있다.

전자의 경우, 두 초평면은 교차한다(transverse)고 하고 h t h′라고 쓴다. 후자의 경우, 두 초평면은

평행하다(parallel)고 하고 h‖h′라고 쓴다. 이것을 반공간의 언어로 다시 쓰면 다음과 같다.

사실 4.8. 중점그래프 Γ의 두 반공간 H 및 H ′에 대해, 다음 중 하나가 정확히 성립한다.

(1) H와 H ′가 같다.

(2) H와 H ′는 서로의 여집합이다. 즉, V(H)와 V(H ′)는 V(Γ)를 분할한다.

(3) H ( H ′.

(4) H ′ ( H.

(5) (2)가 아니되, H와 H ′는 서로 겹치지 않는다. 즉, H ∩H ′ = ∅이다.

(6) (2)가 아니되, H ∪H ′ = Γ이다.

(7) 위의 그 어느 상황도 아니다. 다시 말해, H ∩ H ′, H ∩ H ′c, Hc ∩ H ′, Hc ∩ H ′c 각각이 모두
공집합이 아니다.

(1) 및 (2)인 경우, H와 H ′가 면한 초평면들은 일치한다. (3), (4), (5) 및 (6)인 경우, H와 H ′가 면한

초평면들은 서로 평행하고, 이때 H와 H ′가 평행하다고 부르며 H‖H ′라고 쓴다. (7)인 경우, H와 H ′

가 면한 초평면들은 서로 교차하고, 이때 H와 H ′가 교차한다고 부르며 H t H ′라고 쓴다.

Proof. 집합

A1 := H ∩H ′, A2 := Hc ∩H ′, A3 := H ∩H ′c, A4 := Hc ∩H ′c

을생각했을때,이넷중셋이상이공집합인경우 H, Hc, H ′, H ′c 중최소하나가공집합이된다.이는

사실 4.7에 모순이다. 따라서 A1, A2, A3 및 A4 중 기껏해야 두 개만 공집합일 수 있다. 또, 실제로 이중

두 개가 공집합일 수 있는 가능성은 A1 = A4 = ∅ 6= A2, A3와 A2 = A3 = ∅ 6= A1, A4 두 가지뿐이다.

이에 더해, A1, . . . , A4 중 정확히 하나가 공집합인 경우 네 가지, 그리고 그 어느 것도 공집합이 아닌
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Figure 7. 두 반공간의 위치 관계

경우 한 가지로 총 7가지 가능성이 있다. 이들이 각각 (1)-(7)에 해당함은 쉽게 확인할 수 있다. 그림 7

를 참조하라. �

이제 평면 격자 그래프를 다시 살펴보자. 여기서 꼭짓점 (0, 0)과 (3, 2) 사이 조합적=그래프 거리가

3 + 2 = 5임은 쉽게 확인할 수 있다. 물론 이 거리를 실현시키는 측지선은 하나가 아니다. 위로 2번

이동한 뒤 오른쪽으로 3번 가도 측지선이 되고, 오른쪽으로 먼저 간 뒤 위로 가도 측지선이 되며, 그 순

서를 조금 섞으면 또다른 측지선이 된다. 하지만 여기서 중요한 규칙이 하나 있다. “오른쪽으로만 가야

하며”, “위쪽으로만 가야 한다”는 사실이다. 오른쪽으로 총 4번 갔다가 왼쪽으로 1번 가는 방식으로

(0, 0)에서 (3, 2)까지 가게 되면, 가로 방향 움직임에 낭비가 생긴 것이다. 이는 측지선이 될 수 없다.

이를 다르게 얘기하자면 다음과 같다. (0, 0)에서 (3, 2)로 가는 측지선은, 반드시 {x = 0.5}, {x =

1.5}, {x = 2.5}라는 세로선을 정확히 한번씩 지나고, {x = n + 1/2 : n ≥ 3 혹은 n < 0}라는 세
로선들은 절대 지나지 않는다. 마찬가지로, {y = n + 1/2 : n = 1, 2}라는 가로선들은 정확히 한번씩
지나고, 그 외의 반정수 y좌표 가로선들은 절대 지나지 않는다. 더 놀라운 점은, 이것이 필요조건이자

충분조건이라는 것이다. 더 나아가, 이 사실은 일반적인 중점 그래프에서도 성립한다.
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보조정리 4.1. 중점 그래프 Γ 및 그 꼭짓점 x 및 y를 생각하자. 이때, x와 y를 잇는 Γ상의 경로 P에

대해 다음 성질들은 동치다.

(1) P는 조합적 거리에 따른 측지선이다.

(2) P는 Γ의 각 초평면을 기껏해야 한 번씩만 만난다.

(3) P는 Γ의 초평면 중 x와 y를 가르는 것들은 정확히 한 번씩 만나고, 그렇지 않은 초평면들은

만나지 않는다.

Proof. 먼저 (1)로부터 (2)을 유도하겠다. 모순을 이끌어 내기 위해, 어떤 측지선 P가 어떤 초평면 h를

두번이상만난다고가정하자. P ∩h중첫번째모서리를 ei = −→uv,두번째모서리를 ej =
−−→
u′v′라고하자.

여기서 v와 u′는 h에 들어 있지 않은 모서리 ei+1, . . . , ej+1로 이루어진 경로로 이어져 있다. 따라서 v

와 u′는 h에 면하는 같은 반공간에 들어 있다. 이제 사실 4.7(3)을 쓰면 d(v, u′) = d(u, v′)가 성립해야

한다. 그러나 u, v, u′, v′는 동일한 측지선 위에 주어진 순서대로 나타나기 때문에, d(v, u′) > d(u, v′)

여야 한다. 이는 모순이다. 따라서 (2)가 성립한다.

이제 (2)로부터 (3)을유도하겠다.먼저, h가 x와 y를가르는초평면이라고해보자.그러면정의상그

어떤 경로도 h를 지나지 않고서는 x와 y를 잇지 못한다. 따라서 x와 y를 잇는 P는 h를 반드시 만난다.

이제 방금 증명한 사실과 합하면, 이 만남은 정확히 한 번이라는 것을 알 수 있다.

반면, h가 x와 y를 가르지 않는 경우, 즉 두 점 모두 h에 면한 동일한 반공간 H에 속해 있는 경우를

살펴보자. 만약 P가 h를 만난다면, P ∩ h 중 첫번째 모서리 ei = −→uv를 잡을 수 있다. 이때 x에서 u까지

잇는 P의 부분경로는 h를 만나기 전이므로, H에 속해 있다. 그리고 uv는 h의 원소이므로, v는 H가

아닌 다른 반공간에 속해 있음을 알 수 있다. 이제 ei 이후의 P의 부분경로는 v와 y를 이어야 하는데,

v /∈ H 및 y ∈ H라는 점으로부터, P는 ei 이후에도 h를 다시 지나게 됨을 알 수 있다. 이는 측지선 P가

결코 초평면 h를 두 번 이상 만날 수 없다는 사실에 모순이다. 따라서, P는 h를 만나지 않는다. 이로써

(3) 또한 증명되었다.

이제 (3)으로부터 (1)을 유도하겠다. 먼저, P상의 각 모서리는 정확히 한 개의 초평면에 반드시 들어

있다. 따라서,

l(P ) =
∑

h:Γ 안의 초평면

#(P ∩ h)

라는 공식이 성립한다. 이제 (3)의 가정에 의해, 이는 정확히 x와 y 사이를 가르는 초평면의 개수이다.

한편, x와 y를잇는임의의경로 Q를생각해보자.그러면 x와 y를가르는각각의초평면 h마다 Q∩h에
속하는 어떤 모서리 eh가 반드시 존재해야 하고, 이러한 eh는 초평면 h마다 반드시 달라야 한다. 이를

생각하면 Q의 길이는 x와 y 사이 초평면의 개수 이상이어야 한다. 즉, 우리가 잡은 P는 최소 길이를

달성하는 것이고, 따라서 P는 측지선이다. 이로써 증명이 끝났다. �

5. 초평면 사슬과 반공간 사슬

어떤 점들 간의 위치 관계를 파악할 때, 그 점들 사이에 낑겨 있는 초평면들은 매우 중요한 역할을

한다. 이를 더 효율적으로 공부하기 위해 개념을 하나 도입하겠다.

정의 5.1. 반공간 n개 H1, H2, . . . ,Hn가

H1 ) H2 ) . . . ) Hn

라는 위치 관계를 만족할 때, (H1, . . . ,Hn)을 반공간 사슬(halfspace chain)이라고 부른다. 또, 이

때 각 Hi가 면한 초평면 hi에 대해, (h1, . . . , hn)을 초평면 사슬(hyperplane chain)이라고 부른다.
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더욱이, 어떤 집합 S, T ⊆ Γ에 대해, 만약 S ⊆ Hc
1 및 T ⊆ Hn가 성립하면, (h1, . . . , hn)가 S 및 T

사이에 낑겨 있다고 얘기한다.

어떤 집합 S, T ⊆ Γ를 고정한 뒤, S 및 T 사이에 낑겨 있는 사슬을 생각하자. 이때 이 사슬이 극대

(maximal)이라는 것은, 이 사슬을 부분나열로 포함하면서 S 및 T 사이에 낑겨 있는 더 큰 사슬이

존재하지 않는다는 뜻이다.

어떤 두 점 x, y ∈ V(Γ)가 주어졌을 때, 그 사이에 낑긴 초평면 사슬의 최대 길이는 d(x, y) 이하임을

보조정리 4.1에서 보았다. 따라서, 두 점 사이에 낑겨 있는 임의의 사슬이 주어졌을 때, 더 집어 넣을 수

있는 만큼 사슬을 계속 키워나갈 때 언젠가는 멈추게 되어 있다. 즉, x와 y 사이에 낑긴 임의의 사슬은

반드시 x 및 y 사이에 낑긴 극대 사슬로 확장할 수 있다.

사실은 중점그래프 Γ 위에는 조합적 거리 외에 또다른 자연스러운 거리 구조를 줄 수 있다. 이는 n

차원 정수 격자 그래프 위에 l1-거리 이외에 l∞-거리 또한 줄 수 있다는 사실에 대응한다.

정의 5.2. 중점그래프상의어떤두집합 A,B ⊆ V(Γ)에대해, A와 B 사이에낑긴사슬의최대길이를

A와 B 사이의 l∞-거리라고 부르고, d∞(A,B)로 표시한다.

예시 5.3. (1) 예시 4.3(2)의 4차수 나무 그래프를 생각해 보자. 여기에는 4-사이클이라는 것 자체

가 존재하지 않기 때문에, 각각의 모서리가 초평면이 된다는 것을 관찰했다. 이제 임의의 두

점 x, y ∈ V(Γ) 사이를 잇는 l1-측지선 (x = x0, x1, . . . , xn = y)가 유일하게 존재한다. 이때

Γ \ xi−1xi의 연결성분 중 xi쪽의 연결성분을 Hi라고 부르면, x /∈ H1 ) H2 ) Hn 3 y라는
사슬을 만들 수 있다. 이 사슬이 극대인 것은 쉽게 관찰할 수 있다.

또, 이 그래프에서는 서로 다른 초평면은 반드시 평행하다는 것을 관찰하라.

(2) 이번에는 예시 4.3(3)의 정수 격자 그래프를 생각하자. 여기서 초평면은 y좌표가 서로 같은

세로 모서리의 모임 혹은 x좌표가 서로 같은 가로 모서리의 모임이라고 했다. 전자를 가로

초평면, 후자를 세로 초평면이라고 부르자. 이 그래프에서, 초평면끼리 평행하려면 둘 다 가

로이거나 혹은 둘 다 세로여야 한다는 사실을 쉽게 관찰할 수 있다.

이제 예를 들어 (0, 0)과 (3, 4) 사이에 끼어 있는 초평면들은 정확히, y좌표가 0과 4 사이에

있는 가로 초평면 4개 및 x좌표가 0과 3 사이에 있는 세로 초평면 3개이다. 물론 이들 모두의

개수는 (0, 0)과 (3, 4) 사이 l1-거리이다. 그러나 이 두 점 사이에 길이 7짜리 사슬은 없다. 가로

초평면과 세로 초평면은 서로 평행할 수 없기 때문이다. 따라서, 방금 말한 가로 초평면 4개로

만든 사슬 및 세로 초평면 3개로 만든 사슬이 각각 극대 사슬이 된다. 이들 중 가장 긴 것이

l∞-거리를 구현하기는 하지만, 이들 모두가 그렇게 하지는 않음을 주의하라.

