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Abstract. 本論文では著者と Donggyun Seo が [CS25] で扱った群のケイリーグラフ上のパーコ
レーションを CAT(0) 立方複体の言語を通じて新たに解釈する。併わせて、群上のパーコレーショ
ンと CAT(0) 立方複体の幾何学の基礎について説明する。

(Abstract in English) In [CS25], the author and Donggyun Seo proved the existence of infinitely
many infinite clusters in a random subgraph of certain Cayley graphs. We provide an alternative
proof of this result for CAT(0) cubical groups in terms of halfspaces.

This paper is expository, aiming at an invitation to percolation on infinite groups and/or CAT(0)
cubical geometry.
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1. 初めに
幾何学的群論の主要な哲学の一つは、群が距離空間に等長写像として作用するとき、その作

用の性質から群の幾何学的性質を読み取ることである。このために使われる距離空間として
CAT(0) 立方複体 (CAT(0) cube complex) というものがある。本論文では CAT(0) 立方複体上の
真性かつココンパクトで既約な作用 (proper, cocompact and irreducible action) をもつ群の幾何
学を考察する。これに基づき、そのような群のケイリーグラフ上のパーコレーションが表すある
性質を証明する。
この結果はより一般的な設定において既に知られていることを述べておく。具体的には、著者

と Donggyun Seo は [CS25] で非円筒的双曲群 (acylindrically hyperbolic group) に対して同様の
結果を証明した。本論文で扱う群は全て非円通的双曲性をもつため、下記の定理1は本質的に新
しいものではない。しかしながら、定理1を CAT(0) 立方複体の幾何学を用いて新たに証明する
ことが目標である。すなわち、本論文の趣旨は、(1) 読者を CAT(0) 立方複体の幾何学へ招待す
ること、並びに (2) 双曲幾何学の言語で書かれた確率論的結果を CAT(0) 立方複体の枠組みで再
解釈することにある。
まず幾何学的な設定を述べる。有限生成群 G とその有限生成集合 S が与えられたとき、G

の元を頂点とし、S の元で関連されている元の対を辺で結ぼう. すなわち g−1h ∈ S を満たす
g, h ∈ G に対して辺 gh を結ぶのである。このように定義されるグラフ Γ = Cay(G,S) を S に関
する G のケイリーグラフ (Cayley graph) と呼ぶ。
次に、確率過程を一つ導入する。０と１の間の実数 p を固定する。表が出る確率 p、裏が出る

確率 1− p の硬貨を Γ の各辺に一つずつを置こう。全ての硬貨を独立に投げ、表が出た辺だけ残
し、裏が出た辺は消す。この操作によって得られる部分グラフを Γ[p] と記す。直感的には、Γ[p]

は Γ のおよそ p 割を保持したランダムな部分グラフとみなせる。この確率的グラフの連結成分
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のうち、無限に大きい成分がいくつあるかを調べたい。これに関する本論文の主要な定理を以下
に述べる。

Theorem A. CAT(0) 立方複体 X と有限生成群 G を一つ考える。このとき G が X に真性か
つココンパクトかつ既約に作用すると仮定する。さらに、G は整数群 Z と同型な有限指数部分
群 (finite-index subgroup) を持たないとする。
このとき、G の任意の限生成集合 S に対して、ある実数 0 < p < 1 が存在し、G のケイリー

グラフ Γ = Cay(G,S) の p-ランダム部分グラフ Γ[p] の無限＝非有界連結成分が無限に多い確率
が１である。

今論じている確率過程をパーコレーション (percolation process) と呼ぶ。グラフ上のパー
コレーションおよび CAT(0) 立方複体に関する理論は極めて膨大であり、その全てを紹介するこ
とは不可能である。だが、定理の証明に必要な基礎だけはきちんと説明しよう。この内容はいず
れも既知の結果であり、次の参考文献の一部を要約したものである。

• Geoffrey Grimmett, Percolation [BK89].
• Hugo Duminil-Copin, Introduction to Bernoulli percolation [DC18].
• Wolfgang Woess, Random walks on infinite graphs and groups [Woe00].
• Russell Lyons and Yuval Peres, Probability on trees and networks [LP16].
• Thomas Hutchcroft, Percolation on hyperbolic grpahs [Hut19].
• Michah Sageev, Ends of group pairs and non-positively curved cube complexes [Sag95].
• Pierre-Emmanuel Caprace and Michach Sageev, Rank rigidity for CAT(0) cube complexes

[CS11].
• Anthony Genevois, Algebraic properties of groups acting on median graphs [Gen24].

まずパーコレーションを二つの章にわたって説明する。第2章ではパーコレーションの理論を
概説し、本論文における議論の背景を与える。第3章では CAT(0) 立方複体上に作用する群の二
つの幾何学的性質を述べ、これらを用いてパーコレーションに関する結果を導く。
続いて、CAT(0) 立方複体の理論を述べる。第4章では CAT(0) 立方複体と本質的に等しい対象

である中点グラフ (median graph) を紹介する。第5章では中点グラフの幾何学において重要な概
念である超平面 (hyperplane)、半空間 (halfspace) およびそれらの鎖 (chain) を導入する。その後、
パーコレーションに関連する CAT(0) 立方複体の幾何学的性質、例えば「手品補題1」(命題6.1)
を第6章および第7章で証明する。第8章ではより詳細な CAT(0) 立方複体の幾何学を展開する。
既存の文献に現れていない議論は、第6章および第7章に限られている。したがって、読者がも

し望めば、第3.1節のみを読んだ後、これらの章に進んでも差し支えない。また、パーコレーショ
ンの理論と CAT(0) 立方複体の幾何学は、互いに独立に読んでも問題はない。

2. 背景知識
本章では、今後考察する問題を設定し、関連する歴史的背景を概説するが、証明は一切与えな

い。内容としては、第2.1節のみを読めば、第4章以降を理解するのに困難はない。しかしながら、
初めてパーコレーションに接する読者には、本章全体に軽く目を通しておくことを勧める。

1僕が名付けたものではありません。
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2.1. グラフと群. 本稿におけるグラフ (graph) は頂点集合 V と辺集合

E ⊆
(
V
2

)
:= {S ⊆ V : #S = 2}

からなる概念である。この慣習では自分自身を結ぶ辺である自己ループや、複数の辺が同じ頂点
対の間を結ぶ多重辺は許さない。
辺 e = {v, w} ∈ E に対し、v および w を eの端点 (endpoint)と呼び、e = vw と表記する。ま

た、二つの辺 e, f ∈ E が一つの端点を共有するとき、それらは隣接している (adjacent) と言う。
二つの頂点 v, w がある辺で繋がれているときにもそれらが隣接しているといい、v ∼ w と書く。
頂点集合の部分集合 A ⊆ V(Γ) が与えられたとき、

∂EA :=
{
xy ∈ E(Γ) : x ∈ Aかつ y /∈ A

}
を A の境界 (boundary) と呼ぶ。この定義では辺を集めた一方、

∂VA := ∂EA ∩A =
{
x ∈ A : x ∼ yを満たす A の外にある頂点 y /∈ A が存在する}

もまた A の境界と呼ぶ。文脈上混乱の恐れがない場合には、両方とも単に ∂A と記す。
グラフ Γ = (V(Γ), E(Γ)) の辺集合の部分集合 E ′ ⊆ E(Γ) で作られたグラフ Γ′ = (V, E ′) を Γ の

部分グラフ (subgraph) と呼ぶ。このとき、次の表記を導入する：
Γ \ Γ′ :=

(
V(Γ), E(Γ) \ E ′).

グラフ Γ の頂点列 v0, v1, . . . , vn に対し、e1 := v0v1, . . . , en := vn−1vn がいずれも Γ の辺であ
れば、これら頂点と辺からなるグラフ Γ′ := ({v0, . . . , vn}, {e1, . . . , en}) を Γ 上の長さ n の経路
(path) と呼ぶ。このとき、経路の長さを len(Γ′) = n と定義する。
経路 Γ′ の始点と終点が一致する場合、Γ′ を回路 (circuit) と呼ぶ。すなわち、頂点列

v1, . . . , vn に対してもし e1 := vnv1, . . . , en := vn−1vn がいずれも Γ の辺であるとき、Γ′ :=

({v1, . . . , vn}, {e1, . . . , en}) を Γ 上の長さ n の回路と呼ぶ。特に v1, . . . , vn が相違なる頂点であれ
ば Γ′ を長さ n のサイクル (cycle) もしくは n-サイクルと呼ぶ。
グラフ Γ の二つの部分集合 A,B ⊆ V(Γ) が Γ 上のある経路で繋がっている場合、A ↔Γ B と

書く。グラフ Γ が連結 (connected) であるとは、任意の頂点 x, y ∈ V(Γ) に対し x ↔Γ y であ
ることをいう。グラフの各頂点および辺に対し、それを含む最大の連結部分グラフを一意に定め
ることができ、それをその頂点および辺の連結成分 (connected component) と呼ぶ。任意の
グラフの頂点集合または辺集合は、連結成分によって分割される。
グラフ Γ が二分グラフ (bipartiate graph) であるとは、Γ の各辺がある A の頂点とある B

の頂点を結ぶような V(Γ) の分割 A tB が存在することをいう。
事実 2.1. グラフ Γ が二分グラフであることと、Γ に奇数長さのサイクルが存在しないことは同
値である。
連結グラフ Γ の頂点の間に自然な距離構造を与えることができる。二つの頂点 x, y ∈ V(Γ) に

対し
d(x, y) := min

{
len(P ) : P は x と y を結ぶ経路}

と定義すれば良い。このとき d(·, ·) は三角不等式と非退化性 (nondegeneracy) を満たす。したが
って d(·, ·) は実際に距離構造をなし、これを組合わせ距離 (combinatorial metric)、l1-距離または
グラフ距離 (graph metric) と呼ぶ。つまりグラフは自然に距離空間とみなせる。
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頂点集合の部分集合 A ⊆ V(Γ) と正の実数 k > 0 に対し、
Nk(A) :=

{
y ∈ V(Γ) :ある a ∈ A に対し dΓ(a, y) ≤ k である}

を A の半径 k の近傍 (neighborhood) と呼ぶ。
さて群の話題に移ろう。群 (group) とは合成および逆の操作が可能な演算が備わっている構

造を指す。具体的には、id という特別な元を持つ集合 G に二項演算 · : G2 → G が定義されてお
り、以下の条件を満たすとき、(G, ·, id) を群と呼ぶ。

(1) (結合法則) 任意の g, h, k ∈ G に対し (g · h) · k = g · (h · k) である。
(2) (単位元の性質) 任意の g ∈ G に対し g · id = id · g = g である。
(3) (逆元の存在性) 任意の g ∈ G に対し g−1 ∈ G が存在して g · g−1 = g−1 · g = id を満たす。

もし id ∈ H ⊆ G に · を制限したとき (H, ·, id) もまた群をなすなら、H を G の部分群
(subgroup) と呼び H ≤ G のように記す。このとき、G は {[gH] : g ∈ G} という同値類によっ
て分割されるが、この同値類の数を H の指数 (index) と呼ぶ。この指数が有限であれば H は
G の有限指数部分群という。
群 G の部分集合 S が G の生成集合 (generating set for G) であるとは、S を含む G の中

の最小の部分群が G 全体と一致することをいう。すなわち、各 g ∈ G に対し、g = sϵ11 · · · sϵnn を
満たす S の有限個の元 s1, . . . , sn および ϵ1, . . . , ϵn ∈ {1,−1} が存在することを意味する。このと
き、g を上記のように表すために必要な S の元の個数の最小値を g の S-単語ノルム (S-word
norm) といい、‖g‖S と記す。最後に、有限生成集合を持つ群を有限生成群 (finitely generated
group) と呼ぶ。
数学にはさまざまな群がある。自明群 (trivial group) 1 = {id} や、Z /nZ のような有限群

(finite group) がその一例である。最も簡単な無限群としては、整数群 Z = (Z,+, 0) が挙げられ
る。このような群は、しばしば次のように構成される。ある数学的な構造 X が与えられたとき、
X から X への写像のうち、逆操作が可能で (例えば単射写像・位相同型写像・正則行列など) か
つ X の構造を保つものをすべて集めると、その集合は自然に群をなす。例えば、整数群 Z は、
数直線上のアフィン変換のうち、全単射であり、整数点全体の集合をそれ自身に移るものの集ま
りとみなすことができる。
実は、すべての群はあるグラフの対称性を集めたものと見ることができる。生成集合 S が与

えられた群 G を考えよう。初めに導入したように、G のすべての元を頂点とし、S の元によっ
て関連付けられたすべての順序対を辺で結んだグラフ Γ = Cay(G,S) を、S に関する G のケイ
リーグラフ (Cayley graph of G with respect to S) と呼ぶ。このとき、グラフ距離は自然に
S-単語ノルムによって与えられる。すなわち、dΓ(g, h) := ‖g−1h‖S である。生成集合 S への依
存性をより明確にするため、dS(g, h) と記すこともある。このとき、生成されたグラフが局所有
限 (locally finite) であるためには、すなわち有限の半径を持つすべての球が有限個の頂点のみ
を含むためには、S が有限集合であることが必要十分条件となる。
今後、留意すべき群が二つある。まず、d 次元の整数格子群 Zd は{

v = (v1, . . . , vd) : vi ∈ Z
}

と定義される。この格子群の有限生成集合の一つとして {ei = (δij)
d
j=1 : i = 1, . . . , d} を考えよ

う。これら d 個の「方向移動」を用いて他の移動を生成するとき、その順序は重要ではない。つ
まり、ei + ej − ei − ej = 0 が成り立つ。実は、この等式さえ理解していれば、Zd におけるすべ
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ての等式 (例えば (3, 1) = (2, 1)− (1, 3) + (2, 4) など) を導出することができる。深入りはしない
が、これが

Zd ' 〈s1, . . . , sd | sisjs−1
i s−1

j = id〉

と記述する理由である。このとき、右辺を Zd の表示 (presentation) と呼ぶ。
それでは、

Fd := 〈s1, . . . , sd | − 〉

はどのような群を指すのだろうか。この群は s1, . . . , sd およびその逆元 s−1
1 · · · s−1

d を用いて書け
るすべての単語の集合であり、ある文字とその逆元が隣り合ったときキャンセルできるという
基本等式 (sis

−1
i = s−1

i si = id) 以外には、いかなる規則も持たない群である。この群をランク
d の自由群 (free group of rank d) と呼び、このとき {s1, . . . , sd} はこの群を自由に生成する
(freely generate) という。ランク 2 の自由群のケイリーグラフがどのような形をしているか描
いてみて、図1と比較せよ。

Figure 1. ランク 2 の自由群の標準ケイリーグラフ

一般に、群 G の任意の元 g, h ∈ G が gh = hg, すなわち ghg−1h−1 = id を満たすとき、G を
可換群 (abelian group) と呼ぶ。可換群を含むより広い群のクラスとして、べき零群 (nilpotent
group) や可解群 (solvable group) などがあるが、それらの定義は一応省略する。
最後に、群の成長 (growth) を論じる。有限生成群 G の有限生成集合 S を固定したとき、ケ

イリーグラフ G = Cay(G,S) の半径 R の球内には頂点がいくつ含まれているかを問うことがで
きる。例えば、

lim inf
R→+∞

ln#{g ∈ G : ‖g‖S ≤ R}
R

> 0?

のような質問を考えることである。もしこれに大した答えが「YES」なら、球内の要素数は半径
に対して指数関数的に増加することである。実は、この問いの答えは S の選択に寄らない。す
なわち、群 G が与えられたとき、ある一つの有限生成集合に対して答えが「YES」であれば、他
のどの有限生成集合を選んでも答えは「YES」となるのである。のような性質を持つ群を、指数
関数的成長 (exponential growth) を持つと呼ぶ。例として、自由群は指数関数的に成長する
が、整数格子群はそうではない。また、指数関数的に成長する部分群を持つすべての群は、それ
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自身も指数関数的に成長する。(注意：部分群内での単語距離は、親となる群での単語距離とは
大きく異なる可能性があることに留意せよ。)

2.2. パーコレーション. これからはパーコレーション (percolation) について述べる。背景とし
て連結グラフ Γ =

(
V(Γ), E(Γ)

) を一つ固定し、その部分グラフ全体の空間
Ω :=

{
Γ′ =

(
V(Γ), E ′) : E ′ ⊆ E(Γ)

}
を考える。各辺 e ∈ E(Γ) に対し、Ω を分割する二つの集合 {Γ′ ⊆ Γ : e ∈ Γ′} と {Γ′ ⊆ Γ : e /∈ Γ′}
を取ろう。これらをそれぞれ {ω : e が開いている} および {ω : e が閉まっている} と呼ぶ。すべ
ての e ∈ E(Γ) に対しそのような集合を集め、それらが生成する最小の σ-加法族を Ω に備えつけ
る。
続いて、パラメータ 0 ≤ p ≤ 1を固定しよう。各辺 e ∈ E(Γ)を独立に確率 pで開き、確率 1−p

で閉じるとすることで確率測度 Pp を Ω 上に定める。直感的には、「全体グラフの (100p)%」に
当たるランダムな部分グラフを考えることにな加法族る。この確率的部分グラフを Γ[p] と書く。
物理的な比喩として、Γ の形状をした均質な結晶を構成する分子を考えよう。温度を徐々に上

げると、結晶の各分子結合がある確率 (= 1− p) で切断される。結晶がどのような形で砕けるか
は確率的であり、この現象を模写したものが Γ[p] である。このとき、各分子結合が残るか切れ
るかは互いに独立であると仮定していることに注意されたい。このような数学的モデルは Simon
R. Broadbent と John M. Hammersley によって [BH57] で初めて導入された。
上記のモデルでは Γ の各辺が残るかまたは消えるが、これをベルヌーイボンドパーコレーシ

ョン (Bernoulli bond percolation process) と呼ぶ。各頂点が残るかまたは消えるサイトパー
コレーション (site percolation process) もまた、物理的パーコレーションを記述するモデル
の一つである。他にも、各辺に確率的な長さを与えることによって定まるグラフ距離の構造を探
る ファーストパッセージパーコレーション (first passage percolation) などがある。本論文で
はベルヌーイボンドパーコレーションに焦点を当てる。パーコレーションについてより深い興味
がある読者は、Geoffrey Grimmett の本 [Gri89] を参照されたい。

参考 2.2. 連結グラフ Γ の対象の群 Aut(Γ) が Γ の任意の頂点の対 v, w ∈ Γ を結びつけること
ができるとき、すなわち v = g · w を満たす g = g(v, w) ∈ Aut(Γ) が存在するとき、Γ は頂点推
移的 (vertex-transitive) だという。これはすなわち V(Γ) における Aut(Γ)-軌道がただ一つで
あることを意味する。一般に、V(Γ) における Aut(Γ)-軌道が有限個である場合、Γ を準推移的
(quasi-transitive) と呼ぶ。
便宜上、今後はグラフの中でも 有限生成群のケイリーグラフ に限って話を進める。しかし、

後で挙げる定理の多くは、ケイリーグラフよりも一般的なケースである頂点推移的、あるいは準
推移的なグラフに対しても証明されている。詳細は原論文を参照されたい。

2.3. パーコレーションの相転移. まずは、平面格子 Γ = Z2 上のパーコレーションを見てみよう。
このとき、パラメータ p が大きいほど確率的により多くの辺が生き残るため、p が 1 に近ければ
グラフ Γ がほぼそのまま残ると予想できる。これに対し、p が 0 に近ければ元のグラフの大部
分が削除され、小さな断片のみが残るだろう。この相反する予想の尺度として、

「無限に大きい連結成分が発生するか？」
を聞いてみよう。平面格子グラフに関しては、以下のことが知られている。
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• p ≤ 1/2 の時は、Γ[p] に無限連結成分が発生する Pp-確率が 0 である一方、
• p > 1/2 の時は、Γ[p] に無限連結成分が発生する Pp-確率が 1 である。

これを鑑みて、パラメータ p が 1/2 に至るとき、平面格子上のパーコレーションは相転移
(phase transition) を起こすと言うことができる。このとき基準となる値 1/2 を臨界パラメー
タ (critical parameter) と呼び、pc(Γ) と記す。すなわち、Γ = Z2 に関して pc(Γ) = 1/2 である。
一般的なグラフ Γ でパーコレーションを行うと、無限連結成分が発生する確率が 0 でも 1 で

もない値をとる可能性もある。しかし、これは極めて非均質なグラフでのみ起こり得る現象であ
り、群のケイリーグラフのような均質なグラフでは決して起こらない。簡潔な議論のため、これ
からは群のケイリーグラフ上でのパーコレーションのみを記述する。
ケイリーグラフ Γ = Cay(G,S) を一つ考えよう。Γ の形状はどの点から見ても同じなので（こ

れが我々の望んでいた均質性である）、単位元 id ∈ G を基点としよう。ランダム部分グラフ Γ[p]

における id の連結成分を Cid と記し、この起点連結成分が無限となる確率を
θ(p) := Pp

(
#Cid = +∞

)
と定義する。このとき、次が成り立つ。
事実 2.3 (補題3.1参照). θ(p) は p ∈ [0, 1] に対する単調増加関数である。
さらに、p が十分小さい正の実数である場合 (例えば 0 < p ≤ 1

#2S のとき)θ(p) = 0 が成り立つ
ことを確認できる。つまり、θ(p) は初期区間では値 0 にとどまるが、ある時点から 0 より大き
い値を持つことになる。この時点を Γ の臨界パラメータ (critical parameter) と定義する。形
式的には

pc(Γ) := inf
{
p ∈ [0, 1] : θ(p; Γ) > 0

}
と定める。ケイリーグラフの均質性により、次の事実が成り立つ。
事実 2.4 (補題3.4参照). あるケイリーグラフ Γ の臨界パラメータ pc を考えよう。このとき

• 各 0 ≤ p < pc に対し、Pp

(
Γ[p] には無限連結成分が一つもない) = 1 であり、かつ

• 各 pc < p ≤ 1 に対し、Pp

(
Γ[p] に無限連結成分が存在する) = 1 である。

要するに、臨界相転移は任意のケイリーグラフにおいて起こる。ここで加えたいことは、pc が
1 となるグラフも多いことだ。例えば、図4に示した数直線グラフでは、左・右半直線上の辺が
無限個切断されると、無限連結成分は生じない。このような事象は p < 1 のとき確率 1 で起こ
る。したがって、pc(Z) = 1 が成り立つ。この事実は数直線グラフの場合に限ることではなく、Z
のいかなるケイリーグラフに対して同様に成り立つ。一般に、Z を有限指数部分群と持つ群のケ
イリーグラフに対して pc = 1 である。これらが pc = 1 を満たすグラフの全てであるかどうかが、
Itai Benjamini と Oded Schramm によって提起された予想である。
予想 2.5. [[BS96]] 整数群 Z を有限指数部分群として持たない有限生成群の任意のケイリーグラ
フ Γ に対して、pc(Γ) < 1 が成り立つ。
この予想は指数関数的に成長する群に対しては Russell Lyons によって、有限表現を持つ群に