이제, 잠깐 군에 관한 얘기로 돌아가겠다. 우리의 최종 목표는, 중점 그래프의 대칭 군으로 나타나는

특정 군에서 삼투 현상을 공부하고자 하는 것이다. 방금 본 예시 중 정수 격자 그래프에는 Z2라는 군이

평행이동으로 작용하고, 이 작용은 여-컴팩트하며 진정하다. 헌데 정수 격자 그래프는 이차식 성장률

(quadratic growth)를 가지기에, 이 그래프에 여-컴팩트하며 진정으로 작용하는 군은 항상 평균가능군

(amenable group)이다. 이러한 군에서는 우리가 바라는 삼투 현상이 일어나지 않는다는 것이 이미 알

려져 있다 ([BK89], [GKN92]). 따라서, 중점그래프에 적절한 비평균가능성(non-amenability) 가정을

얹어 주는 것이 필요하다.

정수 격자 그래프의 주요 특징 중 하나로, 두 성분 그래프의 곱 그래프라는 점이 있다. 즉, Z의 표준
케일리그래프두개를 Γ1,Γ2라고한뒤,이두그래프를직접곱(direct product)하면정수격자그래프

를 얻는다. 이와 연관된 사실로, 정수 격자 그래프에서는 모서리를 공유하지 않는 평행한 초평면 쌍은
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분명 존재하지만 (이를테면 세로 초평면 두 개), 그런 초평면들에 동시에 교차하는 초평면(이를테면

가로 초평면)이 항상 존재한다. 이러한 현상은 곱 그래프에서도 이어진다.

이제부터는 위와 같지 않은 그래프에 집중하려고 한다. 이를 위해 다음을 정의하겠다.

정의 5.4. 중점그래프 Γ의 평행한 두 초평면이 강하게 분리되어 있다(strongly separated)라는

것은, 두 초평면에 동시에 교차하는 초평면이 존재하지 않는다는 것이다.

또한, Γ의 두 반공간 H,H ′에 대해, 만약 H가 면해 있는 초평면과 H ′가 면해 있는 초평면이 강하게

분리되어 있다면, H와 H ′ 또한 강하게 분리되어 있다고 얘기한다.

예시 5.5. (1) 나무 그래프에서는 그 어떤 초평면도 다른 초평면과 교차할 수 없다. 4-사이클이

아예 없기 때문이다. 따라서, 모든 초평면은 서로 강하게 분리되어 있다.

(2) 전혀 나무같지 않은 그래프에서도 강하게 분리된 초평면이 존재할 수 있다. 그림 8에는 사각

형 타일을 한 꼭짓점에서 6개씩 모이도록 이어붙인 것이다. 이때 전체 CAT(0) 큐브 복합체는

평면과 위상동형이다. 실은, 이 그래프 Γ의 전체 대칭군에는 쌍곡 곡면군(surface group)과 동

형인 유한 지수 부분군이 들어 있다. 그런 의미에서, 이 타일링은 쌍곡평면(hyperbolic plane)

을 모델링한 것으로 볼 수도 있다.

이 복합체에는 교차하는 초평면도 있지만, 서로 만나지 않는 초평면도 있고 강하게 분리

된 초평면도 있다. 특히, 그림에 나타나 있는 강하게 분리된 두 초평면 h, h′은 그래프의 어떤

대칭을 통해 완전히 포갤 수 있다. 즉, g ∈ Aut(Γ)가 존재해 h′ = gh라는 것이다.

정의 5.6. 어떤 실수열 a = (a1 < a2 < . . . < an−1)을 생각하자. 이때 어떤 초평면 사슬 (h1, . . . , hn)

이 a-등간격으로 분리되어 있다(equiseparated)는 것은, d∞(hi, hj) = a|j−i|이라는 것이다. 이때, 이

초평면들에 면하는 반공간들로 이루어진 사슬 또한 a-등간격으로 분리되어 있다고 얘기한다.

주어진중점그래프 위에 일정한 간격으로 강하게 분리된 초평면이 존재하는지는 앞으로의 얘기에서

매우 중요해질 것이다. 이를 보장할 수 있는 가장 간편한 방법은, 그래프의 대칭성=등거리사상 g와

반공간 H를 잘 잡아 gH ( H이면서 gH와 H가 강하게 분리되어 있게끔 하는 것이다. 이러한 대칭성

및 반공간은 꽤 많은 경우에 존재하는데, Pierre-Emmanuel Caprace와 Michah Sageev의 다음 정리가

이를 얘기한다.

정리 5.7 ([CS11, Corollary B]). 국소적으로컴팩트하고(locally compact)측지선적으로완비한(geodesi-

cally complete) CAT(0) 큐브 복합체 X를 생각하자. 또, X에 진정으로, 또 여-컴팩트하게 작용하는

이산적인 무한군 G를 생각하자.

그러면 Γ는 (1) 측지선적으로 완비하고 지름이 무한하며(unbounded) 볼록한(convex) 부분복합체

들의 곱이거나, 혹은 (2) G의 원소 g 및 Γ의 반공간 H가 하나씩 존재하여, gH ( H이고 gH와 H가

강하게 분리되어 있다.

5.1. 반공간에 관한 몇 가지 보조정리 이제부터 흔히 사용할 반공간의 성질을 몇 가지 정리해 두겠다.

보조정리 5.1. 중점그래프 Γ의 점 x, y ∈ Γ와 꼭짓점 집합 A ⊆ V(Γ)를 생각하자. 그러면

d∞(x,A) ≤ d∞(x, y) + d∞(y,A)

가 성립한다.

Proof. 먼저 x와 y 사이 d∞-거리를 구현하는 극대 반공간 사슬

x /∈ L1 ) . . . ) LN ⊇ A
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Figure 8. 사각형 타일링이 깔린 쌍곡평면. 점박이 초평면과 교차하는 초평면 중 세

개가 색칠되어 있다. 그리고 오른쪽 상단의 체크무늬 초평면은 색깔 초평면들과 결코

만나지 않는다. 즉, 점박이 초평면 h와 체크무늬 초평면 h′는 서로 강하게 분리되어

있다.

를 생각한 뒤, Li 3 y인 가장 큰 수 i를 잡자. 그러면 y /∈ Li+1이므로

x /∈ L1 ) . . . ) Li ⊇ A, y /∈ Li+1 ) . . . ) LN ⊇ A

는 각각 x와 y 사이 및 y와 A 사이에 낀 반공간 사슬이 된다. 이로부터 바라던 부등식을 얻는다. �
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보조정리 5.2. 중점그래프 Γ의 두 반공간 H1, H2을 생각하자. 만약 H1과 H2가 어떤 점을 공유하되

어떤 다른 점을 동시에 놓친다면(즉 H1 ∩ H2 6= ∅ 6= Hc
1 ∩ Hc

2이라면), H1과 H2는 교차하거나 포함

관계에 있다.

Proof. 이 경우, 사실 4.8의 (2), (5), (6)이 배제된다는 것은 분명하다. �

보조정리 5.3. 중점그래프 Γ의 두 반공간 H1 ( H2이 강하게 분리되어 있고, 어떤 반공간 L이 Hc
1의

어느 두 점 사이를 가른다고 하자. 그러면 L은 H2를 완전히 포함하거나 혹은 만나지 않는다.

Proof. 만약 L은 H2의 어느 두 점 사이를 가른다면 L이 H1과 H2 둘 다에 교차하게 되는데, 이는 H1

과 H2가 강하게 분리되어 있다는 것에 모순이다. 따라서 L ) H2 혹은 L ∩H2 = ∅이 성립한다. �

보조정리 5.4. 중점그래프 Γ의 세 반공간 H1 ) H2 ⊇ H3을 생각하되, H1과 H2가 강하게 분리되어

있다고 하자. 그러면 Hc
1의 임의의 두 점 x, y /∈ H1에 대해,

d∞(x, y) ≤ d∞(x,H2) + d∞(y,H3)

가 성립한다.

Proof. 점 x와 y 사이에 낀 반공간 x /∈ L 3 y를 임의로 생각하자. 그러면 보조정리 5.3에 의해, L은 H2

를 완전히 포함하거나 혹은 만나지 않는다. 전자의 경우, L은 x와 H2 사이에 끼여 있다. 후자의 경우,

y는 y와 H3 사이에 끼여 있다.

이제, x와 y 사이 d∞-거리를 구현하는 극대 반공간 사슬

x /∈ L1 ) . . . ) LN 3 y

를 생각한 뒤, Li ⊇ H2를 만족하는 가장 큰 수 i를 잡자. 그러면 보조정리 5.3에 의해

x /∈ L1 ) . . . ) Li ⊇ H2, Hc
3 ⊇ Li+1 ) . . . ) HN 3 y

는 각각 x와 H2 사이 및 Hc
3와 y 사이에 낀 반공간 사슬이 된다. 이로부터 바라던 부등식을 얻는다. �

보조정리 5.5. 중점그래프 Γ의 두 꼭짓점 x, y ∈ V(Γ)와 세 반공간 H,H ′, L가

x /∈ H ) H ′ 3 y 및 x /∈ L 3 y

라는 위치 관계를 만족한다고 하자. 더하여 H와 H ′가 강하게 분리되어 있다고 하자. 그러면 H ) L

혹은 L ) H ′ 둘 중 하나가 성립한다.

Proof. 보조정리 5.2에 의해, H,H ′, L은 서로 교차하거나 혹은 포함 관계에 있음을 유의하라. 만약

H ) L 혹은 L ⊇ H이면 원하는 결론에 해당한다. 따라서 둘 다 아닌 경우, 즉 H와 L이 교차하는

경우가 남는다. 이때 L은 H ′에마저 교차할 수는 없다. 또 H 6) L이므로 L이 H ′에 포함될 수도 없다.

따라서 L은 H ′와 같지 않으면서 H ′를 포함한다. 이로써 증명이 끝난다. �

보조정리 5.6. 중점그래프 Γ의 두 점 x, y ∈ V(Γ)와 강하게 분리된 두 반공간 H,H ′가

x /∈ H ) H ′ 3 y

라는 위치 관계를 만족한다고 하자. 그러면

d∞(x, y) ≤ d∞(x,H ′) + d∞(Hc, y)

이다.
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Proof. 먼저 x와 y 사이 거리를 구현하는 반공간 사슬

x /∈ L1 ) . . . ) LN 3 y

를 생각한 뒤, Li ⊇ H ′를 만족하는 가장 큰 수 i를 잡자. 이때 보조정리 5.5에 의해 H ) Li+1 혹은

Li+1 ) H ′여야 한다. 후자는 i의 정의에 위배하므로 전자가 성립해아 한다. 즉,

x /∈ L1 ) . . . ) Li ⊇ H ′, H ) Li+1 ) . . . ) LN 3 y

라는 반공간 사슬을 얻게 된다. 이로부터 바라던 부등식을 얻게 된다. �

6. 마법 보조정리 (Magic lemma)

이제 본격적으로 삼투 현상에 관련된 중점그래프의 기하학을 얘기하려고 한다.

정의 6.1. 어떤 거리공간 X의 부분집합 Y ⊆ X가 (이산적으로) 균일하게 거리상 진정하다(uniformly

metrically proper)는 것은, 각각의 R > 0마다

sup
y∈Y

#
{
y′ ∈ Y : d(y, y′) < R

}
< +∞

인 것이다.

이를테면, 만약 어떤 연결된 거리공간 X에 등거리사상으로 진정으로 작용하는 군 G이 주어졌을 때,

임의의 x ∈ X에 대해 그 G-궤도 G · x는 균일하게 거리상 진정하다.

중점그래프 Γ 및 점 y ∈ V(Γ), 유한 집합 A ⊆ V(Γ), 실수 D > 0 및 실수열 a = (a1 < . . . < a11)이

주어졌을 때 다음과 같은 집합을 정의하겠다.

Ha,D(y,A) :=

{
z ∈ V(Γ) :

a-등간격으로 강하게 분리된 어떤 반공간 사슬 H1 ) H2 ) . . . ) H12 에 대해

{y} ∪A ⊆ Hc
1이고 z ∈ H11이고 d∞(z,H12) ≤ D이며 d∞(y,H12) ≤ D이다.

}
실수열의 정체가 중요하지 않을 때는 HD(y,A)라고 적기도 하겠다. 여기서 z ∈ HD(y, x)인 상황을 다

룰 때는, x, y, z가 순서대로 한 직선상에 놓여 있는 그림을 떠올리면 좋다. 예를 들어 다음이 성립한다.

보조정리 6.1. 중점그래프 Γ의 꼭짓점 x, y, z이

z ∈ HD(y, x)

을 만족한다고 하자. 그러면 d∞(x, z) ≥ d∞(x, y) + d∞(y, z)− 2D이다.

Proof. 가정에 의해, 강하게 분리된 반공간 사슬 H1 ) . . . ) H12 중 {x, y} ⊆ Hc
1이고 z ∈ H10이며

d∞(y,H12) ≤ D인 것이 존재한다. 이제 d∞(x, y)를 구현하는 극대 사슬

x /∈ H ′1 ) H ′2 ) . . . ) H ′d∞(x,y) 3 y

를 하나 생각하자. 보조정리 5.3에 의해 Hd∞(x0,ai)−D는 H2를 포함하거나 혹은 만나지 않는다. 후자의

경우,

d∞(y,H2) ≤ D < d∞(y,H ′cd∞(x,y)−D)

라는 사실에 위배된다. 따라서 H2 ⊆ H ′d∞(x,y)−D라는 결론을 내릴 수 있다.

이제 y, z 사이의 거리를 구현하는 극대 사슬

y /∈ H ′′1 ) H ′′2 ) . . . ) H ′′d∞(y,z) 3 z
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를 생각하자. 그러면

y /∈ H3 ⊇ H4 3 z, y /∈ H ′′D+1 3 z

에 보조정리 5.5를 적용할 수 있다. 이때 d∞(y,H3) ≤ D < d∞(y,H ′′D+1)이기에 H3 ⊆ H ′′D+1일 수는

없으므로, H2 ) H3 ⊇ H ′′D+1임을 알 수 있다.

이를 모두 결합하면,

x /∈ H ′1 ) H ′2 ) . . . ) H ′d∞(x,y)−D ) H ′′D+1 ) . . . ) H ′′d∞(y,z) 3 z

라는 극대 사슬을 얻게 된다. 이로부터 d∞(x, z) ≥ d∞(x, y) + d∞(y, z)− 2D라는 결론을 얻는다. �

앞의 일직선 비유를 다시 생각해보자. 어떤 점들 x, y, y′, z이 z ∈ HD(y, x) 및 z ∈ HD(y′, x)을 만

족할 때, y와 y′ 중 어느 것이 직선상에 먼저 나타나느냐에 따라 y′ ∈ HD(y, x) 혹은 y ∈ HD(y′, x)가

성립했으면 좋겠다. 이에 다음 보조정리를 증명하겠다.

보조정리 6.2. 중점그래프 Γ의 꼭짓점 x, y, y′, z 및 부분집합 A,A′ ⊆ V(Γ)가

x ∈ A ∩A′ 및 z ∈ Ha,D(y,A) ∩Ha,D(y′, A′)

을 만족한다고 하자. 더하여, y, y′ 및 z가 서로 10D-분리되어 있다고 가정하자. 그러면 다음 중 정확히

하나가 성립한다.

(1) y′ ∈ HD(y,A)이고 d∞(x, y) < d∞(x, y′)이다.

(2) y ∈ HD(y′, A′)이고 d∞(x, y) > d∞(x, y′)이다.

Proof. 가정으로부터, a-간격으로 강하게 분리된 반공간 사슬 두 개

H1 ) H2 ) . . . ) H12, H ′1 ) H ′2 ) . . . ) H ′12

가 존재해, 다음을 모두 만족한다:

• A ∪ {y} ⊆ Hc
1, A

′ ∪ {y′} ⊆ H ′c1 ,
• z ∈ H11 ∩H ′11, 그리고

• d∞(z,H12), d∞(z,H ′12), d∞(y,H12), d∞(y′, H ′12) ≤ D.
이때, 각 i, j ∈ {1, . . . , 11}에 대해 Hi ∩H ′j 3 z 및 Hi ∪H ′j 63 x이므로, 보조정리 5.2에 의해 Hi와 H ′j
는 교차하거나 혹은 포함 관계에 있다.

먼저 H ′10과 H12가 서로 만난다는 것을 확인하기 위해, y′와 z 사이 d∞-거리를 구현하는 극대 사슬

y′ /∈ L1 ) . . . ) Ld∞(y′,z) 3 z

를 잡자. Lm ⊇ H ′11인 가장 큰 m를 잡으면, d∞(y′, H ′11) ≤ D이기에 m ≤ D이다. 이제

y /∈ H ′10 ) H ′11 3 z, y /∈ Lm+1 3 z

에 보조정리 5.5를 적용할 수 있다. 그런데 m을 선택한 방식 때문에 Lm+1 ⊇ H ′11은 불가능하므로

Lm+1 ( H ′10이어야 함을 알 수 있다.

즉 H ′10 ⊇ L′m+1 ) . . . ) Ld∞(y′,z) 3 z는 H ′10과 z 사이에 낑겨 있는 길이 d∞(y′, z)−m ≥ 9D짜리

사슬이다.만약 H ′10과 H12이만나지않는다면,이사슬전체가 z와 H12 사이에있게되어 d∞(z,H12) ≥
9D임을 얻는다. 이는 가정과 모순된다.

따라서, H ′10과 H12는 어떤 원소 u를 공유한다. 이제

x /∈ H ′9 ) H ′10 3 u, x /∈ H12 3 u
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에 보조정리 5.5를 적용하면, (A) H ′9 ) H12 혹은 (B) H ′10 ( H12이라는 결론을 얻는다.

같은 이유로, (A’) H9 ) H ′12 혹은 (B’) H10 ( H ′12이다.

이중 (B) H ′10 ( H12인 경우를 살펴 보겠다. 이때 d∞(y′, H12) ≤ d∞(y′, H ′10) ≤ D임은 쉽게 알

수 있다. 이제 y′ ∈ H11이기만 하면, (H2, . . . ,H12)라는 사슬이 y′ ∈ HD(y,A)임을 보장해 준다. 이를

귀류법으로 증명하기 위해 y′ /∈ H11라고 가정해 보자. 이때 y, y′ /∈ H11 ) H12 ⊇ H ′10이고 H11와 H12

는 강하게 분리되어 있다. 보조정리 5.4에 의해, y와 y′ 사이 거리는 d∞(y,H12) + d∞(y′, H ′10) ≤ 2D

이하이다. 이는 y와 y′가 10D 이상 분리되어 있다고 가정에 모순이다. 따라서 y′ /∈ H11일 수 없다.

요약하자면, 우리는 (B)이면 y′ ∈ HD(y,A)라는 사실을 증명했다. 이때 보조정리 6.1에 의해

d∞(x, y′) ≥ d∞(x, y) + d∞(y, y′)− 2D

임을 알 수 있다. 여기서 d∞(y, y′) ≥ 10D > 2D이므로 d∞(x, y′) > d(x, y)를 얻는다. 이로써 (B)의

경우에는 결론 (1)이 성립함을 증명했다.

비슷한 이유로 (B’)의 경우에는 y ∈ HD(y′, A′)이며 결론 (2)가 성립한다.

이제 남은 경우는 (A)이면서 (A’)인 상황, 즉 H ′9 ) H12이면서 H9 ) H ′12인 경우이다.

먼저 H ′9 ⊇ H6일 수는 없음을 유의하라. 왜냐하면, H ′9 ⊇ H6 ) H9 ) H ′12라는 위치 관계는

d∞(H ′c9 , H
′
12) > d∞(Hc

6, H9) = d∞(H ′c9 , H
′
12)

이라는 모순을 유발하기 때문이다. 이제

x /∈ H5 ) H6 3 z, x /∈ H ′9 3 z

에 보조정리 5.5를 적용하자. 그러면 H5 ⊇ H ′9임을 얻는다.

이제 H ′8 ⊇ H4일 수는 없다. 왜냐하면, H ′8 ⊇ H4 ) H5 ⊇ H ′9라는 위치 관계는

d∞(H ′c8 , H
′
9) > d∞(Hc

4, H5) = d∞(H ′c8 , H
′
9)

라는 모순을 유발하기 때문이다. 따라서 H ′8은 H4를 포함하지 않는다. 이제

x /∈ H3 ) H4 3 z, x /∈ H ′8 3 z

에 보조정리 5.5를 적용하자. 그러면 H3 ⊇ H ′8임을 얻는즉, y ∈ Hc
3는 H ′8 바깥에 있다.

이제, y, y′ /∈ H ′8 ) H ′9 ⊇ H12라는 위치 관계에 보조정리 5.4을 적용하면

d∞(y, y′) ≤ d∞(y,H12) + d∞(y′, H ′9) ≤ 2D

임을 얻는다. 이는 y와 y′가 10D-분리되어 있다는 가정에 모순이다. 따라서 (A)이면서 (A’)일 수는

없고 증명이 끝난다. �

명제 6.1. 중점그래프 Γ의 균일하게 거리상 진정한 부분집합 Y ⊆ V(Γ)를 하나 고정하자. 그러면

각각의 0 < ε < 1 및 D > 1에 대해, 어떤 상수 N = N(ε,D)가 존재하여 다음이 항상 성립한다.

실수열 a 및 유한 집합 A ⊆ Y를 임의로 생각하자. 그러면 크기가 (1− ε)#A 이상인 A의 부분집합

A′이 하나 존재하여, 각각의 a ∈ A′마다

#
(
A ∩Ha,D

(
a, {x, x′}

))
≤ N

이게끔 하는 x, x′ ∈ A가 존재한다.
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Proof. 먼저 x0 ∈ A를 임의로 고정하겠다. 이제

M := sup
v∈Y

#{w ∈ Y : d∞(v, w) ≤ 10D}

라는 상수를 잡자. 집합 Y가 균일하게 거리상 진정하기 때문에, M은 유한한 값을 가진다.

이제, 주어진 A에 대해

A1 :=

{
a ∈ A :

그 어느 x, x′ ∈ A에 대해서도
A ∩Ha,D(a, {x, x′})의 크기가 2M/ε+M보다 큼

}
을 정의하자. 그리고 A1의 10D-분리된 부분집합 중 극대인 것을 하나 A2로 잡는다. 그러면 A1은 A2

의 10D-근방에 포함되고, 따라서 #A1 ≤MA2이다.

이제 남은 일은 #A2 ≤ ε
M#A임을 보이는 것이다. 편의상 A2를 x0로부터의 l∞-거리 순서대로 정렬

하겠다. 즉, A2 = {a1, a2, . . . , a#A2}로 적되 d∞(x0, a1) ≤ d∞(x0, a2) ≤ . . .이게끔 하겠다는 것이다.

먼저 시간 i = 0일 때 B = G = U = ∅를 정의하겠다. 그리고 시간 i = 1, 2, . . . ,#A2에 걸쳐 어떤

알고리즘을 실행하겠다. (알고리즘 자체는 다음 문단에서 서술하겠다.) 이때 B,G,U는 A2의 부분집

합들로 시간에 따라 변하는데, 매 순간마다 서로 겹치지 않음은 유지된다. 각 i번째 스텝마다 다음 두

가지 중 하나가 실행되는데,

(1) ai이라는 원소가 (기존에 어떤 카테고리였든 그것을 잊은 채) G에 추가되거나, 혹은

(2) ai이라는 원소가 (기존에 어떤 카테고리였든 그것을 잊은 채) B에 추가되고, A2 \ (B ∪ G ∪ U)

의 어떤 두 원소가 U에 추가된다.

각 ai는 i번째 스텝에 G에 넣어지거나 혹은 B에 넣어지고, 그 이후에는 운명이 바뀌지 않는다. 특히,

모든 스텝이 종료되면 모든 A2의 원소는 B 아니면 G에 들어가 있고, U는 비어 있게 된다. 또, 매 스

텝마다 #B ≤ #G + #U라는 등식은 내내 성립하게끔 할 것이다. 그렇게 하면 결과적으로, 마지막

스텝이 끝났을 때 #B ≤ #G를 얻게 될 것이다. 이 알고리즘의 또다른 목표는, ai ∈ G마다 점 bi를

택해,
{
A ∩Ha,D(ai, {x0, bi}) : ai ∈ G}가 모두 서로 겹치지 않게끔 하는 것이다.