対しては Eric Babson と Itai Benjamini によって示された ([Lyo95], [BB99])。その特殊例として、
自由群のケイリーグラフに対して pc < 1 であることは容易に分かる。自由群を部分群として持
つ群のケイリーグラフに対しても同様に pc < 1 が成り立つ。
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事実 2.6. ランク２の自由群を部分群として持つ有限生成群の任意のケイリーグラフ Γ に対し
て、pc(Γ) < 1 が成り立つ。
この事実は前述の結果よりは弱いが、我々の目的のためには十分である。よって、事実 2.6だ

けについて、後で証明を挙げる。
別の相転移を論じる前に、まずは臨界相転移をもう少し詳しく眺めてみよう。先ほど、θ(p)

の様子が p = pc を境に変化すると述べたが、さて臨界点 p = pc における値はいくらだろうか。
すなわち、θ(pc) は 0 か、または正の値を取るかを考えよう。言い換えれば、臨界値 p = pc に
おいて Γ[p] は無限連結成分を持つのか、という問いになる（「臨界点パーコレーションが起こ
るか」とも表現される）。前述した平面格子 Z2 の場合には、θ(pc) = θ(1/2) = 0 であることが
Harry Kesten による有名な結果として知られている（[Kes80]。Theodore Harris の論文 [Har60]
も参照）。一方で、三次元整数格子 Z3 においては、θ(pc) が正なのか 0 なのかは現在でも重要な
未解決問題である。次に、与えられたケイリーグラフ Γ とパラメータ 0 ≤ p ≤ 1 に対して、基点
id の連結成分が平均的にどの程度大きいのかを考えることができる。これに対し

χp := Ep[#Cid] =
∑
g∈G

Pp(id ↔ g) =

{ ∑∞
n=0 n · Pp[#Cid = n] θ(p) = 0の場合、

+∞ θ(p) > 0の場合
で定義される量を感受率 (susceptibility) と呼ぶ。θ(p) と同様に、次が分かっている。
事実 2.7 (補題3.1参照). χp は p ∈ [0, 1] に対して単調増加関数である。
定義から明らかなように、p > pc のとき χp = +∞ である。また、p が十分小さい正の値であ

れば χp < +∞ となることも容易に分かる。しかし、その中間でどのような値を取るかは自明で
はない。実際、ほとんど確実に有限値を持つ確率変数であっても、その期待値が無限大になるこ
とはあり得るため、θ(p) = 0 だからといって直ちに χp < +∞ が従うわけではない。この点、す
なわち p < pc に対して χp < +∞ であることは、Michael Aizenman と David Barsky がまず d

次元格子グラフの場合に示し、その後 Tonći Antunović と Ivan Veselić がケイリーグラフを含む
より一般のグラフに対して証明した。
事実 2.8. [[AB87], [AV08]] ケイリーグラフ Γ の臨界パラメータ pc に対し、任意の 0 ≤ p < pc

について χp は有限である。さらに、任意の p ↗ pc について χp ↗ +∞ となる。特に χpc = +∞
となる。
この結果には、Hugo Duminil-Copin と Vincent Tassion によるより現代的な証明 [DCT16] や、

Hugo Vanneuville による別のアプローチ [Van25] が知られている。
さらに、(1) χp が p ↗ pc のときどのような速度で発散するのか、(2) p ↘ pc のとき θ(p) がど

のような速度で 0 に近づくのか、(3) p = pc における Cid の大きさの確率分布がどのような形に
なるのか、といった問いを立てることもできる。これ以上深入りはしないが、臨界パラメータ付
近における Γ[p] の基点連結成分の大きさや形状を理解することは、パーコレーション理論にお
ける根本的な課題である。
2.4. 無限連結成分の個数. これまで、パラメータ p がある領域 (pc < p ≤ 1) にあるとき、Γ[p] に
は「ほぼ確実」に無限連結成分が現れるという話をしてきた。では、いくつの無限連結成分がで
きるのなろうか？1 個だろうか？2 個、あるいは 10 個だろうか？それとも無限個なのだろうか。
そして、この個数は p の値によってどのように変化するのだろうか。
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もし議論の対象をケイリーグラフに限定していなければ、これらの問いに答えるのは非常に
困難である。しかしケイリーグラフについては、ある程度明確な回答が知られている。第一に、
ケイリーグラフ Γ と p ∈ [0, 1] が与えられたとき、Γ[p] が持ちうる無限連結成分の個数はほぼ確
実に一つの値に定まる。さらに、その個数は必ず 0 個、1 個、あるいは「無限個」のいずれかで
ある。言い換えれば、次の事実が成り立つ。
事実 2.9. 有限生成群のケイリーグラフ Γ と各 p ∈ [0, 1] に対して、N∞(Γ, p) ∈ {0, 1,+∞} が存
在し、

Pp

{
#{Γ[p] 内の無限連結成分} = N∞(Γ, p)

}
= 1

となる。
この事実は、C. M. Newman と Lawrence S. Schulman によって [NS81] で証明された。
ここで、次の定数を定義しよう。

pu[Γ] := inf
{
p ∈ [0, 1] :ほぼ確実に Γ[p] は無限連結成分をただ一つ持つ}.

この値を Γ の一意性閾値 (uniqueness threshold) と呼ぶ。定義から直ちに pc ≤ pu であること
がわかる。また、pc < p < pu を満たす p に対しては、Γ[p] はほぼ確実に無限連結成分を持つが、
それは唯一ではない。したがって、この領域では N∞(Γ, p) = +∞ となるはずである。
さて、これから述べる事実は非自明である。この事実は Itai Benjamini と Oded Schramm が

有名なサーベイ論文 [BS96] で予想し、後に Olle Häggström と Yuval Peres がケイリーグラフに
対して [HP99]、Roberto H. Schonmann がより一般的なグラフに対して証明した [Sch99]。
事実 2.10. ケイリーグラフ Γ の一意性閾値 pu が与えられたとき、各 pu < p ≤ 1 に対して、

Pp

(
Γ[p] に無限連結成分が一意に存在する) = 1

が成り立つ。(厳密に言えば、この事実自体は我々の論証に必ずしも必要ではない。)

つまり、(pu, 1] の全区間において、Γ[p] はほぼ確実にただ一つの無限連結成分を持つのであ
る。したがって、N∞ は一般的に、図2 に示されたような振る舞いを見せる。
このように見ると、N∞ に関しては相転移が二度起こるのが最も一般的な絵となる。しかし、

それは (0, pc), (pc, pu) および (pu, 1) がすべて非自明な区間であるときの話である。このうち
0 < pc は常に保証される。では、pc < 1 はどうだろうか？すべての群がこれを満たすわけでは
ない。例えば、図 1 に描かれている 4 次正則樹木グラフ T4 では、p が 1 より少しでも小さけれ
ば Γ[p] において辺が時々消されるはずだが、辺が一つ消えるたびに全体グラフは二つに分断さ
れる。このように「ポキポキと折れやすい」グラフのランダム部分グラフでは、唯一の連結成分
は決して期待できず、さらには無限連結成分もまた一意的ではなくなる。したがって pu(T4) = 1

である。
あるグラフの有限個の辺を削除するだけでグラフを複数の連結成分に分断できる場合、その

グラフは「端（はし）が複数ある (not one-ended)」と呼ばれる。一般に、このようなケイリーグ
ラフは pu = 1 を持つことが比較的容易に確認できる。
それでは、残りのケイリーグラフについてはどうだろうか？前述の [BS96] において、Itai

Benjamini と Oded Schramm は次のように問いかけた。
問題. １端のケイリーグラフに対して常に pu < 1 か?
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Figure 2. 無限連結成分の（ほぼ確実な）数の最も一般的な振る舞い

この質問には未だ完全な回答は知られていない。しかし、端が一つのケイリーグラフを生成す
る群が、もし有限表示 (finite presentation) を持つのであれば、pu < 1 であることは知られて
いる。これは Eric Babson と Itai Benjamini による結果である [BB99]。
一方で、pc < pu に関しては何が知られているだろうか？まず、先に述べた Z2 の場合、

N∞(p) = +∞ となる p は存在せず、また pc = pu = 1/2 である。これは 2 次元に限った話では
ない。より高い次元 d を持つ Zd に対しても同様に pc = pu が成立する。この事実は Michael
Aizenman、Harry Kesten および Charles M. Newman が 1987 年に証明した重要な結果である
[AKN87]。
一般に、（無限）可換群 (abelian group) やべき零群 (nilpotent group) を含め、指数関数より遅

く成長する群 (group with subexponential growth) のケイリーグラフでは、すべて同様の現象が
現れる。これに密接に関連しているのが、ケイリーグラフの有限部分集合たちの「体積」に対す
る「表面積」の競合である。ここで概念を一つ導入しよう。

定義 2.11. あるケイリーグラフ Γ の Cheeger 定数 は

ι(Γ) := inf
{

#∂EK

#K
=

#{vw ∈ E(Γ) : v ∈ K,w /∈ K}
#K

: K は V(Γ) の有限部分集合
}

のように定義される。グラフ Γ が 従順 (amenable) であるとは、その Cheeger 定数が 0 であ
ることを意味し、非従順である (nonamenable) とは、その Cheeger 定数が正であることを意
味する。

ここで、Cheeger 定数の正確な値はそれほど重要ではない場合が多い。それよりも重要なのは、
Cheeger 定数が 0 より大きいか否かである。整数群 Z およびその直接積 Zd を含め、すべての可
換群、べき零群、および指数関数より遅く成長する群のケイリーグラフはアメナブルである。こ
れらについて、次のことが知られている。
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命題 2.1 ([AKN87], [BK89], [GKN92]). すべての従順ケイリーグラフ Γ とすべての 0 ≤ p ≤ 1 に
対して、ほぼ確実に Γ[p] は無限連結成分を高々一つ持つ。すなわち、N∞(p; Γ) = ∞ となる p は
存在しない。特に、pc(Γ) = pu(Γ) である。

この命題は、前述したようにまず ZdにおいてMichael Aizenman, Harry Kesten,および Charles
M. Newman が証明した。その後すぐに R. M. Burton および Michael S. Keane が別の証明を提
示したが、Alberto Gandolfi, Michael S. Keane, および Charles M. Newman がその論証を従順な
ケイリーグラフへと拡張した。
それでは逆に、pc < pu となるグラフにはどのようなものがあるだろうか？前述の pu = 1 とな

る例、すなわち端が一つより多いグラフを除いた最初の例は、Geoffrey Grimmett と Charles M.
Newman が扱った (正則 d 次樹木グラフ)×Z であり、これは 自由群×Z の標準的なケイリーグ
ラフである [GN90]。このグラフは、(0, pc), (pc, pu), (pu, 1) の三つの区間がすべて空集合ではない
最初の例である。
この例の発見後、I. Benjamini と O. Schramm が提起した予想を紹介する。

予想 2.12 ([BS96, Conjecture 6]). すべての非従順ケイリーグラフ Γ に対して pc(Γ) < pu(Γ) で
ある。

これは、グラフの連結構造に関する組合せ論的な概念である従順性と、Γ[p] が無限に多くの無
限連結成分を持つような p が存在する（！）という確率論的な性質が一致するという予想である。
実は、任意のケイリーグラフ Γ に対して、N∞(p; Γ) = +∞ となる p が一つでも存在することと
pc(Γ) < pu(Γ) は同値である。これは命題 2.1 に加え、Γ が非従順なとき、Γ[pc] は（ほぼ確実に）
無限連結成分を一つも持たないという事実によるものである [BLPS99]。

2.5. 予想2.12 の現況と本論文の目標. 予想2.12に関して多様なケイリーグラフが研究されてき
た。Steven Lalley が、種数（genus）の大きい曲面群の双曲平面上の平面ケイリーグラフ (planar
Cayley graph) について pc < pu であることを証明した後 [Lal98]、予想の提唱者である I.
Benjamini と O. Schramm は、双曲平面上に余コンパクトに描かれた任意のケイリーグラフに対
して pc < pu を証明した [BS01]。
上記の二つの結果では、ケイリーグラフの平面性が重要な役割を果たした。しかし、ここで確

認しておくべき点がある。ある意味で曲面群は非常に 2 次元的であるが、そのような曲面群で
あっても、平面敵ではないケイリーグラフをいくらでも持ち得る。例えば、五角形の完全グラフ
K5 を部分グラフとして持つケイリーグラフを構成することができる。曲面群のこのようなケイ
リーグラフに対しても pc < pu であるかは上記の結果から直ちに導かれるわけではない。
再び Benjamini と Schramm の質問に戻ろう。質問 および推測 2.12 は、グラフの確率論的

な性質と、ある種の幾何学的な性質が同値であると主張しているが、この幾何学的な性質はグ
ラフの微細な連結性には全く関心がなく、巨視的な形状のみを問題にする性質である。この点
はこの質問および推測を一層興味深いものにする。例えば、平面性はグラフの巨視的構造と局
所的構造の両方に依存する性質である。それに対し、グラフの端（end）の数、あるいは従順性
（amenability）は（一見そうは見えないかもしれないが）、グラフの粗い形状のみに依存する性質
であることが知られている。特に、ある群のケイリーグラフが多端であるか、あるいは非従順で
あれば、その群のいかなるケイリーグラフも同様であることが知られている。特殊な有限生成集
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合を選んで、例え K100 を部分グラフに持つようにしたとしても、端の数や従順性は変えられな
いということだ。
したがって、予想2.12 にアプローチする際、与えられた群の「特定の」ケイリーグラフでは

なく、すべてのケイリーグラフに対して回答できれば、より望ましいだろう。この観点と併せ
て知っておくべき事実が一つある。すべての非従順な群のそれぞれにおいて pc(Γ) < pu(Γ) を
満足するケイリーグラフ Γ を少なくとも一つはあるというもので、これは Igor Pak と Tatiana
Smirnova-Nagnibeda による結果である [PSN00]。このように特殊に構築されたケイリーグラフ
の pc < pu から、同じ群の他の任意のケイリーグラフの pc < pu を導き出せるかどうかは知られ
ていない。
それでは、そのすべてのケイリーグラフが pc < pu を満足する群にはどのようなものがあるだ

ろうか。これに関しては、Damien Gaboriau と Russell Lyons が扱った、1 次の l2-Betti 数が消
滅しない群のケイリーグラフがある [Gab05], [Lyo00], [Lyo13]。この概念の定義をここで導入す
るのは無理があるため、その例をいくつか挙げる。Gaboriau と Lyons が任意のケイリーグラフ
について pc < pu を示した群の例には、以下のようなものがある。

• 自由軍、および 自由積 (free product);
• 種数 2 以上の曲面群;
• 従順ぐんに対して融合 (Amalgamate) した自由積。

一方、Gaboriau および Lyons が扱っていない群には以下のようなものがある。
• 自由群の直積;
• SL(2,Z)(n,Z); 一般に、ランク n のリー群の中の格子 (n ≥ 3)
• 双曲曲面の写像類群 (mapping class group) Mod(Σg);
• 自由群の外部自己同型群 (outer automorphism group) Out(FN );
• 自由積ではない直角 Artin 群 (right-angled Artin group)

また、Kazhdan の性質 (T) を持つ群の中でも、上記の理論が適用される群の例はまだ発見され
ていない。
次に検討するのは、Thomas Hutchcroftが [Hut19]および [Hut20]で研究した群である。後者の

論文では、ある特徴的な対称性を持つケイリーグラフに対して pc < pu を証明している。ここで
いう特徴的な対称性とは、グラフ Γ の自己同型群 Aut(Γ) に十分に大きな部分群 H が存在する
ことだが、H が Γのすべての頂点間をほぼ自由に移動できる一方で、いくつかの頂点を偏向的に
固定するという非対称性も持っているという意味である。深くは論じないが、この非対称性理論
によって Hutchcroftは、すべての d ≥ 3および k ≥ 1に対して (Td : d 次数正則樹木グラフ)×Zk

の pc < pu を証明した。ただし、このような非対称性はグラフの局所的な構造に依存する性質で
あり、ある群の一つのケイリーグラフが満たすとしても、他のケイリーグラフで必ずしも満たす
わけではない。
これに対し、前者の論文では特定の群のすべてのケイリーグラフについて論じている。それを

今から述べる。
定理 2.13. [[Hut19]] 整数群 Z と同型な有限指数部分群を持たず、無限な Gromov 双曲群 G の
すべてのケイリーグラフ Γ について、pc(Γ) < pu(Γ) である。

Gromov 双極性 (Gromov hyperbolicity) は、d 次元双曲空間 Hd、K < −a2 の曲率を持つ
単連結多様体、および樹木グラフをすべて包括する幾何学的群論の核心概念である。Gromov 双

12



曲群の定義も具体的には記さないが、Hd に真性かつココンパクトに作用する群（すなわちココ
ンパクト格子）を例として考えると分かりやすい。特に、閉双曲多様体の基本群や自由群はすべ
て Gromov 双曲的である。

Gromov 双曲性をさらに一般化した非円筒的双曲性 (acylindrical hyperbolicity) は、定義
するのが少しややこしい。だが、この概念は Gromov 双曲群、双曲曲面の写像類群、自由群の外
部自己同型群、自由積ではない直角 Artin 群をすべて含む概念と考えれば良い。このような群に
対して、著者と Donggyun Seo は次を論じた。

定理 2.14. [[CS25]] 整数群 Z と同型な有限指数部分群を持たず、非円筒的双曲的な G のすべて
のケイリーグラフ Γ について、pc(Γ) < pu(Γ) である。

本論文では、これから述べる CAT(0) 立方複体あるいは中点グラフに作用する群について考察
する。これらの群と Gromov 双曲群の間には密接な関係がある。まず、Gromov 双曲群という概
念と、我々が考慮する CAT(0)立方群の概念は、互いに包含関係にはない。しかし、両方に該当す
る重要な対象がある。それは 3 次元閉双曲多様体の基本群である。これらの群の中には曲面群と
同型な部分群が歪むことなくうまく埋め込まれていることを Jeremy Kahnと Vladimir Marković
が示した一方 [KM12]、このような曲面群をタイリングの材料として、群が自由に（freely）か
つココンパクトに作用する CAT(0) 立方複体を構成できることを Nicolas Bergeron と Daniel T.
Wise が証明した [BW12]。実際、すべての 3 次元閉双曲多様体は、円上の双曲曲面束を有限群で
割ったものとして理解できるが、これを仮想的ファイバー定理（virtual fibring theorem）と
いう [Ago13]。この定理の Ian Agol による証明では、Bergeron と Wise の CAT(0) 立方複体の理
論が重要な材料として用いられている。

CAT(0) 立方群の別の例としては、直角 Artin 群や直角 Coxeter 群 (right-angled Coxeter
group) がある。これらの群は、定められた数種類の関係子（relator）からなる有限表示を持っ
ており、その表示に従って自然に Salvetti 複体および Davis 複体という CAT(0) 立方複体を建設
できる。また、これらの群はこれらの複体に真性かつココンパクトに作用する。一般に直角アル
ティン群には、自由群 Fn と同型な部分群や、整数直積群 Zn と同型な部分群がいたるところに
絡み合っているため、Gromov 双曲的ではない場合が多い。本論文では、このような群を双曲幾
何学の代わりに CAT(0) 立方複体の幾何学によって理解しようと試みる。

3. パーコレーションの理論
本章では、定理1の証明をいくつかの段階に分けて解説する。まず、証明に必要となる幾何

学的な観察を第3.1節で述べる。これらの幾何学的材料がそろえば、確率論的な論証によって定
理1を導くことができる。この方針は Thomas Hutchcroft による理論であり [Hut19]、第3.2およ
び第3.3節ではその概要を説明する。

CAT(0) 立方複体の理論に特に関心がなく、群上のパーコレーションの理論だけを概観したい
読者にとっては、本章まで読めば十分であろう。一方で、確率論的側面よりもは CAT(0) 立方複
体に集中したい読者は、第3.1節飲みを読んだ後、次章に進んでも差し支えない。

3.1. 証明に必要となる幾何学的な事実. 群 G の有限生成集合 S に対するケイリーグラフ
Γ = Cay(G,S) を一つ固定する。本節では、G の有限部分集合が Γ 上でどのように配置されるか
に関する二つの性質を述べる。まだ CAT(0) 立方複体の幾何学を導入していないため、ここでは
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直感を与える例を用いる。整数格子群 Z2 よりも、自由群 F2 = 〈a, b〉 を思い浮かべる方が理解し
やすいだろう。そこで、G = F2、S = a, a−1, b, b−1 として説明を進める。
自由群 F2 の有限部分集合の例として

A := N100(id) =
{
a1a2 · · · ak : k ≤ 100, {a1, . . . , a100} ⊆ S

}
を考える。この部分集合の大部分、具体的には 98% 以上は、厚さ 4 の「殻」N100(id) \N96(id)

に集中している。この殻の上の点 u を一つ固定しよう。このとき、u から見た集合 A は、一方
向に偏っていることが分かる。
実際、u から 4 歩進む方法は全部で 4× 33 = 108 通りある。しかし、ほとんどすべての a ∈ A

に対して、u から a に向かって歩く際の最初の 4 歩は、a の選び方にほとんど依存せず、108 通
りのうちのある一つに固定される。これを明確にするために

Au :=
{
a ∈ A : ua と u(id) の最小の 4 歩が一致する}

と定める。このとき、任意の u ∈ A \N96(id) に対して、A \ Au は N12(id) に含まれ、その大き
さは高々 4 · 311 である。言い換えれば、A の中で例外的な 4 · 311 個の点を除けば、残りはすべ
て u から見て同じ方向に集中している。ここで 4 · 311 という数は相当大きいものの、「4 歩」と
いう定数のみに依存しており、A の半径には依存しないということに注意しておく。
さらに、u 自身ではなく、u に最も近い ∂N100(id) の点に立って A を眺めると、A は実質的に

完全に一方向へ偏っていると言ってよい。すなわち、A の 98% 以上を占める A \N96(id) の任意
の元 u に対して、dS(u, v) < 4 を満たす点 v が存在し、Av ⊇ A が成り立つことである。
以上の観察から、ほとんどすべての u ∈ A に対して A ' Au が成り立つことが分かる。この

事実がなぜ有用なのかを説明するために、p-ランダムグラフ Γ[p] における u の連結成分 Cu を
考えてみよう。u を基準にすると、Cu は id の方向にもある程度伸びるが、それと同程度の確率
で他の方向にも伸びると考えられる。したがって直感的には、#(Cu ∩ Au) は #Cu の 1/108 程
度であるはずだ。さらに、Au と A の差は有限個の点にすぎないため、#Cu が非常に大きい場
合（すなわち p ↗ pc のとき）には、#(Cu ∩ A) も #Cu の 1/100 程度に抑えられると期待され
る。これが我々の目指す状況である。
同じ事実を別の観点から言い換えてみよう。点 u = a100 を固定すると、u から id に向かう