이제 알고리즘을 기술하겠다. 스텝 i에서, 먼저 Ha,D(ai, x0) ∩ A2가 공집합인지를 묻겠다. 만약

이것이 공집합이라면, bi := x0로 선언하고 ai를 G에 집어넣은 뒤 다음 스텝으로 넘어간다.

만약 Ha,D(ai, x0)∩A2가 공집합이 아니라면, 그 원소 중 x0에 가장 가까운 것을 bi라고 선언하겠다.

이어 Ha,D(ai, {x0, bi}) ∩ A2가 공집합인지를 묻겠다. 만약 이것이 공집합이라면, ai를 G에 집어넣은
뒤 다음 스텝으로 넘어간다. 만약 Ha,D(ai, {x0, bi}) ∩A2이 공집합이 아니라면, 그 원소 중 x0에 가장

가까운 것을 ci라고 선언한 뒤, ai는 B에, bi, ci는 U에 넣는다. 이것으로 알고리즘 설명은 끝이다.

각 단계에서 잡히는 bi는 HD(ai, x0) ∩ A2의 원소로, 특히 ai와는 다른 A1의 원소이다. A1가 10D-

분리되어 있으므로, d∞(ai, bi) ≥ 10D이다. 보조정리 6.1에 의해 d∞(x0, ai) < d∞(x0, bi)임을 알 수

있다. 아까 A2를 정렬할 때 x0로부터의 거리를 기준으로 했으므로, bi ∈ {ai+1, . . . , a#A2}임을 알 수
있다. 마찬가지 이유로 ci도 {a1, . . . , ai} 바깥에서 뽑힌다,

또한 i번째 스텝에서 G 및 B에는 그저 ai가 추가되거나 추가되지 않기만 하고, 그 외의 원소 변동은

없다.즉, i번째스텝이끝난시점에서 G와 B가 {1, . . . , i}의분할(partition)을이룬다는것은분명하다.

이제 부등식

(6.1) #B ≤ #G + #U

가 각 스텝에서 유지되는지 살펴보겠다. 한 가지 시나리오는, ai를 기존의 U에서 꺼내왔든 아니든 G에
추가하는 경우이다. 이 경우 #G + #U는 그대로 있거나 혹은 1만큼 증가하고, #B는 변하지 않는다.
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따라서 부등식 6.1는 유지된다. 다른 한 가지 경우는, ai를 기존 U에서 꺼내왔든 아니든 B에 추가하는
경우이다. 이 경우 U에는 기존 B ∪ G에 속하지 않는 원소 {bi, ci}를 추가하게 된다. 이때, 만약 {bi, ci}
가 기존, 즉 i − 1번째 스텝 직후의 U에 속하지 않는 진정한 새로운 원소라면, i번째 스텝에서 부등식

6.1의좌변이 1만큼증가하되,우변의 #U도최소 1만큼증가한다. 따라서,다음만확인하면부등식 6.1

를 보장할 수 있다.

주장 6.2. 각 i < j에 대해, 만약 ai, aj ∈ B이라면 {bi, ci} ∩ {bj , cj} = ∅이다.

이를 귀류법으로 확인하기 위해, 먼저 bi ∈ {bj , cj}라고 가정해 보자. 그러면 bi ∈ Ha,D(ai, x0) ∩
Ha,D(aj , x0)이기에 보조정리 6.2를 적용할 수 있다. 보조정리 6.2에 의하면, d∞(x0, ai) ≤ d∞(x0, aj)

라는 사실에 비추어 보아, aj ∈ Ha,D(ai, x0)라는 것을 알 수 있다. 물론 이때 bi ∈ Ha,D(aj , x0)이기

때문에 보조정리 6.1에 의해

d∞(x0, bi) ≥ d∞(x0, aj) + d∞(aj , bi)− 2D − 2 > d∞(x0, aj)

임을알수있다.여기서는 {aj , bi) ∈ A2가 10D-분리되어있다는사실이쓰였다.이는 bi가Ha,D(ai, x0)∩
A2의 원소 중 가장 x0에 가까운 것이라는 사실에 모순이다. 따라서 bi ∈ {bj , cj}일 수 없다.

다음으로, ci ∈ {bj , cj}라고 가정해 보자. 그러면 ci는 Ha,D(ai, {x0, bi}) 및 Ha,D(aj , x0)의 원소이

다. 방금과 같이 보조정리 6.2를 적용하면, d∞(x0, ai) ≤ d∞(x0, aj)라는 사실에 비추어 보아, aj ∈
Ha,D(ai, {x0, bi})임을 알 수 있다. 이때 ci ∈ Ha,D(aj , x0)이기 때문에 보조정리 6.1에 의해

d∞(x0, ci) ≥ d∞(x0, aj) + d∞(aj , ci)− 2D − 2 > d∞(x0, aj)

임을 알 수 있다. 이는 ci가 Ha,D(ai, {x0, bi}) ∩ A2의 원소 중 가장 x0에 가까운 것이라는 사실에

모순이다. 따라서 ci ∈ {bj , cj}일 수 없다.

이제 주장 6.2이 증명되었으므로, 알고리즘은 앞에서 설명한 대로 동작한다. 즉, 마지막 스텝이 끝

났을 때 #U = 0이고, 부등식 6.1에 의해 A2의 최소 절반이 G에 들어가 있다. 이제 각 ai ∈ G마다

Ki := Ha,D(ai, {x0, bi}) \ N10D(ai)

로 정의하겠다. 그러면 각 ai ∈ G ⊆ A1에 대해

#(Ki ∩A) ≥ #(Ha,D(ai, {x0, bi}) ∩A)−M ≥ 2M/ε

이다. 이제, 서로 다른 G의 원소 ai, aj ∈ G에 대해 Ki와 Kj가 겹치지 않음을 주장하겠다. 만약 그렇지

않고

z ∈ Ha,D(ai, {x0, bi}) ∩Ha,D

(
aj , {x0, bj}), d(z, ai

)
> 10D, d(z, aj) > 10D

를만족하는 z ∈ V(Γ)가존재한다고해보자.그러면보조정리 6.2에의해 aj ∈ Ha,D(ai, {x0, bi})이거나
혹은 ai ∈ Ha,D(aj , {x0, bj})이다. 어느 경우이든, ai 및 aj가 G의 원소라는 사실에 모순이다. 따라서

그러한 z는 존재하지 않는다.

이로부터,

#A ≥ #
(
∪i:ai∈G Ki

)
=
∑
i:ai∈G

#Ki ≥ (2M/ε) ·#G

임을 알 수 있다. 이로부터 목표한 부등식

#A1 ≤ 2#G ≤ 2

2M/ε
#A ≤ ε

M
#A

을 얻으면서 증명이 끝난다. �
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7. 랭크 1 등거리사상

정의 7.1. 중점그래프 Γ의 어떤 대칭 g가 정규 1차수(regular rank-1)라는 것은, 어떤 반공간 H와

지수 n이 존재하여 gnH이 H에 포함되고 또 H와 강하게 분리되어 있다는 뜻이다. 이 경우, g가 H를

꿴다(skewer)고 말한다.

이제 정규 1차수 대칭을 어떻게 활용할 수 있는지 살펴보겠다.

보조정리 7.1 (Tits대안). 중점그래프 Γ에 진정으로 작용하는 대칭군 G ≤ Aut(Γ)가 정규 1차수 원소

g를 하나 포함한다고 가정하자. 그러면 다음 둘 중 하나가 성립한다:

(1) G는 Z를 유한 지수 부분군으로 갖거나, 혹은

(2) 적당히 큰 정수 n과 G의 원소 g′, 그리고 반공간 H가 존재하여, gnH, g−nHc, g′H, g′−1Hc

가 모두 서로 겹치지 않으면서 서로 강하게 분리되어 있다.

Proof. 먼저, g가 꿰는 반공간 H를 하나 고정하자. 원소 g를 적당히 큰 거듭제곱으로 대체함으로써,

gH ( H라고 가정할 수 있다. 참고로 이때 임의의 k > 0에 대해 gkH ( gk−1H ( . . . ( H이기에

gk 6= id이다. 따라서 g로 생성된 G의 부분군 〈g〉는 정수군 Z와 동형이다.

더하여, H 밖에 있는 점 x을 하나 고정하고 d∞(x, g6H) = D로 두겠다. 군 G의 작용이 진정하다고

가정했으므로, A := {a ∈ H : d∞(x, ax) < 2D}는 유한 집합이다.

이제, G의 원소 h에 대한 성질

P (h) := “ g−nH ) hH ) gnH이 성립하게끔 하는 양의 정수 n이 존재함”,

Q(h) := “ g−nH ) hHc ) gnH이 성립하게끔 하는 양의 정수 n이 존재함”

을 정의하겠다. 동일한 원소가 P 및 Q를 동시에 가질 수는 없음에 유의하라.

주장 7.2. 어떤 G의 원소 h ∈ G를 생각하자. 만약 h 및 hg가 동시에 성질 P를 가지면, h는 〈g〉 · A
안에 들어 있다.

주장 7.2의 증명 주어진 조건을 다시 요약하면, g−nH ) hH ) hgH ) gnH이게끔 하는 n > 0이

존재한다는 뜻이다. 이제

m(h) := max
{
i : giH ⊇ hH

}
, M(h) := min

{
i : giH ⊆ hgH

}
를 정의하자. 위에서 논하는 집합은 공집합이 아니고, 각각 상한 및 하한이 존재하는 집합이므로 이

값들은 잘 정의된다. 물론 gm(h)H ⊇ hH ) hgH ⊇ gM(h)H이므로 −n ≤ m(h) < M(h) ≤ n이다.

여기서 M(h) ≤ m(h) + 5임을 보이겠다. 만약 그렇지 않고 M(h) > m(h) + 5라고 가정하면,

g−nH ) gm(h)+1H ) gm(h)+2H ) gnH, g−nH ) hH ) gnH

에 보조정리 5.5를 적용할 수 있고 gm(h)+1H ) hH 혹은 hH ) gm(h)+2H임을 얻는다. 그런데 전자는

m(h)의 정의상 불가능하므로 hH ) gm(h)+2H임을 얻는다. 비슷한 이유로, gM(h)−2H ) hgH이다.

허나 m(h) + 3 < M(h)− 2임을 가정했으므로,

d∞(hHc, hgH) ≥ d∞(gm(h)+2Hc, gM(h)−2H)

≥ d∞(gm(h)+2Hc, gm(h)+3Hc) + d∞(gm(h)+3Hc, gM(h)−2H)

> d∞(Hc, gH)

라는 모순을 얻는다. 따라서 이는 불가능하고 M(h) ≤ m(h) + 5이다.
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따라서

gm(h)x, hx /∈ hH ) hgH ⊇ gM(h)H ⊇ gm(h)+5H

임을 알 수 있다. 이는

d∞
(
gm(h)x, hx

)
≤ d∞(hx, hgH) + d∞

(
gm(h)x, gm(h)+5H

)
≤ 2D

를 의미하며, 따라서 g−m(h)h ∈ A이다. 즉 h ∈ 〈g〉 ·A이다. �

비슷한 증명을 통해, 다음도 알 수 있다.

주장 7.3. 군 G의 원소 h ∈ G를 생각하자. 만약 h 및 hg−1가 동시에 성질 Q를 가지면, h는 〈g〉 · A
안에 들어 있다.

위 주장들로부터 다음 주장도 얻는다.

주장 7.4. 군 G의 원소 h ∈ G를 생각하자. 만약 h와 hg#A가 동시에 성질 P를 가지면, 임의의 k ∈ Z
에 대해 hgk 또한 P를 가진다.

주장 7.4의 증명.. 가정에 의해

g−MH ) hH ) hg#AH ) gMH

를 만족하는 M > 0이 존재한다. 특히, h, hg, . . . , hg#A−1가 모두 성질 P를 가진다. 주장 7.2에 의해,

각각의 i = 0, . . . ,#A− 1마다

hgi = gmiai

에 해당하는 어떤 mi ∈ Z 및 ai ∈ A가 존재한다. 비둘기집의 원리에 의해, 어떤 0 ≤ i < j < #A에

대해 ai = aj이고, 이때 hgj−ih−1 = gmj−mi이다. 표기 편의상 A = j − i, B = mj −mi라고 표시하자.

이때 A > 0임에 유의하라. 그러면 hgA = gBh 및 hg−A = g−Bh이다. 이를 연달아 활용하면

hgAk = gBkh (∀k ∈ Z)

임을 알 수 있다.

이제 임의의 k에 대해,

g−|k|BhgkH = hg−|k|AgkH ) hH ) gMH

임을 안다. 이는 다시 말해 hgkH ) gM+|k|BH라는 것이다. 또한

g|k|BhgkH = hg|k|AgkH ( hH ( g−MH

이므로 hgkH ( g−M−|k|BH이다. 이로써 hgk가 성질 P를 가짐을 증명했다. �

마찬가지 증명을 통해 다음이 따라 나온다.

주장 7.5. 어떤 G의 원소 h ∈ G를 생각하자. 만약 h와 hg#A가 동시에 성질 Q를 가지면, 임의의

k ∈ Z에 대해 hgk 또한 Q를 가진다.
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이제, 만약 각각의 h ∈ G이 P 또는 Q를 만족한다면 결론 (1)이 성립함을 논증하겠다. 만약 모든

h ∈ G가 P를 만족한다면 주장 7.2에 의해 증명이 끝난다. 그렇지 않고 Q를 만족하는 G의 원소 u가

존재하는 경우,

G+ = {h ∈ H : P (h)}, G− = {h ∈ H : Q(h)}

로 나누겠다. 이때 G+가 지수 2짜리 부분군임을 관찰하기 위해 a, b ∈ G+를 임의로 고르자. 그러면

g−nH ) aH ) gnH, g−mH ) bH ) gmH

인 n,m > 0이 존재한다. 여기서, ag−m이 만약 성질 Q를 만족하면, ag−mHc ) gkH를 만족하는 정수

k > 0를 찾을 수 있다. 이는 곧

gkHc ) ag−mH ) aH ) gnH

임을 의미하는데, 이는 Hc ⊆ gkHc 및 Hc ∩ gnH = ∅에 모순이다. 따라서 이는 불가능하고, ag−m이

성질 P를 만족한다. 다시 말해, g−lH ) ag−mH를 만족하는 정수 l > 0이 존재한다. 그러면

g−lH ) ag−mH ) abH

로부터, ab는 성질 Q를 가질 수 없고 대신 P를 가져야 함을 알 수 있다. 위 관찰은 곧 G+가 G의

부분군이고 uG+ = G−라는 것이다. 이로써 G+가 G의 지수 2짜리 부분군임을 알 수 있다. 물론, G+

에는 Z에 동형인 유한 지수 부분군이 존재한다. 이로써 논증이 끝난다.

이제 성질 P도 Q도 가지지 않는 h ∈ G가 존재하는 경우 결론 (2)가 성립함을 보이겠다. 여기서

{giH}i∈Z 중 hH와 교차할 수 있는 것은 기껏해야 하나밖에 없고, 나머지는 모두 giH와 평행하다.

또한, hH가 {giH : i ∈ Z} 모두에 포함되어 있는 것은 불가능하다. 만약 그렇게 될 경우, 임의의 i > 0

에 대해 d∞(Hc, hH) ≥ d∞(Hc, giH) ≥ i라는 얘기가 되어, Γ가 연결되어 있지 않다는 모순이 생기기

때문이다. 마찬가지로, hH가 {giHc : i ∈ Z} 모두에 포함되어 있을 수 없다. 마지막으로, 어떤 n에

대해 g−nHc 및 gnH를 hH가 분리한다면 이는 가정에 모순이다. 이를 모두 종합하면, hH 혹은 hHc

중 하나는 충분히 큰 n에 대해 g−nHc 및 gnH과 겹치지 않는다.

이후 증명에서는 hH, g−nHc 및 gnH가 서로 겹치지 않는 경우를 논하겠다. 나머지 경우, 즉 hHc,

g−nHc 및 gnH가 서로 겹치지 않는 경우 또한 비슷한 논법으로 다룰 수 있다.

먼저 D = d∞(hH, gnH) + d∞(hH, g−nHc) + #A로 두자. 그후 hg−D, hg−2D, hg−3D라는 G의 세

원소를 생각하자. 만약 이 세 원소 각각이 P 또는 Q를 만족하면, 최소 두 개는 같은 종류의 성질을

가지게 된다. 이때 주장 7.4에 비추어 보면 h〈g〉 전체가 그 성질을 가지게 된다. 특히, h 또한 P 또는

Q를 가지게 되어 이는 모순이다. 따라서 그럴 수 없고, 어떤 k ∈ {1, 2, 3}에 대해 hg−kDH는 P도 Q

도 가지지 않는다. 이는 곧 충분히 큰 m > n + 2에 대해 hgkDH가 g−mHc 및 gmH 둘 다와 겹치지

않거나 혹은 둘 다를 포함한다는 뜻이다.

이 상황에서 만약 hg−kDH가 g−mHc 및 gmH와 겹치지 않는다면 어떻게 될까? 이 경우, hg−kDH

는 g−nHc 및 gnH 중 기껏해야 한 개랑만 교차할 수 있다. 만약 hg−kD와 gnH가 교차하지 않는다

면, 이 hg−kD와 gnH는 서로 겹치지 않아야 한다. hg−kDH는 gnH ) gmH를 포함할 수 없고, gnH

도 hg−kDH ⊇ H를 포함할 수 없으며, hg−kD ∪ gnH는 gmH라는 부분을 놓치기 때문이다. 따라서,

hg−kDH는 hH와 gnH 사이에 낑겨 있어야 하는데, 이는

d∞(hH, gnH) < D ≤ d∞(hH, hg−kDHc) ≤ d∞(hH, gnH)

라는 모순을 낳는다. 따라서 이러한 일은 생길 수 없다. 마찬가지로, hg−kD와 g−nHc가 교차하지 않을

때도 비슷한 모순이 생긴다. 따라서, hg−kDH가 g−mHc 및 gmH와 겹치지 않을 수는 없고, 둘 모두를
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포함해야한다.이제 g−mHc, gmH,hH, hg−kDHc가모두서로겹치지않는다는것은명백하다.더하여,

g−m−1Hc, gm+1H,hgH, hg−kD−1Hc은 강하게 분리되어 있기까지 하다. 이는 원하는 결론이다. �

이제, 명제 3.1의 절반을 증명할 준비가 되었다.

명제 7.1. 중점그래프 Γ에 진정으로 작용하는 대칭군 G ≤ Aut(Γ)를 생각하자. 또, G가 정규 1차수

원소 g ∈ G를 하나 포함하고 있고, Z와 동형인 유한 지수 부분군이 없다고 가정하자. 또 x0 ∈ Γ를

하나 고정하자. 그러면 각각의 0 < ε < 1에 대해 어떤 유한 집합 {b1, . . . , bT } ⊆ G 및 반공간 유한 개
L1, . . . , LT가 존재하여 다음이 항상 성립한다.

유한 집합 A ⊆ G를 임의로 생각하자. 그러면 크기가 (1 − ε)#A 이상인 A의 부분집합 A′이 하나

존재하여, 각각의 a ∈ A′ 마다 어떤 i가 존재하여

ax0 ∈ A′x0 ⊆ aLi ( abiL
c
i

가 성립한다.

Proof. 보조정리 7.1에 의해, G 안의 정규 1차수 원소 g1, g2 및 반공간 H가 존재하여

g1H, g
−1
1 Hc, g2H, g

−1
2 Hc

가 모두 강하게 분리되어 있다. 이때 id와 gi을 잇는 S-경로 γi를 하나씩 고르자. 그러면 적당히 큰 n에

대해 γ1 ·x0 및 γ2 ·x0는 g1H
c∩g−1

1 H ∩g2H
c∩g−1

2 H 안에 갇혀 있다고 말할 수 있다. 이때 그러면 γi는

γi · (g1γi) · . . . · (gn−1
i γi)로 대체하고, gi는 gni 으로 대체함으로써, γix0가 g1H

c ∩ g−1
1 H ∩ g2H

c ∩ g−1
2 H

에 갇혀 있다고 가정할 수 있다. 또, (g1, g2)를 (g1g2, g
2
2)로 대체함으로써,

{Hc, g1H, g2H}, {H, g−1
1 Hc, g−1

2 Hc}

라는 두 모임 각각이 강하게 분리된 반공간의 모임이라고 얘기할 수 있다. 이때,

M := max
{
d∞(Hc, u1 · · ·u15H) : ui ∈ {g1, g2}

}
+ d∞(x0, g

−1
2 Hc)

로 놓겠다.

이제 명제 6.1을 활용해 보자. 현재 G의 작용이 거리상 진정하기에, G · x0라는 집합은 균일하게

거리상 진정하다. 주어진 ε > 0에 대해, 명제 6.1에서 보장하는 N = N(ε,M)을 잡자. 그러면 각각의

유한 집합 A ⊆ G마다 크기가 (1 − ε)#A 이상인 A의 부분집합 A′이 하나 존재하여, 각각의 a ∈ A′

마다

#
(
Ax0 ∩HM

(
ax0, {x, x′}

))
≤ N

이게끔 하는 x, x′ ∈ Ax0가 존재한다. 여기서

{c1, c2, . . . , c2N+13} :=
{
u1u2 · · ·uN+14 : ui ∈ {g1, g2}

}
으로 잡고, bi := cig

5
1c
−1
i 및 Li = ciH

c로 잡겠다.

이제 각 a ∈ A′의 각 점마다 명제에서 요구하는 정수 i가 존재한다는 것을 논하겠다. 먼저

g2
1H, g1g2H, g2g1H, g

2
2H

는 모두 서로 겹치지 않기에, 최소한 하나는 x0도, a−1x도, a−1x′도 포함하지 않는다. 그러한 것을 ga

라고 표시하겠다. 그러면

{a, x, x′} ⊆ agaHc, agaH ) agag1 ) H ) . . . ) agag
10
1 H
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이 성립한다. 더하여, ax0도 agag
10
1 H도 ag−1

1 Hc 밖에 있으니, 보조정리 5.3에 의해

d∞
(
ax0, agag

10
1 H

)
≤ d∞

(
ax0, ag

−2Hc
)

+ d∞
(
ag−2Hc, agag

10
1 H

)
≤M

이 성립한다. 이로부터, agag
10
1 H의 원소들은 모두 HM

(
ax0, {x, x′}

)
밖에 있음을 알 수 있다.

그렇다면 Ax0 ∩ agag10
1 H에는 기껏해야 N개의 원소가 있다. 따라서 agag

10
1 H에 포함되어 있는{

agag
10
1 u1u2 · · ·uNH : ui ∈ {g1, g2}

}
라는 2N개의 서로 겹치지 않는 반공간 중, Ax0의 원소를 포함하지 않는 것이 분명히 존재한다. 그러한

선택지 u1, . . . , uN들을 하나 고정했을 때,

A′x0 ⊆ agag10
1 u1 · · ·uNHc ( agag

10
1 u1 · · ·uN · g5

1H

가 성립한다. 따라서, ci = gag
10
1 u1 · · ·uN인 i를 택하고, Li = ciH

c 및 bi = cig
10
1 c
−1
i 를 택하면 원하던

조건을 만족한다. 물론 id와 bi 사이는 적당히 γ1, γ2 혹은 그 역방향 경로들을 이어붙인 S-경로로 이을

수 있다. 이때 (
(γ1) · . . . · (cig5

1γ1)
)
· x0 ( cig

10
1 H

c

임은 분명하다. 마찬가지로, 후반부 경로의 x0-궤도가 ciH에 포함됨은 분명하다. 이로써 경로 γi의

존재성까지 확인하였고 증명이 끝난다. �

이제 남은 것은 마법 보조정리의 증명을 완수하는 것이다.

명제 7.2. 중점그래프 Γ에 진정으로 작용하는 대칭군 G ≤ Aut(Γ)를 생각하자. 또, G가 정규 1차수

원소 g ∈ G를 하나 포함하고 있고, Z와 동형인 유한 지수 부분군이 없다고 하자. 더하여, g가 꿰뚫는

반공간 H 및 점 x0을 하나 고정하자. 그러면 각각의 N > 20마다 K > 0이 존재하여

CN (g) :=

{
h ∈ G :

x0 /∈ wgH ) wgNH 3 hx0 혹은 hx0 /∈ wgH ) wgNH 3 x0가

성립하게끔 하는 w ∈ G가 존재하지 않음

}
가 K-나무스럽다.