最初の 4 歩はすべて a−1 の方向である。したがって、u から Au へ至るすべての経路は、4 点
ua−1, ua−2, ua−3, ua−4 を必ず通過する。このとき (a−1) · (a−1) = a−2 という関係があるため、
a−1, a−2, a−3, a−4 自体は自由に独立であるとは言えない。しかし、それぞれから距離 1 にある点
a−1b, a−2b, a−3b, a−4b は互いに自由に独立である。
より一般に、任意の点 u ∈ N100(id) \ N96(id) に対し、u から id に向かう最初の 4 歩

が順に s1, s2, s3, s4 ∈ S であるとしよう。このとき、u から Au へ至るすべての経路は
us1, us1s2, us1s2s3, us1s2s3s4の 4点を必ず通過しなければならない。ここで { s1, s1s2, s1s2s3, s1s2s3s4 }
自体は必ずしも自由に独立であるとは限らない。しかし、ti ∈ S \ {s−1

1 , s−1
i , si+1} をそれぞれ選

ぶとき、 {
s1t1, s1s2t2, s1s2s3t3, s1s2s3s4t4

}
は自由に独立である。これは、ある意味で Au が u から見て「一方向」に偏っていることを示唆
している。
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興味深い点は、A ⊆ G が丸い球状の集合でなくとも、同様の現象が期待できることである。そ
のために、以下の概念を導入する。

定義 3.1. 群 G の部分集合 A ⊆ G が分岐的である (branching) とは、A が自由に独立である
ことを意味する。すなわち、a1, . . . , an, a

′
1, . . . , a

′
m ∈ A が

a1 · · · an = a′1 · · · a′m

を満たすならば、n = m かつ全ての i に対して ai = a′i が成り立つ。
さらに、G の有限生成集合 S を一つ固定する。部分集合 A′ ⊆ G と定数 D > 0 に対し、A′

がD-分岐的である (D-roughly branching) とは、A′ 가ある分岐的な集合 A の D-近傍に含ま
れることおいう。すなわち、

A′ ⊆
{
as1 · · · sn : a ∈ A, 0 ≤ n ≤ D, si ∈ S

}
を満たす分岐的な集合 A が存在することを意味する。
ある定数 D に対して D-分岐的な集合を単に概分岐的であるという。

定義 3.2. 有限生成集合 S をもつ群 G を考える。S の元を各ステップとして得られる経路
をS-経路と呼ぶ。すなわち、(g0, g1, . . . , gn) が S-経路であるとは、すべての i = 1, . . . , n に対し
て g−1

i−1gi ∈ S が成り立つことをいう。
部分集合 A,B,C ⊆ G に対し、A と C を結ぶすべての S-経路が必ず B を通過するとき、B

を A と C の間のバリア （barrier between A and C）と呼ぶ。

定義 3.3. 有限生成集合 S を備えた群 G を考える。G が 手品補題（magic lemma）を満たす
とは、ある定数 K > 0 が存在し、任意の D > 0 に対して概分岐的な部分集合が存在し、さらに
任意の ϵ,D,D′ > 0 に対して定数

N = N(ϵ,K,D,D′)

が存在して、以下が成り立つことをいう。
任意の有限集合 A ⊆ G に対して、A の (100 − ϵ)% を占める部分集合 A′ ⊆ A が存在し、各

a ∈ A′ に対して二つの K-分岐的な部分集合
B(a) = B1(a) t · · · tBD(a), B′(a) = B′

1(a) t · · · tB′
D(a)

が存在して{
y ∈ A :各 1 ≤ i ≤ D に対し、Bi(a) が id と a−1y の間のバリアである}∪{
y ∈ A :各 1 ≤ i ≤ D に対し、B′

i(a) が id と a−1y の間のバリアである}∪{
y ∈ A : B \ND′(id) が id と a−1y の間のバリアである}

は A の元のうち高々 N 個を逃す。

定義 3.4. 群 Gが概反転可能である（roughly flippable）とは、有限個の部分集合 A1� . . . �AN ⊆ G

および有限個の元 g1� . . . �gN ∈ G が存在して、以下を満たすことをいう。まず、各 i に対して、
id と gi を結ぶ S-経路であって、その前半は gi Ai の外側にあり、後半は Ai の外側にあるよう
な経路 γi が存在する。
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さらに、任意の有限集合 A ⊆ G に対し、A の半分を占める部分集合 A′ ⊆ A が存在して、各
a ∈ A′ に対して、ある i が存在し

A ⊆ aAi ⊊ agiA
c
i

が成り立つ。

上記の定義における γi の条件はやや煩雑に見えるかもしれないが、例えば dS(id, gi) >

2dS(id, A
c
i ) が成り立つ場合には、id と gi を結ぶ任意の dS-最短経路を取れば十分である。

これらの性質はいずれも G の幾何学的形状に関するものであり、確率論的な要素は一切含ま
れていない。本論文の中心となる幾何学的命題は次の通りである。

命題 3.1. 有限生成群 G が、ある中点グラフ X に真性に作用し、かつ正規のランク１の対称性
をもつと仮定する（定義 7.1 参照）。例えば、X 上の G の作用が真性で、余コンパクトで、かつ
既約であれば、この条件は常に満たされる。さらに、G が Z と同型な有限指数部分群を含まな
いと仮定する。
このとき、G は任意の有限生成集合に対して手品補題を満たし、さらに概反転可能である。

この事実がパーコレーションとどのように関係するかは、次の命題にまとめられている。

命題 3.2. 自由部分群をもち、有限集合 S ⊆ G により生成される群 G が、手品補題を満たし、
かつ概反転可能であると仮定する。このとき、ケイリーグラフ Γ = Cay(G,S) は pc(Γ) < pu(Γ)

を満たす。

本節の残りでは、命題 3.2 の証明を与える。続く章では、命題 3.1 の内容を詳しく考察する。

3.2. 基礎的な確率論. 本節の内容は、[Gri89] の第 2 章および第 8 章、ならびに [DCT16] の第 1
節から抜粋して翻訳したものである。
有限集合あるいは可算集合 E を一つ取り、

Ω := {0, 1}E =
{
E から {0, 1} への写像},

B(Ω) :=
{
Ω の Borel 部分集合}

と定める。さらに、パラメータ 0 ≤ p ≤ 1 が与えられたとき、各 e ∈ E に対して平均 p のベル
ヌーイ確率測度 µe を取り、その直積測度 Pp = ⊗e∈Eµe を考えることで、確率空間 (Ω,B(Ω),Pp)

が得られる。
グラフ Γ 上のパーコレーションは、この確率空間を用いて自然に記述できる。辺集合 E(Γ) を

E とし、確率変数 Γ : ω 7→ Γ(ω) を
Γ(ω) :=

(
V(Γ), E(ω) := {e : ω(e) = 1}

)
(∀ω ∈ Ω)

と定めると、Γ(ω) は我々が考えてきた p-ランダム部分グラフ Γ[p] に他ならない。
ある事象 A ∈ B(Ω) が増加的（increasing）であるとは、[

ω ∈ A
]
∧
[
ω ≤ ω′] ⇒ ω′ ∈ A (∀ω, ω′ ∈ Ω)

が成り立つことをいう。また、可測関数 F : Ω → R が増加的であるとは、任意の t に対して集合
{ω : F (ω) > t} が増加的であること、すなわち ω ≤ ω′ ならば F (ω) ≤ F (ω′) が成り立つことを意
味する。
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補題 3.1. 正の実数 0 ≤ p1 ≤ p2 ≤ 1 を考える。このとき、任意の増加的事象 A ∈ B(Ω) に対して
Pp1(A) ≤ Pp2(A)

が成り立つ。さらに、任意の非負の増加的確率変数 X ≥ 0 に対して
Ep1 X ≤ Ep2 X

が成り立つ。

Proof. 二つの確率空間 (Ω,Ppi) を同時に扱うため、
(Y,P) :=

(
[0, 1], Leb

)E(Γ)
を考える。また写像 Ψi : Y → Ωを次のように定める。y ∈ Y に対し、Ψi(y)の e成分は、y(e) < pi

のとき 1、そうでないとき 0 とする。
このとき、Ψ∗

i P による各座標の値は 1 となる確率が pi であり、異なる座標は互いに独立であ
る。したがって、Ψ∗

i P と Ppi は同じ分布を持つ。
よって Ppi(A) は P(Ψ−1

i (A)) に等しい。ここで A が増加的であることから、任意の y ∈ Y に
対して、Ψ1(y) ∈ A ならば Ψ2(y) ≥ Ψ1(y) もまた A に属する。よって

Ppi(A) = P
(
Ψ−1

1 (A)
)
≤ P

(
Ψ−1

2 (A)
)
= Pp2(A)

が得られ、最初の主張が従う。
次に、X が増加的事象の特性関数である場合についても、同様に第二の主張が成り立つ。さ

らに、そのような特性関数の非負係数による線形結合 (∗) についても、同じ不等式が成り立つ。
任意の増加的確率変数 X に対して、0 ≤ f1 ≤ f2 ≤ . . . , limi fi = X となるような (∗) の関数 fi

を取ることができる。この関数列に単調収束定理を適用することで、一般の場合の第二の主張も
得られる。 □

この補題から、事実 2.3 および 2.7 は直ちに確認できる。
事実2.3および2.7の証明. 連結グラフ Γ の二点 x, y ∈ V(Γ) に対して、

{ω : x ↔Γ(ω) y} および {ω : #Cx = +∞}

はいずれも増加的事象である。これらの事象に補題 3.1 を適用すれば、主張が従う。 □

もう一つの応用として、事実2.6を証明しよう。
事実2.6の証明. まず、自由群 F2 = 〈a, b〉 の標準生成集合 S = a, a−1, b, b−1 に関するケイリーグ
ラフに対し、θ(0.91) > 0 が成り立つことを示す。そのために

AR(k) :=
{
ω : #{v ∈ ∂NR(id) : id ↔Γ(ω)∩NR(id) v} ≥ k

}
と定義する。この事象は NR(id) の中にある辺の開閉のみに依存し、外側の辺には依存しないこ
とに注意しよう。そこで、NR(id) の中にある辺の開閉のみを定めた事象の集まり

ER := {A ⊆ Ω :各 ω, ω′ ∈ A および e ⊆ NR(id) に対して ω(e) = ω′(e)}

を定め、以下を主張する。
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主張 3.5. パラメータ p > 5/6 を固定する。このとき、任意の R, k ≥ 0 および A ∈ ER かつ
A ⊆ AR(k) であるものに対して、

Pp(AR+1(2k)|A) ≥ 1− 10(1− p)

k

が成り立つ。

これを示すため、A を一つ固定し、A に属する部分グラフの中で id と繋がっている ∂NR(id)

上の頂点を v1, . . . , vN とする。これらと NR+1(id) を結ぶ辺はちょうど 3N 本（R = 0 のときは
4N 本）存在する。このうち M 本が開いていれば、id と連結な NR+1(id) の頂点の個数も正確
に M 個となる。したがって、二項分布 B(3N, p) に対してチェビシェフの不等式を適用すると、

Pp(AR+1(2k)|A) = P(B(3N, p) ≥ 2k) ≥ P(B(3k, p) ≥ 2k)

= 1− P
(
B(3k, p) ≤ 3kp− (3kp− 2k)

)
≥ 1− V ar(B(3k, p))

(3kp− 2k)2
≥ 1− 2.5k(1− p)

(0.5k)2

が従う。これで主張が示された。
主張 3.5 を繰り返し用いると、

Pp(AR(2
R)) ≥

R∏
i=1

(
1− 10(1− p)

2i

)
≥ 1−

R∑
i=1

10(1− p)

2i
≥ 1− 10(1− p)

を得る。この値は p > 9/10 のとき一様に正である。したがって、すべての R ≥ 0 に対する
AR(2

R) の共通部分も正の確率を持ち、これはすなわち θ(p) > 0 を示唆する。
次に、有限生成集合 S を備えた群 G が、自由部分群 H ' F2 = 〈a, b〉 を含む場合を考える。便

宜上、群同型 ρ : 〈a, b〉 → H を固定する。このとき、各 u ∈ a, b に対して、id と ρ(u) を結ぶ経路
γu を Γ = Cay(G,S) の中に取ることができ、その長さを Lu と書く。必要であれば、F2 ' 〈a, b〉
を F2 ' 〈ba, ab〉 に取り替えることで、La = Lb =: L と仮定できる。ここで、F2 の標準的なケイ
リーグラフの各辺に L− 1 個の頂点を挿入して辺の長さを L に引き伸ばしたグラフ T を考える。
各 g ∈ F2 を ρ(g) ∈ V(Γ) に写し、v ∈ a, b に対して g ∼ gv を結ぶ（長さ L の）辺を g · γv に対
応させることで、T から Γ への写像 ρ を定める。
この写像 ρ はある意味で真性である。実際、u, v ∈ a, b を固定すると、ρ(g)γu と γv が交わる

ような g ∈ F2 は有限個しか存在しない。なぜなら、そのような g に対して ρ(g) の S-語ノルム
は 2(diamS(γa) + diamS(γb)) 以下であり、かつ ρ は単射だからである。従って

M := sup
f∈E(Γ)

#ρ−1(f) + sup
v∈V(Γ)

#ρ−1v < +∞

が成り立つ
ここで 0.91/L < q < 1 を選び、p := 1− (1− q)M と定める。もちろん p は 0 と 1 の間にある。

各 f ∈ ρ(E(T )) に対して、次の開閉規則を課す：

f ∈ ρ(E(T )) ↔ e ∈ ρ−1(f) 가하나라도연결되어있음.
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そして T 上で q-パーコレーションを行ったとき、ρ(T ) の各辺の開閉は互いに独立であり、開く
確率は 1− (1− q)#ρ−1(f) となる。ここで補題 3.1 を用いると、

Pp

(
Γ(ω) ⊆ Γ における id の連結成分が無限に大きい)

≥ Pq

(
ρ(T (ω) ⊆ T ) ⊆ Γ における id の連結成分が無限に大きい)

が従う。さらに、ρ は（T の頂点集合上で）高々 M 対 1 の写像であるから、T (ω) ⊆ T が無限連
結成分を持つたびに、ρ(T (ω)) も無限連結成分を持つ。したがって

Pp

(
Γ(ω) ⊆ Γ における id の連結成分が無限に大きい)

≥ Pq

(
Γ(ω) ⊆ T における id の連結成分が無限に大きい) > 0

となる。以上で証明は完了である。 □

増加的事象について一点補足しておく。我々が扱う Ω 上の確率変数の多くは、E = e1, e2, . . .

の有限部分集合によって決定される確率変数の増加列の極限として表される。その一例として、
あるグラフ Γ = (V, E) 上のパーコレーションを考えよう。頂点集合の部分集合 A,B ⊆ V を固定
し、

fA,B :=
∑

a∈A,b∈B
1{

a↔Γ(ω)b
}

と定める。ここで En := {e1, . . . , en} とおくと、fA は
fk;A,B :=

∑
a∈A,b∈B

1{
id↔Γ(ω)∩Ena

}
という単調増加な確率変数列の極限として表される。各 k に対し、fk;A,B は高々有限個の辺
e1, . . . , ek の開閉のみに依存する。従って Ep(fk;A,B) が p に関して連続であることは明らかであ
る。また Ep(fn;A,B) と Ep(fA,B) はいずれも p に関して単調増加である。この場合、極限関数
Ep(fA,B) は左連続でなければならない。この事実を次に記録しておく。
補題 3.2. グラフ Γ = (V, E) および A,B ⊆ V に対して

χp(A ↔ B) :=
∑

a∈A,b∈B
Pp(a ↔ b)

は p に関して左連続である。すなわち、任意の p0 に対して
χp0(A ↔ B) = lim

p↗p0
χp(A ↔ B)

が成り立つ。
次に、Theodore Harris が [Har60] で初めて導入し、、Cees Fortuin、Pieter Kasteleyn、Jean

Ginibre が [FKG71] で一般化した Harris–FKG 不等式を紹介する。
補題 3.3. 二つの増加的事象 A,B に対して

Pp(A ∩B) ≥ Pp(A)Pp(B)

が成り立つ。また、有限分散をもつ二つの増加的確率変数 X,Y に対して
Ep(XY ) ≥ Ep(X)Ep(Y )

が成り立つ。
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Proof. 第二の主張、すなわち確率変数に関する主張のみを、集合 E の大きさについての帰納法
で証明する。まず E = {e1} が一元集合の場合には、以下の不等式を確認すれば十分である。実
数 a1 ≤ a2 および b1 ≤ b2 に対して、

(3.1)
(1− p)a1b1 + pa2b2 ≥ (1− p)a1b1 + pa2b2 − p(1− p)(a2 − a1)(b2 − b1)

=
(
(1− p)a1 + pa2

)(
(1− p)b1 + pb2

)
が成り立つ。これで #E = 1 の場合に主張が示された。
次に、E = {1, . . . , n} の場合の主張を仮定し、E = {1, . . . , n + 1} の場合の主張を示す。この

ために、X,Y を 1, . . . , n+ 1 上の増加的確率変数とする。各 w = (ω1, . . . , ωn) ∈ 0, 1n および
Z ∈ X,Y に対し、条件付き期待値

Ep[Z|w] = (1− p)Z(w, 0) + pZ(w, 1)

を定める。Ep[Z | ·]は 0, 1n 上の増加的確率変数であることが直ちに分かる。さらに、各 w ∈ 0, 1n

に対して
Ep[XY |w] := (1− p)X(w, 0)Y (w, 0) + pX(w, 1)Y (w, 1)

≥
(
(1− p)X(w, 0) + pX(w, 1)

)(
(1− p)Y (w, 0) + pY (w, 1)

)
= Ep[X|w]Ep[Y |w]

が成り立つ。ここで用いたのは Z(w, 0) ≤ Z(w, 1)（Z ∈ X,Y）および不等式 (3.1) である。これ
を用いると

Ep(XY ) = Ep[Ep[XY |ω1, . . . , ωn]]

≥ Ep

[
Ep[X|ω1, . . . , ωn] · Ep[X|ω1, . . . , ωn]

]
≥ Ep

[
Ep[X|ω1, . . . , ωn]

]
· Ep

[
Ep[Y |ω1, . . . , ωn]

]
(∵귀납가정)

≥ EpX Ep Y

が従い、E = 1, . . . , n+ 1 の場合の証明が完了する。残るのは E が（無限）可算集合の場合であ
る。この場合は、各 n ∈ Z>0 に対して

Xn(w) := Ep[X|w], Yn(w) := Ep[Y |w] (∀w ∈ {0, 1}n)

と定めた確率変数列に有限版の不等式を適用し、その後 L2-マルチンゲール収束定理を適用すれ
ばよい。 □

次の不等式を導入する前に、「証人」という概念を定義する。増加的事象 A ⊆ Ω = {0, 1}E お
よび ω ∈ A が与えられたとする。0 ≤ W ≤ ω が ω における A の証人 (witness for A in ω) で
あることは、

1W := {ω′ ∈ Ω : ∀e ∈ E [W (e) = 1 ⇒ ω′(e) = 1]} ⊆ A

が成り立つことをいう。直感のため、グラフ上のパーコレーションの言葉で言い換えよう。事象
A の元 ω ∈ Ω が与えられたとき、Γ(ω) で開いてるいくつの辺の集合 W が ω における A の証人
であるとは、W のすべての辺が開いている任意の Γ′ ⊆ Γ は必ず A の元になることを意味する。
二つの増加的事象 A,B に対し

A ◦B :=
{
ω ∈ Ω : supp f ∩ supp g = ∅ を満たす ω における A の証人 f および B の証人 g が取れる}

=
{
ω ⊆ {0, 1}E : ω における互いに交わらない A の証人と B の証人が共存する}
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と定める。これで、J. van den Berg と Harry Kesten が [vdBK85] で導入した BK 不等式を述べ
る準備が整った。

事実 3.6. すべての元が有限な証人をもつ増加的事象 A,B に対して、

Pp(A ◦B) ≤ Pp(A)Pp(B)

が成り立つ。

我々が実際に用いるのは、次の二つの系である。そのため、以下ではそれらの証明のみを紹介
する。

系 3.1. グラフ Γ の頂点 v1, . . . , vN , u1, . . . , uN ∈ V(Γ) を考える。このとき
(3.2)

Pp

(
ω : Γ(ω) における N 個の互いに異なる連結成分 C1, . . . , CN が存在し、各 i に対し、vi, ui ∈ Ci である

)
≤

N∏
i=1

Pp(vi ↔ wi)

が成り立つ。

Proof. 簡単のため N = 2 の場合のみ証明するが、一般の N に対しても同様に拡張できる。
任意の K ⊆ E(Γ) に対して

N(K) := {e : e は K のある元と少なくとも一つの頂点を共有する} = K ∪ {e : ∃f ∈ K[e ∼ f ]}

と定めると、式3.2の左辺には
(3.3)∑
v1,u1∈C1⊆Γ

∑
v2,u2∈C2⊆Γ\N(C1)

P[C1, C2 が Γ(ω) における（互いに異なる）二つの連結成分である]

=
∑

v1,u1∈C1⊆Γ

P[C1 が Γ(ω) における連結成分] ·
∑

v2,u2∈C2⊆Γ\N(C1)

P[C2 が Γ(ω) \N(C1) における連結成分]

という上限が与えらる。ここで等号が成り立つ理由は、C1 および C2 が与えられたとき、「C1 が
Γ(ω) における連結成分である」という事象と「C2 が Γ(ω) \N(C1) における連結成分である」と
いう事象は、それぞれ N(C1) の辺と N(C2) \N(C1) の辺の開閉のみに依存し、互いに独立だか
らである。さらに、C1 が何であっても∑
v2,u2∈C2⊆Γ\N(C1)

P[C2 が Γ(ω) \N(C1) における連結成分] = Pp[v2 ↔Γ(ω)\N(C1) u2] ≤ Pp[v2 ↔Γ(ω) u2]

が成り立つのは明らかである。したがって、3.3 の右辺は∑
v1,u1∈C1⊆Γ

P[C1 가 Γ(ω) 의연결성분임] · Pp(v2 ↔ u2) = Pp(v1 ↔ u1)Pp(v2 ↔ u2)

以下であり、これで証明は完了する。 □

第二の系を述べる前に、先に定義した「バリア」の概念を思い出しておこう。
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系 3.2. 点 x を含み、y を含まない集合 A ⊆ G に対して、次が成り立つ：

(3.4)

Pp(x ↔ y) ≤
∑
a∈∂A

∑
b∈∂Ac

Pp(x ↔A a)Pp(a ↔ b)Pp(b ↔ y)

≤
∑
a∈∂A

Pp(x ↔A a)Pp(a ↔ y).