Proof. 대칭 g를 적당히 큰 거듭제곱으로 대체함으로써 x0 /∈ gH ∩ g−1Hc임을 가정할 수 있다. 이때

증명을 위해 상수

K := 100
(
d∞(x0, g

100H) + d∞(x0, a
−100(N+1)Hc)

)
를 잡겠다.

먼저 CN (g)의 0.5K-분리된 부분집합 중 id를 포함하고 또 극대인 것을 하나 골라 C′라고 하자. 이제

각각의 u ∈ C′에 대해
Ψ(u) := ug40N

을 잡아 주겠다.

이제 다음 관찰이 필요하다.

주장 7.6. 두 원소 u1, u2 ∈ C′에 대해,

x0 /∈ u1g
5NH ) u1g

35NH ) Ψ(u1)u2g
5NH ⊇ Ψ(u1)u2g

35NH 3 Ψ(u1)Ψ(u2)x0

가 성립한다.
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주장 7.6의 증명.. 다음은 i = 1, 2 각각에 대한 얘기이다. 만약 x0 ∈ uigNH이라면

uix0 /∈ uigH ) uig
NH 3 x0

라는 얘기가 되어 ui ∈ CN (g)라는 가정에 모순이다. 따라서 u−1
i x0 /∈ gNH이다. 마찬가지 이유로

uix0 ∈ g−NH이다.

이제남은것은가운데포함관계,즉 g−5NH ) u2g
5NH임을증명하는것이다.앞에서얘기했다시피

u2x0는 g−NH에 포함된다. 여기서 귀류법을 적용하기 위해, u2g
5NH가 g−5NH에 포함되지 않는즉,

u2g
5NH와 g−5NHc가 어떤 원소 y를 공유한다고 가정해 보자. 이 경우, u2x0 /∈ u5N−1

2 H ) u5N
2 H 3 y

및 u2x0 /∈ g−5NHc 3 y라는위치관계에보조정리 5.5를적용하면 u5N−1
2 H ) g−5NHc 혹은 g−5NHc )

u5N
2 H여야 한다. 전자의 경우

x0, u2x0 /∈ u2g
5N−2H ) u2g

5N−1H ) g−5NHc

라는 위치 관계에 보조정리 5.4을 적용하면

d∞(x0, u2x0) ≤ d∞(u2x0, u2g
5N−2H) + d∞(x0, g

−5NHc) ≤ 0.02K

가 된다. 이는 u2 ∈ C′라는 가정에 어긋난다. 후자의 경우에도

x0, u2x0 /∈ g−5N+1Hc ) g−5NHc ) u5N
2 H

라는 위치 관계에 보조정리 5.4을 적용하면

d∞(x0, u2x0) ≤ d∞(u2x0, u2g
5NH) + d∞(x0, g

−5NHc) ≤ 0.02K

가된다.이는역시 u2 ∈ C′라는가정에어긋난다.따라서 u2g
5NH가 g−5NH에포함되어야하고주장의

증명이 끝난다. �

주장 7.7. 집합 C′의 원소 u1, . . . , um 및 v1, . . . , vn에 대해, 만약 Φ(u1) · · ·Φ(um) = Ψ(v1) · · ·Ψ(vn)

이라면 u1 = v1이다.

주장 7.7의 증명.. 편의를 위해 U := Φ(u1) · · ·Φ(um) = Ψ(v1) · · ·Ψ(vn)라고 두자. 주장 7.6에 의해,

x0 /∈ u1g
5NH ) u1g

35NH ⊇ . . . ) Φ(u1) · · ·Φ(um−1)umg
35NH 3 Ux0,

x0 /∈ v1g
5NH ) v1g

35NH ) . . . ) Φ(v1) · · ·Φ(vn−1)vng
35NH 3 Ux0

가 성립한다.

여기서 만약 v1x0 ∈ u1g
6NH라면 이는 곧 x0 /∈ u1g

5N · gH ) u1g
5N · gNH 3 v1x0라는 의미가 되어

v1 ∈ CN (g)임에 모순이다. 따라서 v1x0 /∈ u1g
6NH이고 마찬가지 이유로 u1x0 /∈ v1g

6NH이다.

이제

x0 /∈ u1g
10NH ) u1g

11NH 3 Ux0, x0 /∈ v1g
10NH ) Ux0

라는 위치 관계에 보조정리 5.5를 적용하면, u1g
10NH ) v1g

10NH 혹은 v1g
10NH ) u1g

11NH임을 알

수 있다. 전자의 경우

u1x0, v1x0 /∈ u1g
9NH ) u1g

10NH ) v1g
10NH

라는 위치 관계에 보조정리 5.4를 적용해

d∞(u1x0, v1x0) ≤ d∞(u1x0, u1g
10NH) + d∞(v1x0, v1g

10NH) ≤ 0.02K
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임을 알 수 있다. 후자의 경우

u1x0, v1x0 /∈ v1g
9NH ) v1g

10NH ) u1g
11NH

라는 위치 관계에 보조정리 5.4를 적용해

d∞(u1x0, v1x0) ≤ d∞(u1x0, u1g
11NH) + d∞(v1x0, v1g

10NH) ≤ 0.02K

임을 알 수 있다. 어느 경우이든, 0.5K-분리된 집합인 C′에서 뽑은 u1, v1에게는 u1 = v1임을 알려

준다. �

주장 7.7를반복해서적용하면, u1, . . . , um, v1, . . . , vn ∈ C′에대해만약 Φ(u1) · · ·Φ(um) = Ψ(v1) · · ·Ψ(vn)

이면 곧 m− n이고 ui = vi(i = 1, . . . , n)임을 알 수 있다. 이는 곧 Ψ(C′)가 0-나무스럽다는 것이고, C′

는 0.5K-나무스러우며, 따라서 C는 K-나무스럽다. �

명제 7.3. 중점그래프 Γ에 진정으로 작용하는 대칭군 G ≤ Aut(Γ)를 생각하자. 또, G가 정규 1차수

원소 g ∈ G를 하나 포함하고 있고, Z와 동형인 유한 지수 부분군이 없다고 하자. 더하여, g가 꿰뚫는

반공간 H 및 점 x0을 고정하자. 그러면 K > 0이 존재하여, 충분히 큰 T > 0마다 다음이 성립한다.

점 x0와 또다른 임의의 점 x′ ∈ V(Γ) 사이의 반공간 극대 사슬

x0 /∈ L1 ) . . . ) LM 3 x′

를 고정한 뒤,

Li := {g ∈ G : d∞(gx0, ∂LT i) ≤ 0.001T}
를 잡자. 그러면 L1 t . . . t LM/T는 K-나무스럽다.

Proof. 이번에는 조금 더 품이 필요하다. 보조정리 7.1에 의해 어떤 a1, . . . , a4 ∈ G가 존재해 다음이
성립한다:

그 어느 x, y, z ∈ V(Γ)에 대해서도, {x, y, z} ⊆ aigHc ∩ aig−1Hc인 i가 존재함.

이들을 가지고

K := 100
(
d∞(x0, g

100H) + d∞(x0, a
−100(N+1)Hc) +

4
max
i=1

d∞(x0, aix0)
)

를 정의할 수 있다. 이 K는 x′에는 의존하지 않음에 유의하라.

특히 {x, y, z} = {x0, x0, x
′}에 대한 선택지를 t라고 정해 두자. 그리고 각 g ∈ Li마다, {x, y, z} =

{x0, u
−1x0, u

−1x′}에 대한 선택지를 s(u)라고 표기하겠다, 그런 후

Φ(u) := us(u)g200t

로 고정하겠다.

이번에도 tiLi의 0.5K-분리된 부분집합 중 극대인 것을 하나 골라 C′라고 하겠다. 이전 증명과

비슷하게 정렬성에 관한 주장을 먼저 증명한 뒤 단사성을 증명하려고 한다.

사실 정렬성은 증명할 것이 별로 없다. 임의의 u1 ∈ C′를 골랐을 때, x0 /∈ u1s(u1)H이라는 것은 s의

정의로부터바로따라나온다.그다음으로,임의의 u2 ∈ C′를추가로고르자.이때 LT/2이라는초평면은

x0과 x′ 사이에 끼어 있음을 기억하라. 그런데 u2s(u2)gH 및 u2s(u2)g2H는 이 두 점 모두 포함하지

않는다.보조정리 5.3에의해, LT/2은 u2s(u2)g2H를완전히포함하거나혹은서로겹치지않아야한다.

그런데 이때 u2x0은 Lc1에도 u2s(u2)g2H에도 포함되어 있지 않다. 따라서 만약 위의 후자의 경우

d∞(u2x0, L
c
T/2) ≤ d∞(u2x0, u2s(u2)g2H) ≤ 0.1T
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인데이는 u2x0와 LcT/2 사이에반공간 LT/2+1, LT/2+2, . . . , LT가끼어있다는사실에모순이다.따라서

L1 ) u2s(u2)g2H이다.

마찬가지 논법으로, t−1g−2H ) L1임을 알 수 있다. 이를 모두 조합하면 정렬성

x0 /∈ u1s(u1)H ) u1s(u1)g198H ) Φ(u1)u2s(u2)g2H ) Φ(u1)u2s(u2)g200H 3 Φ(u1)Φ(u2)x0

임을 알 수 있다.

이제, 임의의 u1, v1 ∈ C′에 대해 v1x0 ∈ u1s(u1)g30H일 수 있는지 알아보겠다. 이때 u1x0 ∈
N0.001T (∂Lm)인 m을먼저잡아두겠다.이제 x0과 x′는모두 u1s(u1)gH ) u1s(u1)g2H 바깥에있음을

유의하라. 보조정리 5.3(및 보조정리 5.4의 증명도 참조)에 따라 어떤 m′이 존재해

x0 /∈ L1 ) . . . ) Lm′ ⊇ u1s(u1)g2H, u1s(u1)g2Hc ⊇ Lm′+1 ) . . . ) LM 3 x′

여야 한다. 그러면 |m′ − m| ≤ 0.001T + d∞(x0, s(u1)x0) + d∞(x0, g
2H) ≤ 0.002T여야 한다. 또

v1x0 ∈ N0.001T (∂Lk)인 k를 잡으면, Lm′과 Lk 사이에 있는 모든 Li들은 v1x0과 Lk 사이에 낑겨 있

음을 알 수 있다. 이로부터 |m′ − k| ≤ 0.001T임도 알 수 있다. 즉, |m − k| ≤ 0.002T이고, 이로부터

m = k여야 함을 알 수 있다.

그런데 u1와 v1가 같은 반공간 Lm의 경계에 있으면서 그 사이에 u1s(u1)gH ) . . . ) u1s(u1)g30H

가 낑겨 있다는 것은, u1s(u1)gH ) . . . ) u1s(u1)g30H가 강하게 분리되어 있다는 사실에 모순이다.

따라서 이러한 일은 일어날 수 없다.

위 이유와 정렬성을 함께 결합해 이전 증명과 같이 논증하면 단사성 또한 얻는다. 이로써 Φ(C′)가

나무스럽다는 것을 알 수 있고, tiLi은 따라서 K-나무스럽다. �

명제 7.4. 유한 집합 S로 생성되는 군 G가 중점그래프 Γ에 진정으로 작용한다고 하자. 또, G가 정규

1차수 원소 g를 하나 포함하고 있고, Z와 동형인 유한 지수 부분군이 없다고 가정하자. 또, g가 꿰뚫는

반공간 H 및 점 x0 ∈ Γ를 하나 고정하자. 또한 실수열

a := (d∞(Hc, gnH))11
n=1

을 두겠다. 그러면 충분히 큰 T 및 임의의 N에 대해 다음이 성립한다.

임의의 점 x, x′ ∈ V(Γ)에 대해, id와 Ha,D

(
x0, {x, x′}) \ ND(id) 바깥을 잇는 임의의 S-경로는

반드시 셋 중 하나를 만족해야 한다:

(1) CN (g) \ND/10(id)을 지나거나,

(2) x0와 x 사이에 끼인 임의의 극대 사슬 x0 /∈ L1 ) . . . ) L0.1N ) . . . 3 x에 대해

Li := {g ∈ G : d∞(gx0, ∂LT i) ≤ 0.001T} (i = 1, . . . , 0.1N/T )

각각을 지나거나, 혹은

(3) x0와 x′ 사이에 끼인 임의의 극대 사슬 x0 /∈ L′1 ) . . . ) L′0.1N ) . . . 3 x에 대해

L′i := {g ∈ G : d∞(gx0, ∂L
′
T i) ≤ 0.001T} (i = 1, . . . , 0.1N/T )

각각을 지난다.