Proof. まず、x ↔ y が成り立つ任意の部分グラフ Γ(ω) に対し、A∩Γ(ω) における x の連結成分
C と、a ∈ C ∩ ∂A およびその隣接点 b ∈ ∂Ac が存在して、b ↔Γ(ω)\N(C) y が成り立つことを観察
しよう。実際、x ↔Γ(ω) y を実現する経路 x = x0, x1, . . . , xn = y を一つ取り、xi ↔Γ(ω)∩A x を満
たす最大の i を選べば、xi+1 /∈ A でなければならない。このとき xi と xi+1 がそれぞれ a, b の
役割を果たす。以上より

Pp(x ↔ y) ≤
∑

x∈C⊆A

∑
a∈C∩∂A

∑
b∈∂Ac

Pp

(
A ∩ Γ(ω) における x の連結成分が C であり,

ab が開いていて、かつ Γ(ω) \N(C) 上で b ↔ y

)

が従う。ここで C, a, bが与えられると、「C が A∩Γ(ω)における連結成分である」こと、「a ↔ bで
ある」こと、および「Γ(ω)\ (N(C)∩A)上で bと y が繋がっている」ことは、それぞれ N(C)∩A、
辺 ab、および E(Γ) \N(C) の辺にのみ依存する独立な事象である。したがって

Pp(x ↔ y) ≤
∑

x∈C⊆A

∑
a∈C∩∂A

∑
b∈∂Ac

Pp

(
C が A ∩ Γ(ω) における連結成分である)

·Pp

(
ω(ab) = 1

)
Pp

(
a ↔

Γ(ω)\
(
N(C)∩A

) y)
≤

∑
x∈C⊆A

∑
a∈C∩∂A

∑
b∈Ac,a∼b

pPp (C が A ∩ Γ(ω) における) · Pp (b ↔ y)

=
∑

a∈∂A,b∈∂Ac,a∼b

pPp(x ↔A a)Pp(b ↔ y)

となり、主張が従う。 □

次にルッソの公式を紹介する前に、もう一つの概念を導入しておく。辺 e ∈ E とボンド配置
ω ∈ Ω が与えられたとき、f ∈ E : f 6= e 上で ω と一致するボンド配置はちょうど二つ存在する。
一つは e が開いている場合、もう一つは e が閉じている場合である。前者を ωe、後者を ωe と書
くことにする。すなわち、ωe, ωe のうち一方は ω と一致し、もう一方は ω から辺 e の開閉条件
を反転させたものである。
増加的な事象 A ⊆ Ω とボンド配置 ω ∈ Ω に対して、辺 e が ω において事象 A に決定的であ

る（e is pivotal in ω for A）とは、ωe ∈ A かつ ωe /∈ A であることを意味する。また、
{e が A に決定的} =

{
ω : e が ω において A に決定的}

と略する。
最後に、単調増加関数 f : [0, 1] → R と p0 ∈ (0, 1) に対する Dini 微分（Dini derivative）は(

d

dp

)
+

f

∣∣∣∣
p=p0

:= lim inf
ϵ→0+

f(p0 + ϵ)− f(p0)

ϵ

と定める。これで、Grigory Margulis および Lucio Russo によって確立された次の公式を紹介す
る準備が整った。
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命題 3.3. 増加的な事象 A と p0 ∈ (0, 1) に対して(
d

dp

)
+

Pp(A)

∣∣∣∣
p=p0

≥
∑
e∈E

Pp

(
e が A に決定的)

=
1

1− p0

∑
e∈E

Pp

(
ω(e) = 0かつ e が A に決定的)

が成り立つ。

Proof. まず E が有限集合の場合を考える。このとき
d

dp
Pp(A) =

d

dp

∑
ω∈A

p
∑

e ω(e)(1− p)#E−
∑

e ω(e)

=
∑
ω∈A

(
1

p

∑
e

ω(e)− 1

1− p

(
#E −

∑
e

ω(e)
))

· p
∑

e ω(e)(1− p)#E−
∑

e ω(e)

=
1

p(1− p)

∑
e∈E

Ep[(ω(e)− p) · 1ω∈A]

が計算により確認できる。ここで e ∈ E および ω|E\e を固定して E p
[
(ω(e)− p)1ω∈A

] を計算して
みよう。この値が正の値 p(1− p) を取るのは、ωe ∈ A かつ ωe /∈ A のときに限られる。実際、ωe

と ωe が同時に A に属するか、あるいは同時に A に属さない場合には、Ep

[
(ω(e)− p)1ω∈A

]
= 0

である。また、A が増加的であるため、ωe ∈ A かつ ωe /∈ A ということは不可能である。以上よ
り、右辺が ∑

e∈E Pp

(
e が A に決定的) に等しいことが分かる。

次に E が可算無限集合の場合を考える。まず、任意の有限部分集合 E ′ ⊆ E を取ろう。E ′ の中
にある辺は確率 p0 + ϵ で開き、E ′ の外にある辺は確率 p0 で開く確率測度を P′

p0,ϵ と書くと、

Pp0+ϵ(A) ≥ P′
p0,ϵ(A) ≥ Pp0(A)

が成り立つ。これは A が増加的である故だ。これを鑑みて前述の計算を行うと(
d

dp

)
+

Pp(A)

∣∣∣∣
p=p0

≥ lim
ϵ→0+

P′
p0,ϵ(A)− Pp0(A)

ϵ
=
∑
e∈E ′

Pp

(
e が A に決定的)

を得る。最後に、E ′ を E 全体へと拡大することで、主張の不等式が従う。 □

これで、感受率 χp := Ep #Cid の挙動に関する事実 2.8 を証明する準備が整った。以下の証明
は、Hugo Duminil-Copinと Vincent Tassionによる現代的な議論を踏襲したものである [DCT16]。
なお、Margulis-Russo の公式を用いない Hugo Vanneuville の別証明も参考になるので、併せて
参照されたい [Van25]。

命題 3.4. 有限生成集合 S をもつ無限群 G のケイリーグラフ Γ = Cay(G,S) に対し、臨界パラ
メータ

pc := inf
{
p ∈ [0, 1] : θ(p) := Pp(id ↔Γ(ω) ∞) > 0

}
を定める。このとき、感受率 χp := Ep #Cid は p < pc のもとで有限であり、p = pc では無限大
となる。
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Proof. 任意の有限集合 A ⊆ G に対し、
ϵA(p) := p

∑
x∈∂A,y∈∂Ac,x∼y

Pp(id ↔A x)

と定義する。さらに
p有限 := sup

{
p ∈ [0, 1] :ある有限集合 id ∈ A ⊆ G に対して ϵA(p) < 1

}
とおく。以下では、次の三つの主張を順に示す。
主張 3.7. 任意の p < p�� に対して、χp は有限である。
この主張を示すため、p < p�� を固定する。このとき、ϵA(p) < 1 を満たす有限集合 A が存在す

る。
次に、有限集合 H ⊆ G を任意に取る。u ∈ G に対し

χp,H(u) :=
∑
h∈H

Pp(u ↔ h)

定めると、H が有限であることから、#H という uによらない上限を持つ。つまり、supy∈G χp,H(y)

は有限である。ここで任意の u ∈ G に対して、系 3.2 を適用すると
χp,H\uA(u) ≤ p

∑
x∈∂A,y∈∂Ac,x∼y

Pp(0 ↔A x) · χp,H\uA(y)

が得られる。一方で χp,uA(u) ≤ #(uA) = #A であることは明らかである。以上を合わせると
χp,H(u) ≤ ϵA(p) · sup

y∈G
χp,H(y) + #A

が従う。ここで supy∈G χp,H(y) が有限であることを既に知っているので、

sup
y∈G

χp,H(y) ≤ #A

1− ϵA(p)

と結論できる。特に χp,H(id) ≤ #A/(1− ϵA) が成り立つ。の不等式は H の選び方に依存しない
ため、H を増大させることで χp ≤ #A/(1− ϵA) < +∞ が従い、主張が示される。
なお、この議論から特に p = 1 の場合には、ϵA(p) < 1 を満たす有限集合 id ∈ A ⊆ G は存在し

ないことが分かる。実際、G は無限群であるから χ1 = ∞ である。
主張 3.8. p = p�� のとき、χp = ∞ である。
これを確認するため、p = p�� とし、任意の n に対して∑

∥g∥S=n,∥h∥S=n+1,g∼h

Pp(id ↔ g) ≥ 1/p有限

が成り立つことを思い出そう。ここで、‖g‖S = n を満たす各 g に対し、|h|S = n+1 かつ g の隣
接点 h の個数は高々 #S 個である。したがって∑

g∈
(
Nn(id)

)c Pp(id ↔ g) ≥ 1

p#S

が従う。これを n = 1, 2, . . . について足し合わせると級数は発散し、主張が得られる。
残るのは p�� = pc を示すことである。すなわち、次を証明すればよい。
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主張 3.9. 任意のパラメータ p > p�� に対し、θ(p) > 0 である。

任意の n に対して、(
d

dp

)
+

Pp

(
id ↔

(
Nn(id)

)c) ≥
∑

e∈Nn(id)

Pp(e は id ↔Γ(ω)∩Nn(id)

(
Nn(id)

)c に決定的)

=
1

1− p

∑
id∈A⊆Nn(id),x∼y,x∈A ̸∋y

Pp

(
xy は id ↔Γ(ω)∩Nn(id)

(
Nn(id)

)c に決定的で
かつ A =

{
x : x 6↔

(
Nn(id)

)c} である
)

=
1

1− p

∑
id∈A⊆Nn(id),x∼y,x∈A ̸∋y

Pp

(
x ↔Γ(ω)∩A y で

かつ A =
{
x : x 6↔

(
Nn(id)

)c} である
)

が成り立つ。ここで、固定した部分集合 A ⊆ Nn(id) および x ∈ A 63 y を満たす辺 xy に対し、事
象 {x ↔A y} は A 内の辺のみに依存し、一方 {

A =
{
x : x 6↔

(
Nn(id)

)c}である} という事象は、
ちょうど ∂A および A の外部の辺のみに依存する。したがって、これら二つの事象は独立であ
り、同時に起こる確率はそれぞれの確率の積として表される。以上より、p ≥ p有限 のもとで
d

dp
Pp

(
id ↔

(
Nn(id)

)c) ≥ 1

1− p

(
inf
A

ϵA(p)

)
·

∑
id∈A⊆Nn(id)

Pp

(
A =

{
x : x 6↔

(
Nn(id)

)c} である)
≥ 1

1− p

∑
id∈A⊆Nn(id)

Pp

(
A =

{
x : x 6↔

(
Nn(id)

)c} である)
が従う。ところが、右辺の総和は {id 가 N c

n(id) と分離されている} という事象の分割になって
いる。したがって fn(p) := Pp

(
id ↔

(
Nn(id)

)c) は p ≥ p有限 のもとで ( d
dp)+fn(p) ≥ 1− fn(p) を

満たす。これより、p ∈ (pc, 1] に対して fn(p) ≥ 1− e−(p−pc) > 0 が得られる。同じ範囲の p につ
いて θ(p) = limn fn(p) ≥ 1− e(p−pc) > 0 も直ちに従う。以上により p有限 = pc が示され、証明は
完了する。 □

次に、無限連結成分の個数 N∞ の挙動を考察する。この証明においては、群の作用が本質的
な役割を果たす。

補題 3.4. ケイリーグラフ Γ = Cay(G,S) に対する p-パーコレーション確率分布 Pp は、群 G の
作用に関して不変であり、かつエルゴード的である。

Proof. まず、有限個の辺 e1, . . . , en の開閉状態のみに依存する事象 A と任意の群元 g ∈ G に対
して Pp(A) = Pp(gA) が成り立つことは明らかである。ここで

P := {有限個の辺のみに依存する事象},L := {G の作用に関して確率値が不変な事象}

と定めると、P は L に含まれる π-系であり、L は λ-系である。したがって Dynkin の π–λ 定理
より、L はすべてのボレル集合を含む。これにより、Pp が群作用に関して不変であることが示
された。
次に、二つの集合 A,B ⊆ E の 対称差を A∆B := (A \B) ∪ (B \A) と定義する。さらに

L :=
{
A : P の元列 {An}n>0 が存在し、lim

n
Pp(A∆An) = 0

}
とおくと、Lもまた λ-系となる。再び Dynkinの π–λ定理より、Lはすべての Borel集合を含む。
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以上を踏まえ、Pp が G-エルゴード的であることを示す。G-不変な任意の事象 A を取り、任意
の ϵ > 0 を与える。すると A ∈ L であるから、Pp(A \ A′) < ϵ を満たす A′ ∈ P を取ることがで
きる。このとき A′ は、ある有限個の辺 e1, . . . , en の開閉状態のみに依存する。ケイリーグラフ
Cay(G,S) において G が真性に作用するため、{g : ある i, j に対して g(ei) = ej} は有限集合で
ある。一方、G 自身は無限集合であるから、この集合の外にある元 h ∈ G を選ぶことができる。
このとき、A′ と hA′ は互いに重ならない辺集合に依存するため、独立な事象である。したがって

Pp(A) = Pp(A ∩ hA) =2ϵ Pp(A
′ ∩ hA′) = Pp(A

′)Pp(hA
′) =2ϵ+ϵ2

(
Pp(A)

)2
が成り立つ。これが任意の 0 < ϵ < 1 に対して成立するためには、Pp(A) は 0 または 1 でなけれ
ばならない。以上によりエルゴード性が証明された。 □

事実 2.4 は、この補題から直ちに従う。無限連結成分の個数という確率変数は、群 G の作用
に関して不変であるからである。最後に、事実 2.9 を証明する。
事実2.9 の証明. ある p、あるケイリーグラフ Γ = Cay(G,S)、および N ∈ 0, 1, 2, 3, . . . に対して、
ほとんど確実に Γ[p] がちょうど N 個の無限連結成分をもつと仮定する。すなわち、N = +∞ の
場合を排除して議論を始める。この証明では、

Bk := {vw ∈ V(Γ) : v, w ∈ Nk(id)}

と定める。また、i = 0, 1 に対して、{ω :すべての e ∈ Bk について ω(e) = i が成り立つ} を ik と
表す。次に、各正整数 k ∈ Z>0 に対して、

Ek;開 := {ω : Γ(ω) は N 個の無限連結成分をもつ} ∩ 1k,

Ek;閉 := {ω : Γ(ω) は N 個の無限連結成分をもつ} ∩ 0k,

Ek;一意 := {ω : Γ(ω) \Bk の無限連結成分のうち、Nk(id) と接しているものは高々一つである}

を定義する。まず、Ek;開 の補集合は 1c
k と Γ(ω) の無限連結成分の個数が N ではない の和集合

である。前者の確率は 1− p#Bk、後者の確率は仮定より 0 であるから、Pp(Ek,開) = p#Bk が成り
立つ。同様にして、Pp(Ek,閉) = (1− p)#Bk も従う。
次に、Ek;一意 は E(Γ) \Bk に属する辺のみに依存する事象である。仮に Ec

k;一意 が正の確率を
もつとすると、

Pp

(
Ec

k;一意 ∩ 0k

)
= P p

(
Ec

k;一意
)
Pp(0k) = P p

(
Ec

k;一意
)
(1− p)#Bk > 0

となる。一方、この集合と Ek;閉 はいずれも 0k の部分集合であり、その確率の和は Pp(0k) =

(1− p)#Bk を上回る。したがって、それらの共通部分もまた正の確率をもたなければならない。
ところが、Ec

k;一意 ∩ Ek;閉 は

E′ :=

{
ω :

Γ(ω) \Bk における無限連結成分がちょうど N 個存在し、
そのうち Nk(id) と接しているものが少なくとも一つある

}
に含まれる。したがって、E′ も正の確率をもつ。ここで E′ は E(Γ) \Bk の辺のみに依存する事
象であるから、

Pp(E
′ ∩ 1k) = Pp(E

′)P(1k) > 0

が成り立つ。
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しかし Γ(ω) \ Bk における少なくとも二つの無限連結成分が Bk に含まれる辺によって連
結される。その結果、E′ ∩ 1k における無限連結成分の個数は N − 1 個以下となる。これは
Pp(Ek;開) < pk を意味し、前の計算と矛盾する。
以上により、P(Ek;유일) = 0 でなければならない。これがすべての k に対して成り立つため、

∪kE
c
k;一意 = {ω : Γ(ω) における無限連結成分は少なくとも二つある}

も確率 0 の事象である。したがって N = 0 または N = 1 であり、証明は完了する。 □

3.3. 行列解析学. 本節および次節では、[Hut19] の理論を解説する。ただし、いくつかの細部に
ついては補足を加える。
本節および次節では、[Hut19] の理論を解説する。ただし、いくつかの細部については補足

を加える。有限生成された無限群 G に対し、（対称的な）有限生成集合を一つ選んで作られる
Cayley グラフ Γ を、この節全体を通して固定する。このとき、Γ の頂点集合 V(Γ) は G と一致
する。また、Γ の定義に用いた有限生成集合の大きさを D と書くことにする。このとき Γ は、
すべての頂点において次数が D に等しい正則グラフ（regular graph）である。本節の中心とな
るのは、行列の L2-ノルムである。まず、G-次元ベクトル v ∈ RG に対して

‖v‖2 :=
√∑

g∈G

(
v(g)

)2
と定め、| · |2-ノルムが有限であるようなベクトル全体の空間を L2(G) と表す。このとき、Cauchy–
Schwarz の不等式により ‖

∑
i v‖2 ≤

∑
i ‖v‖2 が成り立つことに注意せよ。次に、G 上で定義され

た非負対称行列 M : RG×G
≥0 に対して

‖M‖2→2 := sup
{
‖Mf‖2
‖f‖2

: f ∈ L2(G), f 6= 0

}
と定義する。このとき ‖M1M2‖2→2 ≤ ‖M1‖2→2 · ‖M2‖2→2 が成り立つことは容易に確認できる。
同様に

‖M‖1→1 := sup
v∈G

∑
u∈G

M(u, v)

を定義することができる。ここで次を確認しよう。

事実 3.10. 意の非負対称行列 M : RG×G
≥0 に対して
‖M‖2→2 ≤ ‖M‖1→1

が成り立つ。特に、|M |1→1 が有限であるとき、M は L2(G) 上の連続作用素である。

以下の証明は [Woe00] の第 10.A 節からの抜粋である。
Proof. スカラー倍を考慮すれば、‖M‖1→1 ≤ 1 の場合のみを示せば十分であるので、その場合に
集中する。このとき任意の n ≥ 0 に対して Mn は各成分が有限値をもつ非負行列であり、さら
に ‖Mn‖1→1 ≤ 1 が成り立つことは直ちに確認できる。まず、L2(G) の稠密部分空間である、有
限サポートをもつ非負ベクトル全体の集合

c0(G) :=
{
f ∈ RG

≥0 : #{g : f(g) 6= 0} < +∞
}
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を考える。それに伴い、非負ベクトル全体の集合 P (G) := RG
≥0 を考える。任意の f1, f2 ∈ P (G)

に対して
(3.5) 〈f1,Mf2〉 =

∑
u∈G

f1(u) ·
∑
v∈G

M(u, v)f2(v) =
∑
v∈G

f2(v) ·
∑
u∈G

M(v, u)f1(u) = 〈Mf1, f2〉

が成り立つことを記憶しておこう。
まず f ∈ c0(G) ∩ P (G) を一つ取る。すなわち、有限個の元 g1, . . . , gN ∈ G および正の定数

c1, . . . , cN > 0 が存在して、g = gi のとき f(g) = ci、それ以外では f(g) = 0 であるとする。示す
べきは 〈Mf,Mf〉 ≤ 〈f, f〉 である。もし Mf = 0 であれば、この不等式は自明に成り立つので、
以下では Mf 6= 0 の場合を考える。
このとき、〈Mnf,Mnf〉 = 〈f,M2nf〉 =

∑N
i=1

∑N
j=1 ciM

2n(gi, gj)cj は有限和であるから、その
値は有限である。さらに、Cauchy–Schwarz の不等式により

〈Mn+1f,Mn+1f〉2 = 〈Mnf,Mn+2f〉2 ≤ 〈Mnf,Mnf〉 · 〈Mn+2f,Mn+2f〉

が成り立つ。f 6= 0 6= Mf を初期条件としてこの不等式を帰納的に用いると、任意の n に対して
Mnf は零ベクトルでないことが分かる。また an := ⟨Mnf,Mnf⟩

⟨Mn−1f,Mn−1f⟩ とおくと、これは単調増加列
である：

(3.6) 〈Mf,Mf〉
〈f, f〉

≤ 〈M2f,M2f〉
〈Mf,Mf〉

≤ 〈M3f,M3f〉
〈M2f,M2f〉

≤ . . . .

ここで背理法を適用するために a1 > 1 と仮定する。すなわち、

am1 >

(∑N
i=1 ci

)2
〈f, f〉

を満たす十分大きな m を取ることができる。このとき

〈Mmf,Mmf〉 = 〈f, f〉 ·
m∏
i=1

ai >

(
N∑
i=1

ci

)2

が成り立つ。一方で

〈Mmf,Mmf〉 = 〈f,M2mf〉 =
N∑
i=1

ci ·
N∑
j=1

M2m(gi, gj)cj

≤
N∑
i=1

ci ·

 Nmax
j=1

cj ·
∑
j

M2m(gi, gj)


≤

N∑
i=1

ci ·
Nmax
j=1

cj ≤

(
N∑
i=1

ci

)2

が成り立ち、これは矛盾である。したがって a1 ≤ 1、すなわち ‖Mf‖2 ≤ ‖f‖2 が従う。
次に f ∈ L2(G) ∩ P (G) の場合について 〈Mf,Mf〉 ≤ 〈f, f〉 を示す。G を適当に g1, g2, . . . と

並べ、
fn(gj) =

{
f(gj) j = 1, . . . , n

0 j > n
28



と定めると、各 fn は c0(G) ∩ P (G) に属する。したがって上で示した結果より 〈Mfn,Mfn〉 ≤
〈fn, fn〉 が成り立つ。また、

〈f, f〉 =
∞∑
j=1

f(gj)
2 = lim

n→+∞

n∑
j=1

f(gj)
2 = lim

n→+∞
〈fn, fn〉

であり、さらに M,f ≥ 0 を用いると

〈Mf,Mf〉 =
∞∑
i=1

∞∑
j=1

f(gi)f(gk)M
2(gi, gk) = lim

n→+∞

n∑
i=1

n∑
j=1

f(gi)f(gk)M
2(gi, gk) = lim

n→+∞
〈Mfn,Mfn〉

が従う。これらを合わせることで、望む不等式が得られる。
残る場合は f ∈ L2(G) \ P (G) のときであるが、このとき各成分に絶対値を施したベクトル |f |

は
〈Mf,Mf〉 ≤

〈
M |f |,M |f |

〉
≤
〈
|f |, |f |

〉
= 〈f, f〉

を満たす。以上で証明は完了する。 □

次に、p ∈ [0, 1] に対し、G から G への対称行列 Tp : G
2 → R≥0 を次のように定める：

Tp(u, v) := Pp(u ↔ v) := Pp(u ↔ v).

前に行列の L2-ノルムを定義したが、これを用いて
p2→2 := sup {p : ‖Tp‖2→2 < ∞}

と定義する。ここで覚えておくことは、各 p ∈ [0, pc) および各 u ∈ G に対して∑
v∈G

Tp(u, v) =: χp < +∞

であることだ。したがって、上記の p に対して ‖Tp‖2→2 ≤ ‖Tp‖1↔1 ≤ χp < +∞ であり、すなわ
ち、p1↔1 ≤ pc ≤ p2→2 である。
一方で、

pu := inf
{
p: ほとんど確実に Γ[p] が無限連結成分をちょうど一個もつ}

と定義した。定義上 pc ≤ pu は直ちにわかる。また、任意の p > pc に対し、Pp(C(id) が非有界)

は正の実数であることを思い出そう。この値を ϵp と記す。各 q > pu に対し、Γ[p] が無限連結成
分をちょうど一個持つ確率が 1 になるような q > p ≥ pu が存在する。このような p を選んだと
き、任意の u, v ∈ Γ に対し、

Pp(u ↔ v) ≥ Pp

(
u が（一意的な）無限連結成分に含まれる)

·Pp

(
v が（一意的な）無限連結成分に含まれる) ≥ ϵ2p > 0

となる。つまり、Tp は各項が ϵ2p より大きい無限行列である。これより

χq ≥ χp =
∑
g∈G

Pp(id ↔ g) ≥
∑
g∈G

ϵ2p = +∞

と結論できる。同様に、‖Tq‖2→2 もまた無限大である。よって、p1→1 ≤ p2→2 ≤ pu である。
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我々の目標は pc < p2→2 である。言い換えると、pc = p2→2 の可能性を排除することである。
ここに至るための基準をこれから述べる。まず、

A(u, v) :=

{
1 Γ 内で u ∼ v

0 そのほか

という行列を定義する。この行列を隣接行列 (adjacency matrix) と呼ぶ。本節の初めに Γ が
次数 D の正則グラフであると宣言した。したがって、‖A‖2→2 ≤ ‖A‖1→1 = D である。これを用
いて次の補題を証明する。

補題 3.5. 任意の 0 ≤ p < p2→2 に対して

‖Tp‖2→2 ≥
1− p

D(p2→2 − p)

が成り立つ。

Proof. 이를귀류법으로증명하기위해, 어떤 q > p2→2 에대해

‖Tp‖2→2 <
1− p

D(q − p)

라고가정한뒤모순을이끌어내겠다.
이번증명에서는 Γ = (V(Γ), E(Γ)) 를복제하겠다. 즉, Γ(1),Γ(2) 는 Γ 와똑같이생긴그래프이다. 이

때 e ∈ E(Γ) 에대응하는 Γ(i) 의모서리를 e(i) 라고표기하겠다. 꼭짓점에대해서도비슷하게하겠다.
이제, Γ(1) 에서는 p-パーコレーション을, Γ(2) 에서는 q−p

1−p -パーコレーション을독립적으로진행
한뒤포개어융합하겠다. 더엄밀하게말하자면, Γ(1)[p] 와 Γ(2)[ q−p

1−p ] 를독립적으로진행한뒤, Γ′ ⊆ Γ 를
다음과같이정의한다는것인데, 어떤모서리 e ∈ E(Γ) 가 Γ′ 에서열려있을필요충분조건은 e(1) 가 Γ(1)

에서열려있거나혹은 e(2) 가 Γ(2) 에서열려있다는것이다.
이렇게하면, Γ′ 에서어떤모서리 e ∈ E(Γ) 가닫혀있을확률은 (1− p) · (1− q−p

1−p) = 1− q 이다. 또 Γ

의각모서리의 Γ′ 에서의개폐여부는독립적이다. 따라서 Γ′ 는 q-パーコレーション을모사하는모델이
다.
이때임의의 u, v ∈ G 에대해

{
u ↔Γ′ v

}
⊆

∞∑
N=0

∑
{vi,ui}Ni=1⊆G


순서쌍 (

u
(1)
0 , v

(1)
1

)
, . . . ,

(
u
(1)
N−1, v

(1)
N

) 이서로다른
N 개의 Γ(1)-연결성분에들어있고,

각 i 마다v
(2)
i+1u

(2)
i+1 ∈ E(Γ(2))

: u0 = u, vN+1 = v


이다. 왼쪽사건에들어있는원소, 즉 u 와 v 가어떤 Γ′-경로로이어져있는경우에, u 와같은 Γ(1)-연결성
분에있으면서 P 상에서가장나중에오는점을 v1 이라고잡으면 v1 과그다음점은 Γ(1) 에서이어져있을
수없고따라서 Γ(2) 의모서리로연결되어있기때문이다.
이제각 N 및 {vi, ui}Ni=1 ⊆ G 에대해, (u0 = u, vN+1 = v 로설정했을때)

(3.7)

P


Γ(1) 안의서로만나지않는경로

P0, . . . , PN 이존재해 u
(1)
i ↔Pi v

(1)
i+1 이고,

v
(2)
i+1u

(2)
i+1 ∈ E(Γ(2))

: u0 = u, vN+1 = v

 ≤
N∏
i=0

Pp(ui ↔ vi) ·
(
q − p

1− p

)N

·
N∏
i=1

A(vi, ui)
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인데, 그이유를설명하겠다. 먼저, Γ(1) 에서의연결여부와 Γ(2) 에서의연결여부는독립이다. 더하여,

P
(
Γ(1) 안의서로만나지않는경로 P0, . . . , PN 이존재해 u

(1)
i ↔Pi v

(1)
i+1 임

)
≤

N∏
i=0

Pp(ui ↔ vi)

인것은 BK 부등식 (혹은따름정리 3.1) 에의한것이다. 또, v(2)1 u
(2)
1 , . . ., v(2)N u

(2)
N 각각이 E(Γ(2)) 에속

하는사건은모두독립적이고각각의확률은 A(vi, ui) ·
(
q−p
1−p

)
이다. 이로써식 3.7의설명이끝난다.

이를요약하면

Tq(u, v) = Pq(u ↔ v) ≤
∞∑

N=0

Tp

(
q − p

1− p
ATp

)N

(u, v)

임을알수있다. 따라서,

(3.8)
‖Tq‖2→2 ≤

∥∥∥∥∥
∞∑

N=0

(
q − p

1− p

)N

Tp(ATp)
N

∥∥∥∥∥
2→2

≤
∞∑

N=0

(
q − p

1− p

)N ∥∥Tp(ATp)
N
∥∥
2→2

≤ ‖Tp‖2→2 ·
∞∑

N=0

(
q − p

1− p
‖A‖2→2‖Tp‖2→2

)N

임을확인할수있다. 이때, ‖A‖2→2 ≤ D 라는것은일전에확인했다. 따라서
q − p

1− p
‖A‖2→2‖Tp‖2→2 ≤

q − p

(1− p)
D‖Tp‖2→2 < 1

이다. 이는식 3.8 우변의급수가수렴한다는것을의미한다. 하지만 q > p2→2 이기에좌변은무한대여야
하고, 이는모순이다. 이로써증명이끝난다. □

이제, 각각의 0 ≤ p < pc 에대해

ι(Tp) := inf
{∑

u∈A,v/∈A Pp(u ↔ v)

χp#A
: A 는 G 의유한집합

}
= 1− sup

{∑
u,v∈A Pp(u ↔ v)

χp#A
: A 는 G 의유한집합

}
를정의하자. 이는등주상수 (isoperimetric constant) 라고불린다. 아래증명은 [Woe00, Prop I.4.3] 혹
은 [LP16, Lem 6.8] 에서가져온것이다.

補題 3.6. 각각의 0 < p < pc 에대해다음식이성립한다:

‖Tp‖2→2 ≤ χp

√
1− ι(Tp)2.

Proof. 먼저, 각각의 f ∈ c0(G) ∩ P 에대해

(3.9) ι(Tp)‖f‖1 ≤
1

2χp

 ∑
v,w∈G

|f(v)− f(w)|Pp(v ↔ w)


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가성립한다는것을보이겠다. 먼저, 우변은∑
v,w∈G:f(v)>f(w)

(
f(v)− f(w)

)
Pp(v ↔ w)χ−1

p =
∑
w∈G

∑
v∈G:f(v)>f(w)

χ−1
p Pp(v ↔ w) ·

∫ f(v)

f(w)
1 dt

=

∫ ∞

0

 ∑
v,w:f(w)≤t<f(v)

χ−1
p Pp(v ↔ w)

 dt

= χ−1
p ·

∫ ∞

0

 ∑
v∈{f>t},w/∈{f>t}

Pp(v ↔ w)

 dt

임을알수있다. 이때, 피적분항은등주상수로다스릴수있다. 즉,

χ−1
p ·

∫ ∞

0

 ∑
v∈{f>t},w/∈{f>t}

Pp(v ↔ w)

 dt ≥ χ−1
p

∫ ∞

0
ι(Tp) · χp#{u : f(u) > t} dt

= ι(Tp)
∑
u∈G

f(u) = ι(Tp)‖f‖1

이기에주장이증명되었다.
이제임의의 f ∈ c0(G) ∩ P 에대해부등식 3.9을활용하면

ι(Tp)
2‖f‖42 = ι(Tp)

2‖f2‖21 ≤
1

4χ2
p

 ∑
v,w∈G

|f2(v)− f2(w)|Pp(v ↔ w)

2

=
1

4χ2
p

 ∑
v,w∈G

∣∣f(v)− f(w)
∣∣(f(v) + f(w)

)
Pp(v ↔ w)

2

≤ 1

4χ2
p

 ∑
v,w∈G

Pp(v ↔ w)
(
f(v)− f(w)

)2 ·

 ∑
v,w∈G

Pp(v ↔ w)
(
f(v) + f(w)

)2 (∵코시-슈바르츠)

을얻는다. 이때,∑
v,w∈G

Pp(v ↔ w)
(
f2(v) + f2(w)± 2f(v)f(w)

)
=
∑
v∈G

χpf
2(v) +

∑
w∈G

χpf
2(w)± 2〈f, Tpf〉 = 2χp〈f, f〉 ± 2〈f, Tpf〉

이다. 이로부터
‖f‖42ι(Tp)

2 ≤ ‖f‖42 −
〈f, Tpf〉2

χ2
p

임을알수있다. 이는다시말해
χ2
p

(
1− ι(Tp)

2
)
≥ 〈f, Tpf〉2

〈f, f〉2

임을의미한다. 또 〈|f |, Tp|f |〉 ≥ 〈f, Tpf〉 이므로, 이계산은임의의 f ∈ c0(G) 에대해서도유효하다. 마
지막으로, c0(G) 는 L2(G) 안에서조밀하고 Tp 는연속작용소이므로이계산은 f ∈ L2(G) 에대해서도
유효하다. 따라서

K := sup
{
|〈f, Tpf〉|
‖f‖2

: f ∈ L2(G) \ {0}
}
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는 χp

√
1− ι(T 2

p ) 보다작거나같다.
이제 K ≥ ‖Tp‖2→2 만확인하면된다. 이를위해임의의 f ∈ L2(G) 를가져온뒤 g = Tpf 로두자. 그

러면임의의 t > 0 에대해
4〈tg, Tpf〉 = 〈Tp(f + tg), f + tg〉 − 〈Tp(f − tg), f − tg〉

≤ K|f + tg|2 +K|f − tg|2

이므로
4〈g, Tpf〉 ≤ 2K

(
1

t
‖f‖22 + t‖g‖22

)
(∀t > 0)

가되어야한다. 이것이가능하려면 4〈g, Tpf〉 ≤ 4K‖f‖2‖g‖2 여야하고, 이로부터
〈Tpf, Tpf〉

‖f‖22
≤ K · ‖Tpf‖2

‖f‖2
≤ K2

임을알수있다. 이로부터 K ≥ ‖Tp‖2→2 가증명되었다. (사실둘은같은값이다.) □

3.4. 명제 3.2의증명. 보조정리 3.5 및 3.6를결합하면, 0 ≤ p < pc 각각에대해
1

D
≤ 1

1− p
(p2→2 − p) · χp

√
1− ι(Tp)2

임을알수있다. 또, 우리가다루는군들은자유군을부분군으로가지기에사실 2.6에의해 pc < 1 이다. 따
라서, 만약 p2→2 = pc < 1 이성립한다면,

lim
p↗pc

(pc − p)χp ·
√
1− ι(Tp)2 =

1

D(1− pc)
> 0

이어야만한다.
이를감안했을때, pc < p2→2 를통해명제 3.2를증명하기위해서는다음명제 3.5와명제 3.6만증명하

면되고, 이것이이절의내용이다.

命題 3.5. 자유부분군을가지는대충반전가능한군 G 와그유한생성집합 S 를하나고정하자. 그러면
케일리그래프 Γ = Cay(G,S) 의임계변수 pc = pc(Γ) 에대해,

lim sup
p↗pc

(pc − p)χp < +∞

가성립한다.

Proof. 구간 p = [0, pc) 위에서 χp 는단조증가함수였다는것을기억하라. 우리목표는어떤양수 C > 0

에대해 (
d

dp

)
+

χp ≥ Cχ2
p

구간 p ∈ [0.5pc, pc) 위에서성립한다는것을보이는것이다. 실제로, 위부등식만있으면

χ−1
p = −

(
χ−1
pc − χ−1

p

)
≥ −

∫ pc

p

(
d

dp

)+

χ−1
p dp =

∫ pc

p
χ−2
p

(
d

dp

)
+

χp dp = C(pc − p)

가동일한구간에서성립함을확인할수있다.
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이제감수율의디니도함수를계산해보겠다. 마굴리스-루쏘의공식에의해,

(3.10)

(
d

dp

)
+

∑
g∈G

Pp(id ↔ g) ≥ 1

1− p

∑
g∈G

∑
e∈E(Γ)

Pp

(
e 가 id ↔ g 에중추적이고닫혀있음)

=
1

1− p

∑
g∈G

∑
v,w∈G,v∼w

Pp (id ↔ v ∧ v 6↔ w ∧ w ↔ g)

=
1

1− p

∑
g∈G

∑
v,w∈G,v∼w

Pp

(
v−1 ↔ id ∧ id 6↔ v−1w ∧ v−1w ↔ vg

)
=

1

1− p

∑
g,h∈G

∑
s∈S

Pp (h ↔ id ∧ id 6↔ s ∧ s ↔ g)

임을알수있다. 여기서세번째줄에서는확률이 v−1 ∈ G 의작용에불변임을사용했다.
다음으로, 군 G 가대충반전하다는사실을구현하는부분집합 A1, . . . , AN ⊆ G 및원소 g1, . . . , gN 을

잡자. 이제임의의유한집합 A ⊆ G 및임의의원소 a ∈ G 마다

I(a,A) :=

{
1 A ⊆ aAi ⊊ agiA

c
i이게끔하는 i 가존재함

0 그외의경우
를정의하자. 군 G 가대충반전가능하기에,

∑
a∈A I(a,A) 는항상 #A 의절반이상이다.

이제, パーコレーション을위한확률공간 Ω 위에서함수 F : Ω×G → R 을다음과같이잡아주겠다:

F (ω, a) := I
(
a,Cid(ω)

)
· 1a∈Cid(ω).

그러면 p 의값이그무엇이든∑
a∈G

Ep F (ω, a) = Ep

∑
a∈Cid(ω)

I
(
a,Cid(ω)

)
≥ Ep

(
1

2
#Cid(ω)

)
=

1

2
χp

임을알수있다. 그런데좌변의항은∑
a∈G

Ep F (ω, a) =
∑
a∈G

Ep F (ω, a−1) = Ep

∑
a:a−1∈Cid(ω)

I
(
a−1, Cid(ω)

)
= Ep

∑
a:id∈Ca(ω)

I
(
id, Ca(ω)

)
= Ep

∑
a∈Cid(ω)

I
(
id, Ca(ω)

)
= Ep

[
#Cid(ω) · I

(
id, Cid(ω)

)]
=

N∑
i=1

Ep

[
#Cid(ω) · 1Cid(ω)⊆Ai⊊giAc

i

]
임을알수있다. 이부등식들을조합하면, 어떤 i ∈ {1, . . . , N} 가존재하여

Ep

[
#Cid(ω) · 1Cid(ω)⊆Ai⊊giAc

i

]
≥ 1

2N
χp

가성립함을알수있다. 마찬가지이유로,

Ep

[
#Cgj (ω) · 1Cgi (ω)⊆giAi

]
≥ 1

2N
χp
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임을알수있다. 또한, 확률변수 #Cid(ω) · 1Cid(ω)⊆Ai
및 #Cgi(ω) · 1Cgi (ω)⊆giAi

는독립적인변수이다.
이들은각각 Ai 및 giAi 라는서로겹치지않는모서리집합에의존하기때문이다. 따라서,

Ep

[
#Cid(ω) · #Cgi(ω) · 1Cid(ω)⊆Ai ∧ Cgi (ω)⊆giAi

]
≥ 1

4N2
χ2
p

라는계산을얻는다.
이제, 적당한 0 < L′ < L 에대해, id 에서 gi 를잇는 S-경로 γi = (v0, v1, . . . , vL) 이면서

v0, . . . , vL′ ∈ giA
c
i 및 vL′+1, . . . , vL ∈ Ac

i 인그러한경로를하나잡자. 이는 g1, . . . , gN 및 A1, . . . , AN

에대해얹혀진가정이었다. 이제 v := vL′ 과 v′ = vL′+1 을잡고, γi 의 v 이전부분을 [v0v], v′ 이후부분
을 [v′gi] 로적겠다.
이제어떤양수 cp 에대해

Ep

[
(#Cv)(#Cv′)1v ̸↔v′

]
≥ cp Ep

[
#Cid(ω) · #Cgi(ω) · 1Cid(ω)⊆Ai ∧ Cgi (ω)⊆giAi

]
임을보이겠다. 이를위해, 우변에서다루는상태 ω ∈ Ω 를좌변에맞게끔변형하는사상 F : Ω → Ω 를정
의하겠다. 먼저 Cid(ω) ⊆ Ai 이고 Cgi(ω) ⊆ giAi 인 ω ∈ Ω 를준비하자.

(1) 먼저, [v0v] 및 [v′gi] 의모든모서리는열고, vv′ 는닫아주겠다.
(2) 다음으로, [v0v] 에인접해있는모서리중최소한끝점이 Cid(ω) 에들어있지않은모서리는닫아주
겠다.

(3) 마찬가지로, [v′gi] 에인접해있는모서리중최소한끝점이 Cgi(ω) 에들어있지않은모서리는닫아
주겠다.

이작업이끝났을때만들어지는상태를 F (ω) 라고적겠다.
위에서수행한조작은 (랜덤하지않고정확하게명시된) N1(γi) 안의모서리의개폐여부만바꿨다는사

실에주목하라. 즉, 기껏해야 #S · L 개의모서리만조작한것이다. 따라서각상태 ω 마다 #F−1(ω) 의
크기는 (#S) · L 이하이고, 또라돈-니코딤도함수의크기에관해

dPp F
∗(·)

dPp(·)
≥ min

(
1− p

p
,

p

1− p

)(#S)·L

라는부등식이성립한다. 이제상태 F (ω) 의그래프에서
Cid(F (ω)) = Cid(ω) ∪ [v0v]

임을확인하고자한다. 먼저, Cid(ω) 의임의의점이 Γ(F (ω)) 에서어떻게들어있는지보기위해, id 에서
그점으로향하는 Γ(ω)-경로에속하는모서리 e 를잡자. 이때 v′ /∈ Ai ⊇ Cid(ω) 이므로 e = vv′ 일리는
없기에조작 (1) 이 e 를닫을일은없다. 조작 (2) 가 e 를닫을일도없다. 마지막으로, Cid(ω) ⊆ Ai 는
[v′gi] 와만나지않기에, 조작 (3) 이 e 를닫을일도없다. 즉, F (ω) 에서도이경로는살아있고, Cid(ω) 의
임의의점은 Γ(F (ω)) 에서도 id 에연결되어있다.
다음으로, [v0v]위의각모서리들은 (기존개폐여부와관계없이)조작에의해열리니모두 Cid(F (ω))에

속한다. 이제반대방향포함관계를보이기위해, Γ(F (ω))에서 id와연결되어있는점 u과,그것을구현하
는 Γ(F (ω))-최단경로 (id = u0, u1, . . . , uT = u) 를생각하겠다. 이때 t = max{i : ui ∈ Cid(ω)∪ [v0v]}
라고하자. 만약 t = T 라면이는우리가원하는바이다. 만약그렇지않다면, ut+1 은 Cid(ω) 에도 [v0v]

에도들어있지않은점이된다. 만약 ut ∈ [v0v] 라면, 작업 (2) 에의해 utut+1 은「강제로닫혔어야하기
에」모순이생긴다. 만약 ut ∈ Cid(ω) \ [v0v] 라면, ut 는 Ai 안의점이고따라서 [v′gi] 위에도있을수없
다. 즉, [utut+1] 는작업 (1) 에의해새로열린모서리는아니라는뜻이다. 그럼에도열려있다는것은 Γ(ω)
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에서도열려있었다는뜻이고, 따라서 ut+1 ∈ Cid(ω) 이어야하는데이는모순이다. 이로써 t = T 이고
u ∈ Cid(ω) ∪ [v0v] 임을알수있다.
마찬가지이유로, Cgi(F (ω)) = Cgi(ω) ∪ [v′gi] 임을알수있다. 즉, 조작 F 는 id 연결성분도 gi 연결

성분도조금더키워각각 v 및 v′ 에연결되게끔하지만, 두연결성분이여전히서로떨어져있게끔하는조작
임을알수있다. 따라서, Im F := F

({
ω : Cid(ω) ⊆ Ai ∧ Cgi(ω) ⊆ giAi

}) 로두었을때,

Ep[(#Cv)(#Cv′)1v↔v′ ] ≥ Ep

[(
#Cv(ω

′)
)
·
(
#Cv′(ω

′)
)
: ω′ ∈ Im F

]
≥ 1

maxω′∈Im F #F−1(ω′)
Ep F

∗[#Cid(ω) · #Cgi(ω)1Cid(ω)⊆Ai∧Cgi (ω)⊆giAi

]
≥ 1

(#S) · dS(id, gi)
min

(
1− p

p
,

p

1− p

)(#S)·L
· 1

4N2
χ2
p

임을알수있다. 여기서, v 와 v′ 는 gi 라는선택지로부터결정된인접한꼭짓점들이다. 다시말해,
s := v−1v′ 는 S 의한원소이다. 위좌변의사건에 v−1 를곱해부등식 3.10에넣음으로써,(

d

dp

)
+

χp ≥
1

1− p

1

(#S) · L
min

(
1− p

p
,

p

1− p

)(#S)·dS(id,gi)
· 1

4N2
χ2
p (0 < p < pc)

임을알수있다. 여기서우변의 χ2
p 앞에곱해져있는계수는 (0.5pc, pc) 구간위에서양수하한을가진다.

(여기서는 0 < pc < 1 임이쓰였다.) 이하한이우리가찾던 C 이다. 이로써증명이끝난다. □

이제보조정리를몇개증명하겠다.

補題 3.7. 유한생성집합 S 가갖춰진군 G 의케일리그래프 Γ = Cay(G,S) 의임계변수가 pc = pc(Γ)

라고하자. 그러면각각의 K < 0 마다양수 C = C(K) 가존재해, 임의의 0 ≤ p ≤ pc 및 K-나무스러
운집합 A 에대해 ∑

g∈A
Pp(id ↔ g) ≤ C

가성립한다.