Proof. 증명을 위해 h ∈ Ha,D

(
x0, {x, x′}) \ ND(id)를 임의로 정하자. 그러면 x0와 hx0 사이에는

x0 /∈ L 3 hx0, d
∞(x0, L) = D/2인 반공간 L이 존재한다. 이 L의 경계의 T -근방

L := {g ∈ G : d∞(∂L, gx0) < T}
59



을 잡으면, id와 h를 잇는 S-경로는 반드시 L을 한번은 지나게 되어 있다. 이 시점을 h′라고 하자. 만약

h′ ∈ CN (g)라면 증명이 끝난다. 만약 아니라면,

x0 /∈ wgH ) . . . ) wgNH 3 h′±1x0

인 w가 존재한다. 일단 wgNH 3 h′x0인 경우를 논하겠다. 나머지 경우도 논증은 비슷하다.

이때, wgN−TH는반드시 L을포함한다.여기서만약 x, x′ /∈ wgN−T−20H라면, x0, x, x
′ /∈ wgN−T−20H )

wgN−TH 3 h±1x0 및 d∞(x0, wg
N−TH) ≤ D/2라는 사실로부터 h ∈ Ha,D

(
x0, {x, x′})라는 모순을

얻게 된다. 따라서 그럴 수 없고, x 혹은 x′와 x0 사이에는 최소한 wgH ) . . . ) wgN−T−20H이라

는 0.5N개 이상의 반공간이 위치한다. 이 반공간들을 id와 h′ 사이 S-경로가 넘어야 함은 물론이다.

이로부터 2번 혹은 3번 결과를 유도할 수 있다. �

8. 더 자세한 CAT(0) 기하학

보조정리 8.1. 모든 중점그래프는 이분그래프(bipartite graph)이다.

Proof. 모순을 이끌어내기 위해, 어떤 그래프 Γ에 홀수 길이 사이클이 있다고 가정하자. 그런 홀수

사이클 중 가장 길이가 작은 것을 잡고, 그 꼭짓점을 순서대로 v1, v2, . . . , v2n+1이라고 이름붙이자.

이때 만약 d(v1, vn)이 n보다 작을 경우, 그 거리를 실현시키면서 v1에서 vn으로 향하는 측지선을 P

라고 잡았을 때, v1

P
−− vn − vn−1 − . . . − v2 − v1 및 v1

P
−− vn − vn+1 − . . . − v2n+1 − v1은 둘 다

길이 2n 이하이고, 둘 중 하나는 길이가 홀수이다. 이는 v1 − v2 − . . .− v2n+1 − v1 이 최소 홀수 길이

사이클이라는 사실에 모순이다. 따라서 d(v1, vn) = n이 성립한다.

마찬가지로 이유로 d(vn+1, v1) = n이 성립한다. 물론 d(vn, vn+1) = 1이다. 이제 v1, vn, vn+1의 중점

m을잡으려고하면, d(vn,m) = 1
2 [n+1−n] = 1/2라는계산이나온다.이러한거리를만족하는꼭짓점

m은 존재하지 않기 때문에, Γ는 중점그래프가 아니다. �

보조정리 8.2 (사각형 보조정리). 중점그래프 Γ상의 두 꼭짓점 x, y을 잇는 측지선 두 개

γ1 = (x = p0, p1, . . . , pn−1, pn = y), γ1 = (x = q0, q1, . . . , qn−1, qn = y),

를 생각하자. 그러면 d(x, r) = n− 2이면서 pn−1 및 qn−1과 동시에 인접해 있는 꼭짓점 r이 존재한다.

Proof. 먼저, pn−1 = qn−1인 경우에는 r = pn−2로 잡으면 된다.

만약 pn−1 6= qn−1이라면, 그 둘간의 거리는 정확히 2이다. 왜냐면 pn−1 − y − qn−1라는 경로가 존

재하기에 d(pn−1, qn−1)는 2보다 작거나 같으며, 또 그래프의 이분성 때문에 d(pn−1, qn−1)는 짝수여야

하기 때문이다.

이 경우, x, pn−1, qn−1의 중점 r을 잡으면,

d(x, r) =
1

2
[d(x, pn−1) + d(x, qn−1)− d(pn−1, qn−1)] = n− 2,

d(pn−1, r) =
1

2
[d(x, pn−1) + d(pn−1, qn−1)− d(x, qn−1)] = 1,

d(qn−1, r) =
1

2
[d(x, qn−1) + d(pn−1, qn−1)− d(x, pn−1)] = 1

을 만족한다. 이로써 증명이 끝났다. �
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Figure 9. 보조정리 8.3에서의 상황도

이제초평면의모양을더자세히이해해보자.그래프안의 4-사이클이란,서로다른모서리 e1, e2, e3, e4

및 서로 다른 꼭짓점 v1, v2, v3, v4가

ei = vivi+1 (i = 1, 2, 3), e4 = v4v1

형태로 배열되어 있는 부분그래프임을 기억하라.

보조정리 8.3. 중점그래프 Γ 안의 점들 a, b1, b2, b3, c1, c2, c3에 대해, �ab1c2b3, �ab2c3b1, �ab3c1b2가

모두 4-사이클을 이룬다고 가정하자. 그러면 �mc1b2c3, �mc2b3c1, �mc3b1c2가 각각 4-사이클이게끔

하는 m라는 점이 존재하며, 이 8개의 점은 모두 서로 다르다.

Proof. 먼저 가정을 만족하는 a, b1, b2, b3, c1, c2, c3 7개의 점은 서로 결코 같을 수 없다. 예를 들어,

a, b1, c2, b3 끼리 같을 수 없음은 4-사이클의 정의로부터 바로 나온다. 또, 만약 c1와 c2가 같다면,

a, b1, b2, b3, c1 = c2가 K2,3 그래프를 이룬다는 것을 알 수 있다. 이는 곧 a도 c1도 서로 다른 세

점 b1, b2, b3의 중점이 된다는 것이다. 이는 중점의 유일성에 모순이므로 불가능하다. 비슷한 논리로,

c1, c2, c3은 모두 다르다. 이로써 7개의 점이 다 다르다는 것을 알 수 있다.

특히, c1, c2, c3은 서로 다른 점이면서 길이 2짜리 경로로 서로 연결되어 있기에, 서로간의 거리가

2이다. 이 세 점의 중점 m를 잡으면, 세 점으로부터 거리 1에 있게 된다. 이 점이 만약 b1과 같다면,

a, c1, b1, b2, b3이 K2,3 그래프를 형성해 마찬가지로 모순이 된다. 따라서 m은 b1일 수 없고, 마찬가

지로 b2일 수도 b3일 수도 없다. 또한 a, c1, c2, c3일 수도 없음은 홀짝성에 의해 분명하다. 이로써, 8

개의 점이 모두 서로 다르다는 것을 확인했다. 아울러 �mcibi+1ci+2(mod i) 가 4-사이클이라는 것은

분명하다. �

보조정리 8.4. 중점그래프 Γ 안에 4-사이클

C1 = �u0u1v1v0, C2 = �u1u2v2v1, . . . , Cn = �un−1unvnvn−1

이 주어져 있는데, 이때 Ci−1과 Ci는 변 uivi를 공유한다고 하자. 더하여, dΓ (v0u0, vnun) = 1이라고

가정하자. 그러면 �v0u0unvn은 4-사이클이다.

Proof. 필요하다면 vi와 ui의 라벨링을 뒤바꿔, v0이 vnun로부터 거리 1에 있고 u0는 vnun에 포함되지

않는다고 가정하겠다. 이제 주어진 명제를 n 및 S :=
∑n

i=1 d(v0, vi)에 대한 귀납법으로 증명하겠다.

먼저 n이 1인 경우는 자명하고, n = 2이 불가능함도 어렵지 않게 확인할 수 있다.

이제 n이 2보다 큰 경우를 논하겠다. 먼저 i ∈ {1, . . . , n} 중 d(v0, vi)가 최대가 되는 i를 하나 잡자.

이때, 만약 최댓값이 1이라면, 이는 d(v0, v2) = 0, 즉 v0 = v2임을 의미한다. 이 경우, u0와 u2는 일치해

야한다.만약그렇지않을경우, v0 = v2, u1, v1, u0, u2는 K2,3 부분그래프의꼭짓점이되기때문에 Γ가
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중점그래프라는사실에모순이기때문이다.이제 C3, . . . , Cn에대해귀납가정을적용하면
−−→v0u0 = −−→v2u2

와 −−→vnun이 어떤 4-사이클의 평행한 두 변이라는 결론을 이끌어낼 수 있다.

만약최댓값이 2이상이라면,잡은 i는 1보다크고 n보다작을것이다.그러면 d(v0, vi−1)및 d(v0, vi+1)

는 d(v0, vi)와 1만큼차이나는데, d(v0, vi)의최대성으로부터 d(v0, vi−1) = d(v0, vi+1) = d(v0, vi)−1

임을 관찰할 수 있다. 이때 만약 vi−1 = vi+1라면, Ci, Ci+1에 귀납가정을 적용해
−−−−−→vi−1ui−1 = −−−−−→vi+1ui+1

를 이끌어낸 뒤 C1, . . . , Ci−1, Ci+2, . . . , Cn에 귀납가정을 적용해
−−→v0u0 = −−→vnun임을 결론낼 수 있다.

이제 vi−1와 vi+1가 다른 점인 경우를 다루자. 사각형 보조정리를 이용하면 �vi−1vivi+1v
′가 4-사이

클이면서 d(v0, v
′) = d(v0, vi) − 2이게끔 하는 꼭짓점 v′가 존재한다. 이제 보조정리 8.3을 사용하면,

Ci := �vi−1v
′u′ui−1, Ci+1 := �vi+1v

′u′ui+1가 둘 다 4-사이클이게끔 하는 점 u′가 존재한다. 이제

순차적으로 인접한 4-사이클들 C1, . . . , Ci−1, C
′
i, C

′
i+1, . . . , Cn에 대해서는 귀납가정을 적용할 수 있다.

왜냐면 d(v0, v
′) < d(v0, vi+1)이기 때문이다. 이로써 증명이 끝난다. �

이로부터 다음을 쉽게 관찰할 수 있다.

따름정리 8.1. 중점그래프 Γ의 초평면 h를 하나 생각하자.

(1) 임의의 v ∈ V(h)에 대해, v에 인접한 모서리 eh(v) ∈ h는 유일하게 존재한다. 이때, eh(v)의

다른 한 꼭짓점을 ιh(v)라고 적겠다.

(2) 그래프 Γ 안의 어떤 4-사이클의 모서리를 순서대로 e1, e2, e3, e4라고 했을 때, 만약 e1 ∈ h라면

{e1, e2, e3, e4} ∩ h = {e1, e3}가 정확히 성립한다.

(3) 만약 두 꼭짓점 v, w ∈ V(h)가 N(h) \ h에서 서로 이웃한다면, ιh(v) 및 ιh(w) 또한 그러하다.

(4) 그래프 Γ 안의 어떤 4-사이클의 네 꼭짓점 중 어느 세 개가 V(h)에 들어 있다면, 나머지 하나

또한 V(h)에 들어 있다.

Proof. (1) 꼭짓점 v ∈ V(h)에 인접한 h의 원소 e = uv, e′ = u′v를 생각하자. 초평면 h의 정의상,

연달아 인접한 4-사이클

C1 = �uu1v1v, C2 = �u1u2v2v1, . . . Cn−1 = �un−2un−1vn−1vn−2, Cn = �un−1u
′vvn−1

이 존재한다. 이때 보조정리 8.4로부터, �un−1uvvn−1 또한 4-사이클임을 알 수 있다. 만약 이

때 v′와 v가일치하지않는다면, u, u′, vn−1, v, un−1가 K2,3 부분그래프를형성하므로모순이다.

따라서 u′ = u라고 결론지을 수 있다.

(2) (1)로부터 곧바로 따라 나온다.

(3) (2)로부터 곧바로 따라 나온다.