Proof. 가정에의해 A 는어떤나무스러운집합 A′ 의 K-근방에포함되어있다. 이때, 각각의 a ∈ A 마
다 aba ∈ A′ 및 dS(id, ba) ≤ K 를만족하는 ba ∈ G 가존재한다. 이때보조정리 3.3에의해

Pp(id ↔ aba) ≥ Pp(id ↔ a ↔ aba) ≥ Pp(id ↔ a)Pp(id ↔ ba)

가성립한다. 이로부터∑
a∈A

Pp(id ↔ a) ≤
(

min
b:dS(id,b)≤K

Pp(id ↔ b)

)−1

·
∑
a∈A

Pp(id ↔ aba)

≤ (#S)K ·
(

min
b:dS(id,b)≤K

Pp(id ↔ b)

)−1 ∑
a′∈A′

Pp(id ↔ a′)

임을알수있다. 이를감안했을때, A 가나무스러운경우에대해서만증명해도충분하기에그렇게가정하
겠다.
다시보조정리 3.3에의해

∑
a1,a2,...,aN∈A

Pp(id ↔ a1 · · · aN ) ≥

∑
g∈A

Pp(id ↔ g)

N
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인것은분명하다. 그런데 A 가나무스럽기때문에 (a1, . . . , aN ) 7→ a1 · · · aN 이라는사상이일대일사상
이므로, 좌변은 ∑

a1,a2,...,aN∈A
Pp(id ↔ a1 · · · aN ) ≤

∑
a∈An

Pp(id ↔ a) ≤ χp

로다스릴수있다. 이때우변은 0 ≤ p < pc 일때유한해야하는데, 그러려면 ∑
g∈A Pp(id ↔ g) 가 1 이하

여야만한다. 이로써 p ∈ [0, pc) 위에서바라던부등식을얻고, 좌연속성에의해 (보조정리 3.2) p = pc

에서까지연장할수있다. □

위명제가유용할수있는것은아래따름정리덕분이다.

系 3.3. 유한생성집합 S 가갖춰진군 G 의케일리그래프 Γ 를생각하고, K-나무스러운집합 B ⊆ G

를생각하자.
그러면임의의 ϵ > 0 마다 D > 0 이존재해,∑

g∈G:B \ND(id) 는 id 와 g 사이의장벽임
Pp(id ↔ g) ≤ ϵ · χp

가성립한다.

Proof. 보조정리 3.7에의해잡히는상수 C = C(K) 를생각하자. 그러면∑
g∈B

Pp(id ↔ g) ≤ C < +∞

이다. 그러면단조수렴정리에의해, 임의의 ϵ > 0 에대해∑
g∈B∩ND(id)

Pp(id ↔ g) ≥ C − ϵ

인 D 가존재한다.
이제 A′ := {g ∈ G : id ↔G\(B\ND(id)) g} 를잡자. 그러면, id 와의사이에 B \ND(id) 로가로막힌

원소들은모조리 A′ 바깥에있다. 물론 id ∈ A′ 이고또 ∂A′ ⊆ B \ND(id) 이다. 이제따름정리 3.2를적
용하면 ∑

g∈G:B \ND(id) 는 id 와 g 사이의장벽임
Pp(id ↔ g) ≤

∑
g∈B\ND(id)

Pp(id ↔ g) · χp ≤ ϵχp

라는결론을내릴수있다. □

系 3.4. 유한생성집합 S 가갖춰진군 G 의케일리그래프 Γ 를생각하자. 그러면임의의 ϵ,K > 0 마다
D > 0 이존재해다음이성립한다.
임의의 K-나무스러운집합 B = B1 t . . . tBD 에대해,∑

g∈G:B1, . . . , BD 각각은 id 와 g 사이의장벽임
Pp(id ↔ g) ≤ ϵ · χp

가성립한다.

Proof. 보조정리 3.7에의해잡히는상수 C = C(K) 를생각하자. 그리고 D > C/ϵ 을생각하자. 그러면
D∑
i=1

∑
g∈Bi

Pp(id ↔ g)
∑
g∈B

Pp(id ↔ g) ≤ C
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이다. 따라서최소한한 i 에대해서는 ∑
g∈Bi

Pp(id ↔ g) < C/D < ϵ 이다. 이제방금과같이따름정리
3.2를적용하면부등식을얻는다. □

이제두번째명제를증명하겠다.

命題 3.6. 유한생성집합 S 가갖춰진군 G 가마법보조정리를만족한다고가정하자. 그러면

lim
p↗pc

(
ι(Tp) := inf

{∑
u∈K,v/∈A Pp(u ↔ v)

χp#A
: A 는 G 의유한집합

})
= 1

이성립한다.

Proof. 임의의 ϵ > 0 에대해 η(ϵ) > 0 을잡아, 임의의 p ∈ (pc − η, pc) 및유한집합 A ⊆ G 에대해∑
u,v∈A Pp(u ↔ v)

χp#A
< 10ϵ

임을보이기만하면충분하다. 먼저, G 가마법보조정리를만족하게끔하는상수 K > 0 을택한뒤,
ϵ,K > 0 에대한상수 D > 0 를따름정리 3.4로부터얻는다. 이제이 D 에대해마법보조정리가보장하
는대충나무스러운집합 B 를고정하겠다. 마지막으로, B 에따름정리 3.3를적용해 D′ = D(ϵ) 을잡자.
이제 G 에관한마법보조정리는어떤숫자 N = N(ϵ,D) 가보장한다. 또, 명제 3.4 및보조정리 3.2에의
해 limp↗pc χp = +∞ 임을기억하라. 따라서 χpc−η ≥ Nϵ−1 인 η > 0 을잡는것은어렵지않다.
모든준비가끝났다. 증명을위해 p ∈ (pc − η, pc) 및유한집합 A ⊆ G 를임의로잡겠다. 그러면마법

보조정리에의해 #A′ ≥ (1− ϵ)#A 인부분집합 A′ ⊆ A 가존재하고, 각각의 u ∈ A′ 마다어떤 K-나무
스러운부분집합 B(u) = B1(u) t . . . tBD(u) 및 B′(u) = B′

1(u) t . . . tB′
D(u) 가존재하여

A1(u) :=
{
v ∈ A : uB1(u), . . . , uBD(u) 모두가각각 u 와 v 사이의장벽임},

A2(u) :=
{
v ∈ A : uB′

1(u), . . . , uB
′
D(u) 모두가각각 u 와 v 사이의장벽임},

A2(u) :=
{
v ∈ A : u(B \ND′(id)) 가 u 와 v 사이의장벽임}

에대해 #A \ (A1(u) ∪A2(u) ∪A3(u)) ≤ N 이성립한다. 이때, 따름정리 3.3 및 3.4를적용하면∑
v∈Ai(u)

Pp(u ↔ v) ≤ ϵχp (u ∈ A′, i = 1, . . . , 4)

임을알수있다. 따라서∑
u,v∈A Pp(u ↔ v)

χp#A
≤
∑

u∈A,v∈A1(u)
Pp(u ↔ v)

χp#A
+

∑
u∈A,v∈A2(u)

Pp(u ↔ v)

χp#A

+

∑
u∈A,v∈A2(u)

Pp(u ↔ v)

χp#A
+

∑
u∈A,v/∈A1(u)∪A2(u)

Pp(u ↔ v)

χp#A

≤
∑

u∈A ϵχp

χp#A
+

∑
u∈A ϵχp

χp#A
+

∑
u∈A ϵχp

χp#A
+

∑
u∈AN

χp#A
≤ 3ϵ+

N

χp
≤ 4ϵ

임을알수있다. 이로써증명이끝났다. □
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Figure 3. (속이꽉차있는) 1, 2, 3 차원큐브들.

4. CAT(0) 큐브복합체
유클리드공간 Rn 에서단위구간 [0, 1] 의 n 번곱 [0, 1]n 을생각할수있는데, 이모양을 n 차원 (유클

리드) 큐브라고부르겠다. (그림 3 참조.)
유클리드큐브를재료로사용해구면, 토러스및쌍곡면과위상동형인거리공간을만드는것은어렵지않

다. 예를들어, 2 차원타일 6 개를정육면체처럼이어붙이면구면과위상동형인거리공간을만들수있다.
이정육면체의윗면/앞면/오른쪽면의중점을각각 A,B,C 라고해보자. 그러면점 A,B,C 의각순서쌍
을잇는정육면체표면상의측지선이유일하게결정된다. 이측지선삼각형은평면상에그린정삼각형보다
더뚱뚱하다는것을알수있다. 이를테면, 변 AB 의중점과변 BC 의중점사이거리는삼각형한변의길이
의 1/

√
2 인데, 평면상에그린정삼각형에대해같은거리를재어보면삼각형한변의길이의 1/

√
3 으로더

작다.
한편, 위와같은 2 차원정육면체의「내부」를채우기위해 3 차원큐브를추가할수있다. 이렇게만들

어진새로운거리공간에서는, 임의의측지선삼각형은그것과변의길이가동일한평면삼각형에비해뚱뚱
하지않다. 이러한공간을 CAT(0) 거리공간이라고부른다.
이제 CAT(0) 큐브복합체를정의할준비가되었다. 유클리드큐브를이어붙인큐브복합체중거리공간

으로서 CAT(0) 인복합체를 CAT(0) 큐브복합체라고부른다.
이정의는간단하기는한데, 그다지구체적이지는않다. 유클리드큐브를어떻게이어붙였을때 CAT(0)

성질을보장할수있을까? 이것이실은Misha Gromov가 CAT(0)큐브복합체를다룬이유이다. CAT(0)
거리공간의예시에는음의곡률을가진리만다양체등이있으나, 더다양한 CAT(0) 거리공간을손쉽게만
들방법이있으면군을공부할때도움이될수도있을것이다. 이러한관점에서 Gromov 는큐브를이어붙인
공간들을생각했고, 더나아가, 큐브복합체가 CAT(0) 인지아닌지는손쉽게체크할수있는기준을마련했
다. 이간단한기준이오늘날 CAT(0) 큐브복합체의정의로여겨지기도하는데, 이정의를소개하겠다.

定義 4.1. CAT(0) 큐브복합체 (CAT(0) cube complex) 란유클리드큐브를이어붙인복합체중연
결되어있고 (connected), 단순연결되어있으면서 (simply-connected), 각꼭짓점에붙어있는큐브들의
모임이깃발복합체 (flag complex) 를이루게끔붙여만든폐포복합체 (cell complex) 이다.
여기서깃발복합체라고함은다음을의미한다. 어느꼭짓점 v 에붙어있는모서리 e1, ..., en 에대해, 만

약각각의서로다른정수 i, j ∈ {1, . . . , n} 마다 ei 와 ej 를동시에포함하는 2 차원타일이공간속에존재
한다면, e1, ..., en 모두를모서리로가지는 n 차원큐브가공간속에존재한다는것이다. 예를들어, 상술
한 2 차원정육면체가 CAT(0) 큐브복합체안에존재한다면, 그정육면체의」내부」에해당하는 3 차원
큐브또한존재해야한다는것이다.

한편, CAT(0) 큐브복합체의그래프이론적인버전을소개하겠다. 앞에서그래프에줄수있는자연스러
운거리구조인그래프거리를얘기했다. 그런데평면격자그래프에서도쉽게볼수있듯이, 주어진두점사이
최단경로가꼭유일할필요는없다. 그러한최단경로들을모두측지선이라고부르겠다. 또, x 와 y 를잇는
모든측지선의합집합을 I(x, y) 라고부르겠다.
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定義 4.2. 연결된그래프 Γ 가 중점그래프 (median graph) 라는것은, 임의의점 x, y, z ∈ V(Γ) 에
대해

d(x,m) + d(m, y) = d(x, y),

d(y,m) + d(m, z) = d(y, z),

d(z,m) + d(m,x) = d(z, x)

을만족하는점 m ∈ V(Γ) 가유일하게존재한다는것이다. 달리말하자면 I(x, y) ∩ I(y, z) ∩ I(z, x) 가
점하나짜리집합이라는것이다. 이유일한점 m 을 x, y, z 의중점 (median) 이라고부른다.

예시 4.3. (1) 수직선은정수점들을꼭짓점으로하고, 인접한정수끼리모서리로이은그래프로볼수
있다. 이때, 임의의 x, y, z ∈ Z 에대해 I(x, y) ∩ I(y, z) ∩ I(z, x) 는 x, y, z 중중간인숫자로유
일하게결정된다.

Figure 4. 정수군 Z 의케일리그래프로볼수있는수직선

(2) 차수 2 짜리자유군 F2 의표준적인케일리그래프는각점의차수 (degree) 가 4 인나무그래프인
데, 이그래프에서임의의측지선삼각형은두께가 0 이고, 중점이유일하게존재한다는것을확인
할수있다. 더욱일반적으로, 사이클이없는그래프, 즉나무그래프 (tree) 는모두중점그래프이
다.

(3) 사이클이무수히많은중점그래프도있다. 대표적으로, 평면격자그래프 Z2 에서점 x =

(0, 0), y = (4, 2), z = (1, 3) 을생각해보자. 이때 I(x, y) 는 (0,0) 과 (4,2) 를꼭짓점으로가지
는수직직사각형이된다. I(y, z) 및 I(z, x) 도비슷한패턴으로그려지고, 이세집합의교집합은
정확히 (1, 2) 한점이된다. 더일반적으로, n 차원정수격자그래프 Zn 또한중점그래프이다.

A

B

C

Figure 5. 평면격자그래프위의세점과그중점

(4) 중점그래프가아닌예시도있다. 길이 3 짜리사이클을포함하는그래프는결코중점그래프가될
수없다. 삼각형의세꼭짓점을위한중점이존재하지않기때문이다.
잘생각해보면, 길이 5 짜리사이클을가지는그래프또한결코중점그래프가될수없다. 사실

은, 중점그래프의사이클은항상짝수길이를가진다. 다시말해, 중점그래프는반드시이분그래
프 (bipartite graph) 이다.
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Figure 6. K2,3 그래프

(5) 중점그래프가아닌또다른예시로는 K2,3 그래프가있다. 이그래프는꼭짓점 A,B, x, y, z 및, 대
문자와소문자를잇는모서리 6 개로이루어져있다. 이그래프에서 I(x, y) 는 x−A− y 측지선
도, x−B − y 측지선도포함한다. 즉, A 와 B 모두 I(x, y) 에들어있다. 마찬가지로, A 와 B

는 I(y, z) 에도, I(z, x) 에도들어있다. 즉, x, y, z 의중점을찾을수없는것이문제가아니라, 너
무많은후보가있다는것이문제인것이다.
일반적으로, K2,3 을부분그래프로가지는그래프는중점그래프일수없다.

CAT(0) 큐브복합체와중점그래프를같이이야기한이유가있다. CAT(0) 큐브복합체가주어졌을때,
2 차원이상인큐브조각들은모두지우고 1 차원큐브, 즉모서리만남긴것을 1 차뼈대 (1-skeleton) 이라
고부른다. 이때이 1 차뼈대는중점그래프가된다. 역으로, 중점그래프가주어졌을때, 사각형 (=4-사이
클) 이보일때마다 2 차원타일을붙여넣고, 정육면체의 1 차뼈대가보일때마다 3 차원큐브를붙여넣고,
n 차원큐브의 1 차뼈대가부분그래프로들어있을때마다 n 차원큐브를붙여넣는다고해보자. 이렇게
만들어진복합체는각꼭짓점에서깃발복합체조건을만족한다. 다시말해, 이복합체는 CAT(0) 큐브복
합체이다. 요약하자면, 중점그래프의모임과 CAT(0) 큐브복합체의 1 차뼈대의모임은정확히똑같다.
이는 Victor Chepoi, Victor Gerasimov, Martin Roller 등여러저자에의해증명된사실이다 ([Rol99],
[Ger98], [Che00]).
지금부터는 CAT(0) 큐브복합체를얘기할때그 1 차뼈대인중점그래프를같이떠올릴것이다. 이경

우, 유클리드큐브들을이어붙여만든 CAT(0) 거리를생각하는대신, 1 차뼈대를따라정의되는그래프거
리를생각하면편리할때가있다. 따라서이제 CAT(0) 거리는잊고, 항상 1 차뼈대상의그래프거리를부
여하는것으로간주하겠다.

CAT(0) 큐브복합체및중점그래프를얘기할때빠질수없는도구가바로반공간 (halfspace) 및초평면
(hyperplane) 이다. 이관점은 Michah Sageev 가박사학위논문 ([Sag95]) 에서도입한바있다.

定義 4.4. CAT(0) 큐브복합체 X 에서모서리 e 를하나택하자. 이때, e 를관통하는초평면
(hyperplane) h 는다음을만족하는가장작은 X 의부분집합이다.

(1) e 의중점은 h 에포함되어있다.
(2) X 를구성하는어떤큐브 C ' [0, 1]n 에대해, 만약 h 가 C 의어떤모서리의중점을포함한다
면, 그중점에서그모서리에직교하는 (n − 1) 차원큐브또한 h 에포함된다. 즉, 예를들어점
(1/2, 0, . . . , 0) ∈ [0, 1]n 이 h 에포함된다면 {1/2} × [0, 1]n−1 전체또한 h 에포함된다.

위상황에서초평면 h 는복합체 X 를둘로나누는데, 예를들어 e 의두꼭짓점은 X \ h 의서로다른연
결성분에있게된다. 이때 X \ h 의한연결성분의닫음 (closure) 을 h 에면한반공간 (halfspace) 이라고
부른다.
위개념을중점그래프의언어로해석하면다음과같다.
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定義 4.5. 중점그래프 Γ 안에 4-사이클이있을때, 4-사이클의변중맞닿아있지않는모서리끼리서로평
행하다 (parallel) 고부른다. 더나아가, Γ 의모서리들 e1, . . . , en 에대해, 만약각 i = 1, . . . , n − 1 마
다 ei 와 ei+1 가평행하다면, e1 과 en 또한평행하다고부른다.
그래프 Γ 의초평면 (hyperplane) 이란, Γ 의모서리들중평행한것끼리모은극대집합을뜻한다. 다시

말해, Γ 의어떤모서리 e 를관통하는초평면은, e 와평행한모서리들의모임이다.
그래프 Γ 의초평면 h 가주어졌을때, Γ 의꼭짓점들은그대로두고, 모서리중 h 에들어있는것들

은삭제하고나머지만남긴부분그래프를생각하자. 이부분그래프의연결성분을각각 h 에면한반공간
(halfspace) 이라고부른다.

예시 4.6. (1) 나무그래프들은모두중점그래프라고앞에서언급했다. 나무그래프에는사이클이없
기때문에, 평행한모서리쌍이란존재할수없다. 따라서각각의모서리가초평면이된다. 각모서
리를삭제하면나무그래프는두토막으로나뉘는데, 이들각각이반공간이된다.

(2) 평면격자그래프 Z2 에서초평면들에는두종류가있는데, x 좌표가서로같은가로모서리의모임
이거나혹은 y 좌표가서로같은세로모서리의모임이다.

CAT(0) 큐브복합체의초평면두개를생각하자. 이두초평면은일치하거나, 서로만나지않거나, 아니
면어떤 2 차원큐브에서교차한다. (이때이 2 차원큐브가유일할필요는없다.) 중점그래프에서해석하
자면, 두초평면은일치하거나, 꼭짓점을아예공유하지않거나, 아니면어떤 4-사이클의네변을평행한것
끼리양분한다.
초평면의성질을더구체적으로적으면다음과같다. 이또한 Michah Sageev 가박사학위논문에서증명

한것이다.

事実 4.7. 중점그래프 Γ 의초평면 h 를하나생각하자. 그러면다음이성립한다.
(1) 초평면 h 는전체공간을정확히둘로나누고, 따라서 h 에면한반공간은정확히두개다. 특히, 각
모서리 e ∈ h 에대해, e 의두끝점은서로다른반공간에속한다.

(2) 초평면 h 의두모서리 e = xy, f = vw 가주어졌을때 d(x, v) = d(y, w) 가성립한다.

위사실은그냥믿어도상관없으나, 중점그래프의언어로이것을증명하고싶다면 8절을보면된다. 이로
부터특히알수있는것은, 서로다른초평면 h, h′ 에대해다음두가지중정확히하나가성립한다는것이다.

(1) h 에면한두반공간과 h′ 에면한두반공간은각각서로만난다.
(2) h 에면한어느한반공간에 N(h′) 및 h′ 에면한어느한반공간이들어있다.

전자의경우, 두초평면은교차한다 (transverse) 고하고 h ⋔ h′ 라고쓴다. 후자의경우, 두초평면은평행
하다 (parallel) 고하고 h‖h′ 라고쓴다. 이것을반공간의언어로다시쓰면다음과같다.

事実 4.8. 중점그래프 Γ 의두반공간 H 및 H ′ 에대해, 다음중하나가정확히성립한다.
(1) H 와 H ′ 가같다.
(2) H 와 H ′ 는서로의여집합이다. 즉, V(H) 와 V(H ′) 는 V(Γ) 를분할한다.
(3) H ⊊ H ′.
(4) H ′ ⊊ H.
(5) (2) 가아니되, H 와 H ′ 는서로겹치지않는다. 즉, H ∩H ′ = ∅ 이다.
(6) (2) 가아니되, H ∪H ′ = Γ 이다.
(7) 위의그어느상황도아니다. 다시말해, H ∩H ′,H ∩H ′c,Hc ∩H ′,Hc ∩H ′c 각각이모두공집합
이아니다.
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Figure 7. 두반공간의위치관계

(1) 및 (2) 인경우, H 와 H ′ 가면한초평면들은일치한다. (3), (4), (5) 및 (6) 인경우, H 와 H ′ 가면
한초평면들은서로평행하고, 이때 H 와 H ′ 가평행하다고부르며 H‖H ′ 라고쓴다. (7) 인경우, H 와
H ′ 가면한초평면들은서로교차하고, 이때 H 와 H ′ 가교차한다고부르며 H ⋔ H ′ 라고쓴다.