(4) 어떤 4-사이클 �xyzw에대해 x, y, z ∈ h라고하자.만약 ιh(x), ιh(y), ιh(z)중그어느것이라도

{x, y, z, w}에 속한다면, 이는 곧 �xyzw의 네 변 중 평행한 어느 두 변이 h에 속한다는 뜻이

다. 그 경우 w는 자동으로 V(h)에 들어간다. 만약 그렇지 않다면, (3)에 의해 �xyιh(y)ιh(x) 및

�yzιh(z)ιh(y)모두 4-사이클이된다.이제보조정리 8.3을적용하면, �xwvιh(x)및 �zwvιh(z)

가 4-사이클을 이루게끔 꼭짓점 v를 잡을 수 있다. 이는 곧 w ∈ V(h) 및 v = ιh(w)를 의미하는

것이다. �

이제 초평면에 관해 앞에서 주장한 사실들을 증명하겠다. 그전에 개념 하나를 도입하자. 초평면 h

가 주어졌을 때, h의 꼭짓점 집합이 생성해 내는 Γ의 부분그래프 N(h)를 h의 운반함(carrier) 혹은

근방(neighborhood)라고 한다. 다시 말해, N(h)의 꼭짓점 집합은 h의 것과 일치하고, N(h)의 모서리

집합은 {xy ∈ E(Γ) : x, y ∈ V(h)}이다.
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보조정리 8.5. 중점그래프 Γ의 초평면 h를 하나 생각하자. 그러면 다음이 성립한다.

(1) 초평면 h의 근방은 볼록하다(convex). 다시 말해, 근방 안의 두 꼭짓점을 잇는 Γ-측지선은

반드시 근방 안에 갇혀 있다.

(2) 초평면 h는 전체 공간을 정확히 둘로 나누고, 따라서 h에 면한 반공간은 정확히 두 개다.

(3) 초평면 h에 들어 있는 임의의 모서리 xy, vw ∈ h에 대해, d(x, v) = d(y, w)이다.

Proof. (1) 먼저, x, y ∈ V(h)에 대해, N(h) 안의 경로들을 이용해 dh(x, y)를 정의하겠다. 즉,

dh(x, y) ≤ n라는 것은 x와 y를 잇는 길이 n이하인 N(h) 안의 경로가 존재한다는 것이다.

이제 임의의 x, y ∈ V(h)에 대해 I(x, y) ⊆ N(h)임을 dh(x, y)에 대한 귀납법으로 증명하겠

다. 먼저 dh(x, y) = 0, 즉 x와 y가 일치할 때는 더 물을 것이 없다. 다음으로 dh(x, y) = 1, 즉 x

와 y가 인접한 경우도 더 물을 것이 없다.

이제 dh(x, y) ≤ n − 1일 때 명제가 성립한다고 가정한 뒤, dh(x, y) = n인 경우를 생각해

보자. 그리고 길이 d(x, y)짜리 Γ-측지선 (x = p0, p1, . . . , pd(x,y) = y)를 임의로 잡자. 우리의

목표는 이 측지선이 N(h)에 포함됨을 보이는 것이다.

여기서, x와 y 사이를 잇는 길이 n짜리 N(h)-측지선 (x = q0, q1, . . . , qn = y)를 하나 생각할

수 있다. 그러면 (q1, . . . , qn)는 길이 n− 1짜리 N(h)-측지선이면서 Γ-측지선이기도 하다. 이는

q1과 y 사이에는 귀납 가정을 적용할 수 있기 때문이다.

한편, d(q1, y)는 d(x, y)와정확히 1만큼차이나야한다.먼저 d(x, y) = n−2가불가능함을설

명하고자한다.귀류법을위해 d(x, y) = n−2라고가정해보자.이는 (q1, q0 = p0, p1, . . . , pn−2)

및 (q1, q2, . . . , qn)가 q1와 y를 잇는 Γ-측지선임을 뜻한다. 사각형 보조정리를 적용하면, x 및

q2에 동시에 인접하는 꼭짓점 u 중 d(u, y) = n − 3인 것이 존재한다는 뜻이다. 여기서 x와

q2는 y로부터의 dh-거리가 다르기 때문에 다른 꼭짓점이며, q1과 u 또한 y로부터의 d-거리가

다르기 때문에 다른 꼭짓점이다. 즉 �xq1q2u는 4-사이클이며, 그 꼭짓점 중 최소 세 개는 h의

꼭짓점이다. 따름정리 8.1(4)에 의해, u 또한 h의 꼭짓점이 된다. 따라서

dh(x, y) ≤ 1 + dh(u, y) = n− 2

를 얻게 되는데, 이는 가정에 모순이다. 따라서, d(x, y) = n− 2는 불가능하다.

따라서 d(x, y) = n임을 알 수 있고, (p0, . . . , pn) 및 (q0, . . . , qn)은 x와 y 사이를 잇는 두 Γ-

측지선이다. 이제 사각형 보조정리를 적용하면, p1 및 q1에 이웃한 꼭짓점 u 중 d(u, y) = n− 2

인 것을 잡을 수 있다. 만약 이때 p1 = q1라면, dh(q1, y) = n − 1이므로 귀납 가정에 의해

p1, . . . , pn ∈ V(h)임을 결론지을 수 있다. 따라서 p1 6= q1인 경우만 남았다. 이 경우 �p1xq1u

는 4-사이클이 된다.

이때, d(q1, u) + d(u, y) = 1 + n− 2 = n− 1 = d(q1, y)이므로, u는 q1과 y 사이를 잇는 어느

Γ-측지선위에있다.이측지선에는귀납가정을적용할수있음을상기하라.이에 u ∈ V(h)임을

결론지을 수 있다. 즉 �p1xq1u의 꼭짓점 중 x, q1, u가 h의 꼭짓점인 것이다. 그러면 따름정리

8.1(4)에 의해, p1 ∈ V(h) 또한 성립한다. 이말인즉

dh(p1, y) ≤ 1 + dh(u, y) = n− 1

라는 것이고, 귀납 가정에 의해 p1, . . . , pn 모두 h에 포함되어 있다. 이로써 증명이 끝난다.

(2) 초평면 h에 들어 있는 모서리 e = xy를 하나 편의대로 고르자. 이제 각 점 v ∈ V(Γ)에 대해

f(v) := d(v, x)− d(v, y)
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라고 정의된 함수를 고려할 것이다. 홀짝성 및 삼각부등식에 의해, f(v) ∈ {+1,−1}임은 쉽게
확인할 수 있다. 또, {v : f(v) = −1} 안의 임의의 꼭짓점으로부터 x까지 측지선을 그었을 때,

그 측지선은 {v : f(v) = −1} 안에 있어야 한다. 실제로, 그런 측지선 (p0, p1, . . . , pn = x)이

주어졌을 때,

d(pi, x) = n− i, d(p1, y) ≥ d(x, y)− d(x, pi) ≥ (n+ 1)− i

이기 때문이다.

이제 주장하고 싶은 것은, v, w ∈ V(Γ)에 대해 vw ∈ h일 필요충분조건이 f(v) 6= f(w)라는

것이다.편의상 f(v) = −1인경우에집중하겠다.이를위해 d(v, x)에대한귀납법을쓸것이다.

먼저, d(v, x) = 0, 즉 v = x인 경우를 살펴보자. 이때 f(v) = −1 6= 1 = f(w)라는 조건은

곧 x = v 및 y = w임을 의미한다. 이 경우 vw = xy ∈ h임은 분명하다. 역으로, 만약 vw가 h

에 들어 있으면 따름정리 8.1(1)에 의해 w = y임을 알 수 있다. 이때 f(v) = −1 및 f(w) = 1

임은 분명하다.

다음으로, d(v, x) ≤ n−1에대해주장을가정한뒤, d(v, x) = n인경우를들여다보겠다.먼

저 f(v) = −1및 f(w) = 1을가정해보자.이때 d(v, y) = d(v, x)−f(v) = n+1이성립하고,이

값은 d(w, y)와 정확히 1만큼 차이난다. 만약 d(w, y) = n+ 2라면, f(w) = d(w, x)−d(w, y) ≤
d(w, v) + d(v, x) − d(w, y) ≤ 1 + n − (n + 1) = 0이 되어, f(w) = 1에 위배된다. 따라서

d(w, y) = n임을 알 수 있다. 다시 말해 d(v, y) = d(v, x) + d(x, y) = d(v, w) + d(w, y)이며, w

도 x도 I(v, y)에 포함된다는 것을 알 수 있다.

이를 활용하기 위해, (v, w, p2, . . . , pn, y) 및 (v, q1, q2, . . . , qn−1, x, y)라는 두 Γ-측지선을 고

려하자. 이제 사각형 보조정리를 사용하면, d(u,w) = d(u, q1) = 1, d(y, u) = n − 1인 꼭짓점

u가 존재한다. 물론 이때 u와 v는 다른 점이다. 더하여, d(x, q1) = n − 1인 반면 d(x,w) =

d(w, y) + f(w) = n + 1이라는 사실로부터 q1 6= w임도 알 수 있다. 즉 �vq1uw는 실제로

4-사이클이다.

이때, d(q1, x) = n−1이고 n = d(v, y)−1 ≤ d(q1, y) ≤ d(q1, x)+1 = n임을관찰할수있다.

더하여, d(u, y) = n−1이고 d(u, x) ≥ d(y, x)−1 = n임을알수있다.종합하자면, f(q1) = −1

이고 f(u) = 1이다. 이제 귀납가정을 q1u에 적용하면 q1u ∈ h을 얻는다. 이 모서리와 4-사이클

안에서 평행한 변 vw 또한 h에 속하는 것은 물론이다.

역으로, vw가 h에속한다는것을가정해보자.이때 v와 x를잇는 Γ-측지선 (v = p0, . . . , pn =

v)를 하나 잡자. (1)에 의해 이 측지선 전체는 N(h)에 들어 있으며, 또 측지선의 전체 꼭짓점

에서 f값이 항상 −1로 일정하다. 이제 만약 p1 = w라면, p1v는 h의 원소이면서, f(p1) = −1

이고 d(p1, x) = n − 1이다. 귀납가정에 의해 f(v) = 1이 되는데, 이는 모순이다. 따라서 p1과

w는 다른 점이다. 이것이 v와 x를 임의의 점에 대해 성립하므로, w는 v에 비해 x로부터 멀리

있는 점이고 d(w, x) = d(v, x) + 1 = n+ 1이다.

한편, 다시 Γ-측지선 (v = p0, . . . , pn = v)를 하나 잡자. 이 측지선 위에서 f값이 −1이므

로, 귀납가정에 의해 각각의 pipi+1는 h에 속하지 않는 모서리이다. 이제 qi := ιh(pi)로 잡자.

그러면 따름정리 8.1(3)에 의해, (w, q1, . . . , qn)은 Γ-경로가 된다. 더하여, qn := ιh(x) = y가

성립한다. 이로부터 d(w, y) ≤ n임을 안다. 이를 종합하면 f(w) = 1임을 알 수 있다. 이로써

f(v) = −1 6= f(w) = 1과 vw ∈ h가 동치임을 확인했다.

이로써, {v : f(v) = 1}와 {v : f(v) = −1} 사이를 잇는 모서리는 반드시 h 안에 들어 있음

을 확인했다. 따라서 두 집합은 Γ \ h에서 분리되어 있다. 더욱이, {v : f(v) = ±1}의 점들은
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{v : f(v) = ±1} 안에서 이어질 수 있음도 측지선을 이용해 앞에서 확인했다. 이때 사용되는

모서리들은 h 밖에 있는 것들이므로, {v : f(v) = ±1}가 Γ \ h에서 연결되어 있음을 결론지을
수 있다.

(3) 위 논증에서, xy ∈ h를 하나 고정한 뒤 vw ∈ h를 뽑으면

d(v, x)− d(v, y) = f(v) 6= f(w) = d(w, x)− d(w, y)

임을 확인했다. 먼저 f(v) = −1인 경우에 대해 다루겠다. 그말인즉 f(w) = 1임을 가정하겠

다는 말과 같다. 여기서 d(v, y)와 d(w, y)는 정확히 1 차이나는데, 만약 d(w, y) = d(v, y) + 1

이라면

d(w, x)− d(w, y) ≤ d(v, x) + 1− d(w, y) ≤ d(v, x)− d(v, y) = f(v)

가되어모순이다.따라서 d(w, y) = d(v, y)−1 = d(v, x)이다.또한 d(w, x) = d(w, y)+f(w) =

d(w, y) + 1 = d(v, x) + 1 = d(v, y)도 성립한다. f(v) = 1인 경우도 비슷하게 증명할 수 있다.

�
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