Proof. 집합
A1 := H ∩H ′, A2 := Hc ∩H ′, A3 := H ∩H ′c, A4 := Hc ∩H ′c

을생각했을때, 이넷중셋이상이공집합인경우 H, Hc, H ′, H ′c 중최소하나가공집합이된다. 이는사실
4.7에모순이다. 따라서 A1, A2, A3 및 A4 중기껏해야두개만공집합일수있다. 또, 실제로이중두개가
공집합일수있는가능성은 A1 = A4 = ∅ 6= A2, A3 와 A2 = A3 = ∅ 6= A1, A4 두가지뿐이다. 이에더해,
A1, . . . , A4 중정확히하나가공집합인경우네가지, 그리고그어느것도공집합이아닌경우한가지로총 7
가지가능성이있다. 이들이각각 (1)-(7) 에해당함은쉽게확인할수있다. 그림 7를참조하라. □

이제평면격자그래프를다시살펴보자. 여기서꼭짓점 (0, 0) 과 (3, 2) 사이조합적 = 그래프거리가
3 + 2 = 5 임은쉽게확인할수있다. 물론이거리를실현시키는측지선은하나가아니다. 위로 2 번이동한
뒤오른쪽으로 3 번가도측지선이되고, 오른쪽으로먼저간뒤위로가도측지선이되며, 그순서를조금섞으
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면또다른측지선이된다. 하지만여기서중요한규칙이하나있다. 「오른쪽으로만가야하며」, 「위쪽으
로만가야한다」는사실이다. 오른쪽으로총 4 번갔다가왼쪽으로 1 번가는방식으로 (0, 0) 에서 (3, 2)

까지가게되면, 가로방향움직임에낭비가생긴것이다. 이는측지선이될수없다.
이를다르게얘기하자면다음과같다. (0, 0) 에서 (3, 2) 로가는측지선은, 반드시 {x = 0.5},

{x = 1.5}, {x = 2.5} 라는세로선을정확히한번씩지나고, {x = n + 1/2 : n ≥ 3 혹은 n < 0} 라는세
로선들은절대지나지않는다. 마찬가지로, {y = n+ 1/2 : n = 1, 2} 라는가로선들은정확히한번씩지나
고, 그외의반정수 y 좌표가로선들은절대지나지않는다. 더놀라운점은, 이것이필요조건이자충분조건
이라는것이다. 더나아가, 이사실은일반적인중점그래프에서도성립한다.

補題 4.1. 중점그래프 Γ 및그꼭짓점 x 및 y 를생각하자. 이때, x 와 y 를잇는 Γ 상의경로 P 에대해
다음성질들은동치다.

(1) P 는조합적거리에따른측지선이다.
(2) P 는 Γ 의각초평면을기껏해야한번씩만만난다.
(3) P 는 Γ 의초평면중 x 와 y 를가르는것들은정확히한번씩만나고, 그렇지않은초평면들은만나
지않는다.

Proof. 먼저 (1) 로부터 (2) 을유도하겠다. 모순을이끌어내기위해, 어떤측지선 P 가어떤초평면 h 를
두번이상만난다고가정하자. P ∩ h 중첫번째모서리를 ei =

−→uv, 두번째모서리를 ej =
−−→
u′v′ 라고하자.

여기서 v 와 u′ 는 h 에들어있지않은모서리 ei+1, . . . , ej+1 로이루어진경로로이어져있다. 따라서 v

와 u′ 는 h 에면하는같은반공간에들어있다. 이제사실 4.7(3) 을쓰면 d(v, u′) = d(u, v′) 가성립해야한
다. 그러나 u, v, u′, v′ 는동일한측지선위에주어진순서대로나타나기때문에, d(v, u′) > d(u, v′) 여야한
다. 이는모순이다. 따라서 (2) 가성립한다.
이제 (2) 로부터 (3) 을유도하겠다. 먼저, h 가 x 와 y 를가르는초평면이라고해보자. 그러면정의

상그어떤경로도 h 를지나지않고서는 x 와 y 를잇지못한다. 따라서 x 와 y 를잇는 P 는 h 를반드시
만난다. 이제방금증명한사실과합하면, 이만남은정확히한번이라는것을알수있다.
반면, h 가 x 와 y 를가르지않는경우, 즉두점모두 h 에면한동일한반공간 H 에속해있는경우를살펴

보자. 만약 P 가 h 를만난다면, P ∩ h 중첫번째모서리 ei =
−→uv 를잡을수있다. 이때 x 에서 u 까지잇

는 P 의부분경로는 h 를만나기전이므로, H 에속해있다. 그리고 uv 는 h 의원소이므로, v 는 H 가아
닌다른반공간에속해있음을알수있다. 이제 ei 이후의 P 의부분경로는 v 와 y 를이어야하는데, v /∈ H

및 y ∈ H 라는점으로부터, P 는 ei 이후에도 h 를다시지나게됨을알수있다. 이는측지선 P 가결코초
평면 h 를두번이상만날수없다는사실에모순이다. 따라서, P 는 h 를만나지않는다. 이로써 (3) 또한
증명되었다.
이제 (3) 으로부터 (1) 을유도하겠다. 먼저, P 상의각모서리는정확히한개의초평면에반드시들어

있다. 따라서,

l(P ) =
∑

h:Γ 안의초평면
#(P ∩ h)

라는공식이성립한다. 이제 (3) 의가정에의해, 이는정확히 x 와 y 사이를가르는초평면의개수이다.
한편, x 와 y 를잇는임의의경로 Q 를생각해보자. 그러면 x 와 y 를가르는각각의초평면 h 마다 Q∩ h

에속하는어떤모서리 eh 가반드시존재해야하고, 이러한 eh 는초평면 h 마다반드시달라야한다. 이를
생각하면 Q 의길이는 x 와 y 사이초평면의개수이상이어야한다. 즉, 우리가잡은 P 는최소길이를달
성하는것이고, 따라서 P 는측지선이다. 이로써증명이끝났다. □
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5. 초평면사슬과반공간사슬
어떤점들간의위치관계를파악할때, 그점들사이에낑겨있는초평면들은매우중요한역할을한다. 이

를더효율적으로공부하기위해개념을하나도입하겠다.

定義 5.1. 반공간 n 개 H1,H2, . . . , Hn 가
H1 ⊋ H2 ⊋ . . . ⊋ Hn

라는위치관계를만족할때, (H1, . . . , Hn) 을 반공간사슬 (halfspace chain) 이라고부른다. 또, 이때
각 Hi 가면한초평면 hi 에대해, (h1, . . . , hn) 을 초평면사슬 (hyperplane chain) 이라고부른다. 더
욱이, 어떤집합 S, T ⊆ Γ 에대해, 만약 S ⊆ Hc

1 및 T ⊆ Hn 가성립하면, (h1, . . . , hn) 가 S 및 T 사이
에낑겨있다고얘기한다.
어떤집합 S, T ⊆ Γ 를고정한뒤, S 및 T 사이에낑겨있는사슬을생각하자. 이때이사슬이극대

(maximal) 이라는것은, 이사슬을부분나열로포함하면서 S 및 T 사이에낑겨있는더큰사슬이존재하
지않는다는뜻이다.

어떤두점 x, y ∈ V(Γ) 가주어졌을때, 그사이에낑긴초평면사슬의최대길이는 d(x, y) 이하임을보조
정리 4.1에서보았다. 따라서, 두점사이에낑겨있는임의의사슬이주어졌을때, 더집어넣을수있는만큼
사슬을계속키워나갈때언젠가는멈추게되어있다. 즉, x 와 y 사이에낑긴임의의사슬은반드시 x 및 y

사이에낑긴극대사슬로확장할수있다.
사실은중점그래프 Γ 위에는조합적거리외에또다른자연스러운거리구조를줄수있다. 이는 n 차원

정수격자그래프위에 l1-거리이외에 l∞-거리또한줄수있다는사실에대응한다.

定義 5.2. 중점그래프상의어떤두집합 A,B ⊆ V(Γ) 에대해, A 와 B 사이에낑긴사슬의최대길이를
A 와 B 사이의 l∞-거리라고부르고, d∞(A,B) 로표시한다.

예시 5.3. (1) 예시 4.3(2) 의 4 차수나무그래프를생각해보자. 여기에는 4-사이클이라는것자
체가존재하지않기때문에, 각각의모서리가초평면이된다는것을관찰했다. 이제임의의두
점 x, y ∈ V(Γ) 사이를잇는 l1-측지선 (x = x0, x1, . . . , xn = y) 가유일하게존재한다. 이때
Γ \ xi−1xi 의연결성분중 xi 쪽의연결성분을 Hi 라고부르면, x /∈ H1 ⊋ H2 ⊋ Hn 3 y 라는사
슬을만들수있다. 이사슬이극대인것은쉽게관찰할수있다.
또, 이그래프에서는서로다른초평면은반드시평행하다는것을관찰하라.

(2) 이번에는예시 4.3(3) 의정수격자그래프를생각하자. 여기서초평면은 y 좌표가서로같은세로
모서리의모임혹은 x 좌표가서로같은가로모서리의모임이라고했다. 전자를가로초평면, 후자
를세로초평면이라고부르자. 이그래프에서, 초평면끼리평행하려면둘다가로이거나혹은둘다
세로여야한다는사실을쉽게관찰할수있다.
이제예를들어 (0, 0) 과 (3, 4) 사이에끼어있는초평면들은정확히, y 좌표가 0 과 4 사이에

있는가로초평면 4 개및 x 좌표가 0 과 3 사이에있는세로초평면 3 개이다. 물론이들모두의
개수는 (0, 0) 과 (3, 4) 사이 l1-거리이다. 그러나이두점사이에길이 7 짜리사슬은없다. 가로
초평면과세로초평면은서로평행할수없기때문이다. 따라서, 방금말한가로초평면 4 개로만든
사슬및세로초평면 3 개로만든사슬이각각극대사슬이된다. 이들중가장긴것이 l∞-거리를구현
하기는하지만, 이들모두가그렇게하지는않음을주의하라.

이제, 잠깐군에관한얘기로돌아가겠다. 우리의최종목표는, 중점그래프의대칭군으로나타나는특
정군에서パーコレーション을공부하고자하는것이다. 방금본예시중정수격자그래프에는 Z2 라는
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군이평행이동으로작용하고, 이작용은여-컴팩트하며진정하다. 헌데정수격자그래프는이차식성장
률 (quadratic growth) 를가지기에, 이그래프에여-컴팩트하며진정으로작용하는군은항상평균가능군
(amenable group) 이다. 이러한군에서는우리가바라는パーコレーション이일어나지않는다는것이이
미알려져있다 ([BK89], [GKN92]). 따라서, 중점그래프에적절한비평균가능성 (non-amenability) 가
정을얹어주는것이필요하다.
정수격자그래프의주요특징중하나로, 두성분그래프의곱그래프라는점이있다. 즉, Z 의표준케일리

그래프두개를 Γ1,Γ2 라고한뒤, 이두그래프를직접곱 (direct product) 하면정수격자그래프를얻는다.
이와연관된사실로, 정수격자그래프에서는모서리를공유하지않는평행한초평면쌍은분명존재하지만
(이를테면세로초평면두개), 그런초평면들에동시에교차하는초평면 (이를테면가로초평면) 이항상존
재한다. 이러한현상은곱그래프에서도이어진다.
이제부터는위와같지않은그래프에집중하려고한다. 이를위해다음을정의하겠다.

定義 5.4. 중점그래프 Γ 의평행한두초평면이 강하게분리되어있다 (strongly separated) 라는것
은, 두초평면에동시에교차하는초평면이존재하지않는다는것이다.
또한, Γ 의두반공간 H,H ′ 에대해, 만약 H 가면해있는초평면과 H ′ 가면해있는초평면이강하게분

리되어있다면, H 와 H ′ 또한강하게분리되어있다고얘기한다.

예시 5.5. (1) 나무그래프에서는그어떤초평면도다른초평면과교차할수없다. 4-사이클이아예없
기때문이다. 따라서, 모든초평면은서로강하게분리되어있다.

(2) 전혀나무같지않은그래프에서도강하게분리된초평면이존재할수있다. 그림 8에는사각형타일
을한꼭짓점에서 6 개씩모이도록이어붙인것이다. 이때전체 CAT(0) 큐브복합체는평면과위
상동형이다. 실은, 이그래프 Γ 의전체대칭군에는쌍곡곡면군 (surface group) 과동형인유한
지수부분군이들어있다. 그런의미에서, 이타일링은쌍곡평면 (hyperbolic plane) 을모델링한
것으로볼수도있다.
이복합체에는교차하는초평면도있지만, 서로만나지않는초평면도있고강하게분리된초평면

도있다. 특히, 그림에나타나있는강하게분리된두초평면 h, h′ 은그래프의어떤대칭을통해완전
히포갤수있다. 즉, g ∈ Aut(Γ) 가존재해 h′ = gh 라는것이다.

定義 5.6. 어떤실수열 a = (a1 < a2 < . . . < an−1) 을생각하자. 이때어떤초평면사슬 (h1, . . . , hn) 이
a-등간격으로분리되어있다 (equiseparated) 는것은, d∞(hi, hj) = a|j−i| 이라는것이다. 이때, 이초
평면들에면하는반공간들로이루어진사슬또한 a-등간격으로분리되어있다고얘기한다.

주어진중점그래프위에일정한간격으로강하게분리된초평면이존재하는지는앞으로의얘기에서매우
중요해질것이다. 이를보장할수있는가장간편한방법은, 그래프의대칭성 = 등거리사상 g 와반공간 H

를잘잡아 gH ⊊ H 이면서 gH 와 H 가강하게분리되어있게끔하는것이다. 이러한대칭성및반공간은
꽤많은경우에존재하는데, Pierre-Emmanuel Caprace 와 Michah Sageev 의다음정리가이를얘기한다.

定理 5.7 ([CS11, Corollary B]). 국소적으로컴팩트하고 (locally compact) 측지선적으로완비한
(geodesically complete) CAT(0) 큐브복합체 X 를생각하자. 또, X 에진정으로, 또여-컴팩트하게작
용하는이산적인무한군 G 를생각하자.
그러면 Γ 는 (1) 측지선적으로완비하고지름이무한하며 (unbounded) 볼록한 (convex) 부분복합체

들의곱이거나, 혹은 (2) G 의원소 g 및 Γ 의반공간 H 가하나씩존재하여, gH ⊊ H 이고 gH 와 H

가강하게분리되어있다.
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Figure 8. 사각형타일링이깔린쌍곡평면. 점박이초평면과교차하는초평면중세개가
색칠되어있다. 그리고오른쪽상단의체크무늬초평면은색깔초평면들과결코만나지않
는다. 즉, 점박이초평면 h 와체크무늬초평면 h′ 는서로강하게분리되어있다.

5.1. 반공간에관한몇가지보조정리. 이제부터흔히사용할반공간의성질을몇가지정리해두겠다.

補題 5.1. 중점그래프 Γ 의점 x, y ∈ Γ 와꼭짓점집합 A ⊆ V(Γ) 를생각하자. 그러면

d∞(x,A) ≤ d∞(x, y) + d∞(y,A)

가성립한다.
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Proof. 먼저 x 와 y 사이 d∞-거리를구현하는극대반공간사슬
x /∈ L1 ⊋ . . . ⊋ LN ⊇ A

를생각한뒤, Li 3 y 인가장큰수 i 를잡자. 그러면 y /∈ Li+1 이므로
x /∈ L1 ⊋ . . . ⊋ Li ⊇ A, y /∈ Li+1 ⊋ . . . ⊋ LN ⊇ A

는각각 x 와 y 사이및 y 와 A 사이에낀반공간사슬이된다. 이로부터바라던부등식을얻는다. □

補題 5.2. 중점그래프 Γ 의두반공간 H1,H2 을생각하자. 만약 H1 과 H2 가어떤점을공유하되어떤
다른점을동시에놓친다면 (즉 H1 ∩H2 6= ∅ 6= Hc

1 ∩Hc
2 이라면), H1 과 H2 는교차하거나포함관계에

있다.

Proof. 이경우, 사실 4.8의 (2), (5), (6) 이배제된다는것은분명하다. □

補題 5.3. 중점그래프 Γ 의두반공간 H1 ⊊ H2 이강하게분리되어있고, 어떤반공간 L 이 Hc
1 의어느

두점사이를가른다고하자. 그러면 L 은 H2 를완전히포함하거나혹은만나지않는다.

Proof. 만약 L 은 H2 의어느두점사이를가른다면 L 이 H1 과 H2 둘다에교차하게되는데, 이는 H1 과
H2 가강하게분리되어있다는것에모순이다. 따라서 L ⊋ H2 혹은 L ∩H2 = ∅ 이성립한다. □

補題 5.4. 중점그래프 Γ 의세반공간 H1 ⊋ H2 ⊇ H3 을생각하되, H1 과 H2 가강하게분리되어있다
고하자. 그러면 Hc

1 의임의의두점 x, y /∈ H1 에대해,

d∞(x, y) ≤ d∞(x,H2) + d∞(y,H3)

가성립한다.

Proof. 점 x 와 y 사이에낀반공간 x /∈ L 3 y 를임의로생각하자. 그러면보조정리 5.3에의해, L 은 H2

를완전히포함하거나혹은만나지않는다. 전자의경우, L 은 x 와 H2 사이에끼여있다. 후자의경우, y
는 y 와 H3 사이에끼여있다.
이제, x 와 y 사이 d∞-거리를구현하는극대반공간사슬

x /∈ L1 ⊋ . . . ⊋ LN 3 y

를생각한뒤, Li ⊇ H2 를만족하는가장큰수 i 를잡자. 그러면보조정리 5.3에의해
x /∈ L1 ⊋ . . . ⊋ Li ⊇ H2, Hc

3 ⊇ Li+1 ⊋ . . . ⊋ HN 3 y

는각각 x 와 H2 사이및 Hc
3 와 y 사이에낀반공간사슬이된다. 이로부터바라던부등식을얻는다. □

補題 5.5. 중점그래프 Γ 의두꼭짓점 x, y ∈ V(Γ) 와세반공간 H,H ′, L 가
x /∈ H ⊋ H ′ 3 y 및 x /∈ L 3 y

라는위치관계를만족한다고하자. 더하여 H 와 H ′ 가강하게분리되어있다고하자. 그러면 H ⊋ L 혹
은 L ⊋ H ′ 둘중하나가성립한다.

Proof. 보조정리 5.2에의해, H,H ′, L은서로교차하거나혹은포함관계에있음을유의하라. 만약 H ⊋ L

혹은 L ⊇ H 이면원하는결론에해당한다. 따라서둘다아닌경우, 즉 H 와 L 이교차하는경우가남는다.
이때 L 은 H ′ 에마저교차할수는없다. 또 H 6⊋ L 이므로 L 이 H ′ 에포함될수도없다. 따라서 L 은 H ′

와같지않으면서 H ′ 를포함한다. 이로써증명이끝난다. □
48



補題 5.6. 중점그래프 Γ 의두점 x, y ∈ V(Γ) 와강하게분리된두반공간 H,H ′ 가

x /∈ H ⊋ H ′ 3 y

라는위치관계를만족한다고하자. 그러면

d∞(x, y) ≤ d∞(x,H ′) + d∞(Hc, y)

이다.

Proof. 먼저 x 와 y 사이거리를구현하는반공간사슬

x /∈ L1 ⊋ . . . ⊋ LN 3 y

를생각한뒤, Li ⊇ H ′ 를만족하는가장큰수 i 를잡자. 이때보조정리 5.5에의해 H ⊋ Li+1 혹은
Li+1 ⊋ H ′ 여야한다. 후자는 i 의정의에위배하므로전자가성립해아한다. 즉,

x /∈ L1 ⊋ . . . ⊋ Li ⊇ H ′, H ⊋ Li+1 ⊋ . . . ⊋ LN 3 y

라는반공간사슬을얻게된다. 이로부터바라던부등식을얻게된다. □

6. 마법보조정리 (Magic lemma)

이제본격적으로パーコレーション에관련된중점그래프의기하학을얘기하려고한다.

定義 6.1. 어떤거리공간 X 의부분집합 Y ⊆ X 가 (이산적으로)균일하게거리상진정하다 (uniformly
metrically proper) 는것은, 각각의 R > 0 마다

sup
y∈Y

#
{
y′ ∈ Y : d(y, y′) < R

}
< +∞

인것이다.

이를테면, 만약어떤연결된거리공간 X 에등거리사상으로진정으로작용하는군 G 이주어졌을때, 임
의의 x ∈ X 에대해그 G-궤도 G · x 는균일하게거리상진정하다.
중점그래프 Γ 및점 y ∈ V(Γ), 유한집합 A ⊆ V(Γ), 실수 D > 0 및실수열 a = (a1 < . . . < a11) 이

주어졌을때다음과같은집합을정의하겠다.

Ha,D(y,A) :=

{
z ∈ V(Γ) : a-등간격으로강하게분리된어떤반공간사슬 H1 ⊋ H2 ⊋ . . . ⊋ H12 에대해

{y} ∪A ⊆ Hc
1 이고 z ∈ H11 이고 d∞(z,H12) ≤ D 이며 d∞(y,H12) ≤ D 이다.

}

실수열의정체가중요하지않을때는 HD(y,A) 라고적기도하겠다. 여기서 z ∈ HD(y, x) 인상황을다룰
때는, x, y, z 가순서대로한직선상에놓여있는그림을떠올리면좋다. 예를들어다음이성립한다.

補題 6.1. 중점그래프 Γ 의꼭짓점 x, y, z 이

z ∈ HD(y, x)

을만족한다고하자. 그러면 d∞(x, z) ≥ d∞(x, y) + d∞(y, z)− 2D 이다.
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Proof. 가정에의해, 강하게분리된반공간사슬 H1 ⊋ . . . ⊋ H12 중 {x, y} ⊆ Hc
1 이고 z ∈ H10 이며

d∞(y,H12) ≤ D 인것이존재한다. 이제 d∞(x, y) 를구현하는극대사슬

x /∈ H ′
1 ⊋ H ′

2 ⊋ . . . ⊋ H ′
d∞(x,y) 3 y

를하나생각하자. 보조정리 5.3에의해 Hd∞(x0,ai)−D 는 H2 를포함하거나혹은만나지않는다. 후자의
경우,

d∞(y,H2) ≤ D < d∞(y,H ′c
d∞(x,y)−D)

라는사실에위배된다. 따라서 H2 ⊆ H ′
d∞(x,y)−D 라는결론을내릴수있다.

이제 y, z 사이의거리를구현하는극대사슬

y /∈ H ′′
1 ⊋ H ′′

2 ⊋ . . . ⊋ H ′′
d∞(y,z) 3 z

를생각하자. 그러면
y /∈ H3 ⊇ H4 3 z, y /∈ H ′′

D+1 3 z

에보조정리 5.5를적용할수있다. 이때 d∞(y,H3) ≤ D < d∞(y,H ′′
D+1) 이기에 H3 ⊆ H ′′

D+1 일수는없
으므로, H2 ⊋ H3 ⊇ H ′′

D+1 임을알수있다.
이를모두결합하면,

x /∈ H ′
1 ⊋ H ′

2 ⊋ . . . ⊋ H ′
d∞(x,y)−D ⊋ H ′′

D+1 ⊋ . . . ⊋ H ′′
d∞(y,z) 3 z

라는극대사슬을얻게된다. 이로부터 d∞(x, z) ≥ d∞(x, y) + d∞(y, z)− 2D 라는결론을얻는다. □

앞의일직선비유를다시생각해보자. 어떤점들 x, y, y′, z 이 z ∈ HD(y, x) 및 z ∈ HD(y
′, x) 을만족

할때, y 와 y′ 중어느것이직선상에먼저나타나느냐에따라 y′ ∈ HD(y, x) 혹은 y ∈ HD(y
′, x) 가성립했

으면좋겠다. 이에다음보조정리를증명하겠다.

補題 6.2. 중점그래프 Γ 의꼭짓점 x, y, y′, z 및부분집합 A,A′ ⊆ V(Γ) 가

x ∈ A ∩A′ 및 z ∈ Ha,D(y,A) ∩Ha,D(y
′, A′)

을만족한다고하자. 더하여, y, y′ 및 z 가서로 10D-분리되어있다고가정하자. 그러면다음중정확히하
나가성립한다.

(1) y′ ∈ HD(y,A) 이고 d∞(x, y) < d∞(x, y′) 이다.
(2) y ∈ HD(y

′, A′) 이고 d∞(x, y) > d∞(x, y′) 이다.

Proof. 가정으로부터, a-간격으로강하게분리된반공간사슬두개

H1 ⊋ H2 ⊋ . . . ⊋ H12, H ′
1 ⊋ H ′

2 ⊋ . . . ⊋ H ′
12

가존재해, 다음을모두만족한다:

• A ∪ {y} ⊆ Hc
1, A′ ∪ {y′} ⊆ H ′c

1 ,

• z ∈ H11 ∩H ′
11, 그리고

• d∞(z,H12), d
∞(z,H ′

12), d
∞(y,H12), d

∞(y′,H ′
12) ≤ D.
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이때, 각 i, j ∈ {1, . . . , 11} 에대해 Hi ∩H ′
j 3 z 및 Hi ∪H ′

j 63 x 이므로, 보조정리 5.2에의해 Hi 와 H ′
j

는교차하거나혹은포함관계에있다.
먼저 H ′

10 과 H12 가서로만난다는것을확인하기위해, y′ 와 z 사이 d∞-거리를구현하는극대사슬
y′ /∈ L1 ⊋ . . . ⊋ Ld∞(y′,z) 3 z

를잡자. Lm ⊇ H ′
11 인가장큰 m 를잡으면, d∞(y′,H ′

11) ≤ D 이기에 m ≤ D 이다. 이제
y /∈ H ′

10 ⊋ H ′
11 3 z, y /∈ Lm+1 3 z

에보조정리 5.5를적용할수있다. 그런데 m 을선택한방식때문에 Lm+1 ⊇ H ′
11 은불가능하므로

Lm+1 ⊊ H ′
10 이어야함을알수있다.

즉 H ′
10 ⊇ L′

m+1 ⊋ . . . ⊋ Ld∞(y′,z) 3 z 는 H ′
10 과 z 사이에낑겨있는길이 d∞(y′, z) − m ≥ 9D

짜리사슬이다. 만약 H ′
10 과 H12 이만나지않는다면, 이사슬전체가 z 와 H12 사이에있게되어

d∞(z,H12) ≥ 9D 임을얻는다. 이는가정과모순된다.
따라서, H ′

10 과 H12 는어떤원소 u 를공유한다. 이제
x /∈ H ′

9 ⊋ H ′
10 3 u, x /∈ H12 3 u

에보조정리 5.5를적용하면, (A) H ′
9 ⊋ H12 혹은 (B) H ′

10 ⊊ H12 이라는결론을얻는다.
같은이유로, (A’) H9 ⊋ H ′

12 혹은 (B’) H10 ⊊ H ′
12 이다.

이중 (B) H ′
10 ⊊ H12 인경우를살펴보겠다. 이때 d∞(y′,H12) ≤ d∞(y′,H ′

10) ≤ D 임은쉽게알수있
다. 이제 y′ ∈ H11 이기만하면, (H2, . . . , H12) 라는사슬이 y′ ∈ HD(y,A) 임을보장해준다. 이를귀류
법으로증명하기위해 y′ /∈ H11 라고가정해보자. 이때 y, y′ /∈ H11 ⊋ H12 ⊇ H ′

10 이고 H11 와 H12 는
강하게분리되어있다. 보조정리 5.4에의해, y 와 y′ 사이거리는 d∞(y,H12) + d∞(y′,H ′

10) ≤ 2D 이하
이다. 이는 y 와 y′ 가 10D 이상분리되어있다고가정에모순이다. 따라서 y′ /∈ H11 일수없다.
요약하자면, 우리는 (B) 이면 y′ ∈ HD(y,A) 라는사실을증명했다. 이때보조정리 6.1에의해

d∞(x, y′) ≥ d∞(x, y) + d∞(y, y′)− 2D

임을알수있다. 여기서 d∞(y, y′) ≥ 10D > 2D 이므로 d∞(x, y′) > d(x, y) 를얻는다. 이로써 (B) 의
경우에는결론 (1) 이성립함을증명했다.
비슷한이유로 (B’) 의경우에는 y ∈ HD(y

′, A′) 이며결론 (2) 가성립한다.
이제남은경우는 (A) 이면서 (A’) 인상황, 즉 H ′

9 ⊋ H12 이면서 H9 ⊋ H ′
12 인경우이다.

먼저 H ′
9 ⊇ H6 일수는없음을유의하라. 왜냐하면, H ′

9 ⊇ H6 ⊋ H9 ⊋ H ′
12 라는위치관계는

d∞(H ′c
9 ,H

′
12) > d∞(Hc

6,H9) = d∞(H ′c
9 ,H

′
12)

이라는모순을유발하기때문이다. 이제
x /∈ H5 ⊋ H6 3 z, x /∈ H ′

9 3 z

에보조정리 5.5를적용하자. 그러면 H5 ⊇ H ′
9 임을얻는다.

이제 H ′
8 ⊇ H4 일수는없다. 왜냐하면, H ′

8 ⊇ H4 ⊋ H5 ⊇ H ′
9 라는위치관계는

d∞(H ′c
8 ,H

′
9) > d∞(Hc

4,H5) = d∞(H ′c
8 ,H

′
9)

라는모순을유발하기때문이다. 따라서 H ′
8 은 H4 를포함하지않는다. 이제

x /∈ H3 ⊋ H4 3 z, x /∈ H ′
8 3 z
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에보조정리 5.5를적용하자. 그러면 H3 ⊇ H ′
8 임을얻는즉, y ∈ Hc

3 는 H ′
8 바깥에있다.

이제, y, y′ /∈ H ′
8 ⊋ H ′

9 ⊇ H12 라는위치관계에보조정리 5.4을적용하면
d∞(y, y′) ≤ d∞(y,H12) + d∞(y′,H ′

9) ≤ 2D

임을얻는다. 이는 y 와 y′ 가 10D-분리되어있다는가정에모순이다. 따라서 (A) 이면서 (A’) 일수는
없고증명이끝난다. □

命題 6.1. 중점그래프 Γ 의균일하게거리상진정한부분집합 Y ⊆ V(Γ) 를하나고정하자. 그러면각각
의 0 < ϵ < 1 및 D > 1 에대해, 어떤상수 N = N(ϵ,D) 가존재하여다음이항상성립한다.
실수열 a 및유한집합 A ⊆ Y 를임의로생각하자. 그러면크기가 (1− ϵ)#A 이상인 A 의부분집합

A′ 이하나존재하여, 각각의 a ∈ A′ 마다
#
(
A ∩Ha,D

(
a, {x, x′}

))
≤ N

이게끔하는 x, x′ ∈ A 가존재한다.

Proof. 먼저 x0 ∈ A 를임의로고정하겠다. 이제
M := sup

v∈Y
#{w ∈ Y : d∞(v, w) ≤ 10D}

라는상수를잡자. 집합 Y 가균일하게거리상진정하기때문에, M 은유한한값을가진다.
이제, 주어진 A 에대해

A1 :=

{
a ∈ A :

그어느 x, x′ ∈ A 에대해서도
A ∩Ha,D(a, {x, x′}) 의크기가 2M/ϵ+M 보다큼

}
을정의하자. 그리고 A1 의 10D-분리된부분집합중극대인것을하나 A2 로잡는다. 그러면 A1 은 A2

의 10D-근방에포함되고, 따라서 #A1 ≤ MA2 이다.
이제남은일은 #A2 ≤ ϵ

M #A 임을보이는것이다. 편의상 A2 를 x0 로부터의 l∞-거리순서대로정렬
하겠다. 즉, A2 = {a1, a2, . . . , a#A2} 로적되 d∞(x0, a1) ≤ d∞(x0, a2) ≤ . . . 이게끔하겠다는것이다.
먼저시간 i = 0 일때 B = G = U = ∅ 를정의하겠다. 그리고시간 i = 1, 2, . . . ,#A2 에걸쳐어떤알

고리즘을실행하겠다. (알고리즘자체는다음문단에서서술하겠다.) 이때 B,G,U 는 A2 의부분집합들
로시간에따라변하는데, 매순간마다서로겹치지않음은유지된다. 각 i 번째스텝마다다음두가지중하나
가실행되는데,

(1) ai 이라는원소가 (기존에어떤카테고리였든그것을잊은채) G 에추가되거나, 혹은
(2) ai 이라는원소가 (기존에어떤카테고리였든그것을잊은채) B 에추가되고, A2 \ (B ∪ G ∪ U) 의
어떤두원소가 U 에추가된다.

각 ai 는 i 번째스텝에 G 에넣어지거나혹은 B 에넣어지고, 그이후에는운명이바뀌지않는다. 특히,
모든스텝이종료되면모든 A2 의원소는 B 아니면 G 에들어가있고, U 는비어있게된다. 또, 매스
텝마다 #B ≤ #G + #U 라는등식은내내성립하게끔할것이다. 그렇게하면결과적으로, 마지막스
텝이끝났을때 #B ≤ #G 를얻게될것이다. 이알고리즘의또다른목표는, ai ∈ G 마다점 bi 를택해,{
A ∩Ha,D(ai, {x0, bi}) : ai ∈ G} 가모두서로겹치지않게끔하는것이다.
이제알고리즘을기술하겠다. 스텝 i 에서, 먼저 Ha,D(ai, x0) ∩ A2 가공집합인지를묻겠다. 만약이

것이공집합이라면, bi := x0 로선언하고 ai 를 G 에집어넣은뒤다음스텝으로넘어간다.
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만약 Ha,D(ai, x0) ∩ A2 가공집합이아니라면, 그원소중 x0 에가장가까운것을 bi 라고선언하겠다.
이어 Ha,D(ai, {x0, bi}) ∩ A2 가공집합인지를묻겠다. 만약이것이공집합이라면, ai 를 G 에집어넣은
뒤다음스텝으로넘어간다. 만약 Ha,D(ai, {x0, bi}) ∩ A2 이공집합이아니라면, 그원소중 x0 에가장가
까운것을 ci 라고선언한뒤, ai 는 B 에, bi, ci 는 U 에넣는다. 이것으로알고리즘설명은끝이다.
각단계에서잡히는 bi 는 HD(ai, x0) ∩ A2 의원소로, 특히 ai 와는다른 A1 의원소이다. A1 가

10D-분리되어있으므로, d∞(ai, bi) ≥ 10D 이다. 보조정리 6.1에의해 d∞(x0, ai) < d∞(x0, bi) 임을알
수있다. 아까 A2 를정렬할때 x0 로부터의거리를기준으로했으므로, bi ∈ {ai+1, . . . , a#A2} 임을알수
있다. 마찬가지이유로 ci 도 {a1, . . . , ai} 바깥에서뽑힌다,
또한 i 번째스텝에서 G 및 B 에는그저 ai 가추가되거나추가되지않기만하고, 그외의원소변동은없

다. 즉, i 번째스텝이끝난시점에서 G 와 B 가 {1, . . . , i} 의분할 (partition) 을이룬다는것은분명하다.
이제부등식
(6.1) #B ≤ #G + #U

가각스텝에서유지되는지살펴보겠다. 한가지시나리오는, ai 를기존의 U 에서꺼내왔든아니든 G 에추
가하는경우이다. 이경우 #G + #U 는그대로있거나혹은 1 만큼증가하고, #B 는변하지않는다. 따라
서부등식 6.1는유지된다. 다른한가지경우는, ai 를기존 U 에서꺼내왔든아니든 B 에추가하는경우이
다. 이경우 U 에는기존 B ∪ G 에속하지않는원소 {bi, ci} 를추가하게된다. 이때, 만약 {bi, ci} 가기존,
즉 i− 1 번째스텝직후의 U 에속하지않는진정한새로운원소라면, i 번째스텝에서부등식 6.1의좌변이
1 만큼증가하되, 우변의 #U 도최소 1 만큼증가한다. 따라서, 다음만확인하면부등식 6.1를보장할수
있다.

主張 6.2. 각 i < j 에대해, 만약 ai, aj ∈ B 이라면 {bi, ci} ∩ {bj , cj} = ∅ 이다.

이를귀류법으로확인하기위해, 먼저 bi ∈ {bj , cj} 라고가정해보자. 그러면 bi ∈ Ha,D(ai, x0) ∩
Ha,D(aj , x0) 이기에보조정리 6.2를적용할수있다. 보조정리 6.2에의하면, d∞(x0, ai) ≤ d∞(x0, aj) 라
는사실에비추어보아, aj ∈ Ha,D(ai, x0) 라는것을알수있다. 물론이때 bi ∈ Ha,D(aj , x0) 이기때문에
보조정리 6.1에의해

d∞(x0, bi) ≥ d∞(x0, aj) + d∞(aj , bi)− 2D − 2 > d∞(x0, aj)

임을알수있다. 여기서는 {aj , bi) ∈ A2 가 10D-분리되어있다는사실이쓰였다. 이는 bi 가
Ha,D(ai, x0) ∩ A2 의원소중가장 x0 에가까운것이라는사실에모순이다. 따라서 bi ∈ {bj , cj} 일
수없다.
다음으로, ci ∈ {bj , cj} 라고가정해보자. 그러면 ci 는 Ha,D(ai, {x0, bi}) 및 Ha,D(aj , x0) 의원

소이다. 방금과같이보조정리 6.2를적용하면, d∞(x0, ai) ≤ d∞(x0, aj) 라는사실에비추어보아,
aj ∈ Ha,D(ai, {x0, bi}) 임을알수있다. 이때 ci ∈ Ha,D(aj , x0) 이기때문에보조정리 6.1에의해

d∞(x0, ci) ≥ d∞(x0, aj) + d∞(aj , ci)− 2D − 2 > d∞(x0, aj)

임을알수있다. 이는 ci 가 Ha,D(ai, {x0, bi}) ∩ A2 의원소중가장 x0 에가까운것이라는사실에모순이
다. 따라서 ci ∈ {bj , cj} 일수없다.
이제주장 6.2이증명되었으므로, 알고리즘은앞에서설명한대로동작한다. 즉, 마지막스텝이끝났을

때 #U = 0 이고, 부등식 6.1에의해 A2 의최소절반이 G 에들어가있다. 이제각 ai ∈ G 마다
Ki := Ha,D(ai, {x0, bi}) \ N10D(ai)
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로정의하겠다. 그러면각 ai ∈ G ⊆ A1 에대해
#(Ki ∩A) ≥ #(Ha,D(ai, {x0, bi}) ∩A)−M ≥ 2M/ϵ

이다. 이제, 서로다른 G 의원소 ai, aj ∈ G 에대해 Ki 와 Kj 가겹치지않음을주장하겠다. 만약그렇지
않고

z ∈ Ha,D(ai, {x0, bi}) ∩Ha,D
(
aj , {x0, bj}), d(z, ai

)
> 10D, d(z, aj) > 10D

를만족하는 z ∈ V(Γ) 가존재한다고해보자. 그러면보조정리 6.2에의해 aj ∈ Ha,D(ai, {x0, bi}) 이거
나혹은 ai ∈ Ha,D(aj , {x0, bj}) 이다. 어느경우이든, ai 및 aj 가 G 의원소라는사실에모순이다. 따라
서그러한 z 는존재하지않는다.
이로부터,

#A ≥ #
(
∪i:ai∈G Ki

)
=
∑

i:ai∈G
#Ki ≥ (2M/ϵ) · #G

임을알수있다. 이로부터목표한부등식
#A1 ≤ 2#G ≤ 2

2M/ϵ
#A ≤ ϵ

M
#A

을얻으면서증명이끝난다. □

7. 랭크 1 등거리사상
定義 7.1. 중점그래프 Γ 의어떤대칭 g 가 정규 1 차수 (regular rank-1) 라는것은, 어떤반공간 H

와지수 n 이존재하여 gnH 이 H 에포함되고또 H 와강하게분리되어있다는뜻이다. 이경우, g 가 H

를꿴다 (skewer) 고말한다.

이제정규 1 차수대칭을어떻게활용할수있는지살펴보겠다.

補題 7.1 (Tits 대안). 중점그래프 Γ 에진정으로작용하는대칭군 G ≤ Aut(Γ) 가정규 1 차수원소 g

를하나포함한다고가정하자. 그러면다음둘중하나가성립한다:
(1) G 는 Z 를유한지수부분군으로갖거나, 혹은
(2) 적당히큰정수 n 과 G 의원소 g′, 그리고반공간 H 가존재하여, gnH, g−nHc, g′H, g′−1Hc

가모두서로겹치지않으면서서로강하게분리되어있다.

Proof. 먼저, g 가꿰는반공간 H 를하나고정하자. 원소 g 를적당히큰거듭제곱으로대체함으로써,
gH ⊊ H 라고가정할수있다. 참고로이때임의의 k > 0 에대해 gkH ⊊ gk−1H ⊊ . . . ⊊ H 이기에
gk 6= id 이다. 따라서 g 로생성된 G 의부분군 〈g〉 는정수군 Z 와동형이다.
더하여, H 밖에있는점 x 을하나고정하고 d∞(x, g6H) = D 로두겠다. 군 G 의작용이진정하다고

가정했으므로, A := {a ∈ H : d∞(x, ax) < 2D} 는유한집합이다.
이제, G 의원소 h 에대한성질

P (h) := � g−nH ⊋ hH ⊋ gnH 이성립하게끔하는양의정수 n 이존재함�,

Q(h) := � g−nH ⊋ hHc ⊋ gnH 이성립하게끔하는양의정수 n 이존재함�

을정의하겠다. 동일한원소가 P 및 Q 를동시에가질수는없음에유의하라.

主張 7.2. 어떤 G 의원소 h ∈ G 를생각하자. 만약 h 및 hg 가동시에성질 P 를가지면, h 는 〈g〉 · A
안에들어있다.
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주장7.2의증명. 주어진조건을다시요약하면, g−nH ⊋ hH ⊋ hgH ⊋ gnH 이게끔하는 n > 0 이존재
한다는뜻이다. 이제

m(h) := max
{
i : giH ⊇ hH

}
, M(h) := min

{
i : giH ⊆ hgH

}
를정의하자. 위에서논하는집합은공집합이아니고, 각각상한및하한이존재하는집합이므로이값들은잘
정의된다. 물론 gm(h)H ⊇ hH ⊋ hgH ⊇ gM(h)H 이므로 −n ≤ m(h) < M(h) ≤ n 이다.
여기서 M(h) ≤ m(h) + 5 임을보이겠다. 만약그렇지않고 M(h) > m(h) + 5 라고가정하면,

g−nH ⊋ gm(h)+1H ⊋ gm(h)+2H ⊋ gnH, g−nH ⊋ hH ⊋ gnH

에보조정리 5.5를적용할수있고 gm(h)+1H ⊋ hH 혹은 hH ⊋ gm(h)+2H 임을얻는다. 그런데전자는
m(h) 의정의상불가능하므로 hH ⊋ gm(h)+2H 임을얻는다. 비슷한이유로, gM(h)−2H ⊋ hgH 이다.
허나 m(h) + 3 < M(h)− 2 임을가정했으므로,

d∞(hHc, hgH) ≥ d∞(gm(h)+2Hc, gM(h)−2H)

≥ d∞(gm(h)+2Hc, gm(h)+3Hc) + d∞(gm(h)+3Hc, gM(h)−2H)

> d∞(Hc, gH)

라는모순을얻는다. 따라서이는불가능하고 M(h) ≤ m(h) + 5 이다.
따라서

gm(h)x, hx /∈ hH ⊋ hgH ⊇ gM(h)H ⊇ gm(h)+5H

임을알수있다. 이는
d∞
(
gm(h)x, hx

)
≤ d∞(hx, hgH) + d∞

(
gm(h)x, gm(h)+5H

)
≤ 2D

를의미하며, 따라서 g−m(h)h ∈ A 이다. 즉 h ∈ 〈g〉 ·A 이다. □

비슷한증명을통해, 다음도알수있다.

主張 7.3. 군 G 의원소 h ∈ G 를생각하자. 만약 h 및 hg−1 가동시에성질 Q 를가지면, h 는 〈g〉 ·A
안에들어있다.

위주장들로부터다음주장도얻는다.

主張 7.4. 군 G 의원소 h ∈ G 를생각하자. 만약 h 와 hg#A 가동시에성질 P 를가지면, 임의의
k ∈ Z 에대해 hgk 또한 P 를가진다.

주장7.4의증명. 가정에의해
g−MH ⊋ hH ⊋ hg#AH ⊋ gMH

를만족하는 M > 0 이존재한다. 특히, h, hg, . . . , hg#A−1 가모두성질 P 를가진다. 주장 7.2에의해,
각각의 i = 0, . . . ,#A− 1 마다

hgi = gmiai

에해당하는어떤 mi ∈ Z 및 ai ∈ A 가존재한다. 비둘기집의원리에의해, 어떤 0 ≤ i < j < #A 에대
해 ai = aj 이고, 이때 hgj−ih−1 = gmj−mi 이다. 표기편의상 A = j − i, B = mj −mi 라고표시하자.
이때 A > 0 임에유의하라. 그러면 hgA = gBh 및 hg−A = g−Bh 이다. 이를연달아활용하면

hgAk = gBkh (∀k ∈ Z)
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임을알수있다.
이제임의의 k 에대해,

g−|k|BhgkH = hg−|k|AgkH ⊋ hH ⊋ gMH

임을안다. 이는다시말해 hgkH ⊋ gM+|k|BH 라는것이다. 또한
g|k|BhgkH = hg|k|AgkH ⊊ hH ⊊ g−MH

이므로 hgkH ⊊ g−M−|k|BH 이다. 이로써 hgk 가성질 P 를가짐을증명했다. □

마찬가지증명을통해다음이따라나온다.

主張 7.5. 어떤 G 의원소 h ∈ G 를생각하자. 만약 h 와 hg#A 가동시에성질 Q 를가지면, 임의의
k ∈ Z 에대해 hgk 또한 Q 를가진다.

이제, 만약각각의 h ∈ G 이 P 또는 Q 를만족한다면결론 (1) 이성립함을논증하겠다. 만약모든
h ∈ G 가 P 를만족한다면주장 7.2에의해증명이끝난다. 그렇지않고 Q 를만족하는 G 의원소 u 가존
재하는경우,

G+ = {h ∈ H : P (h)}, G− = {h ∈ H : Q(h)}
로나누겠다. 이때 G+ 가지수 2 짜리부분군임을관찰하기위해 a, b ∈ G+ 를임의로고르자. 그러면

g−nH ⊋ aH ⊋ gnH, g−mH ⊋ bH ⊋ gmH

인 n,m > 0 이존재한다. 여기서, ag−m 이만약성질 Q 를만족하면, ag−mHc ⊋ gkH 를만족하는정수
k > 0 를찾을수있다. 이는곧

gkHc ⊋ ag−mH ⊋ aH ⊋ gnH

임을의미하는데, 이는 Hc ⊆ gkHc 및 Hc ∩ gnH = ∅ 에모순이다. 따라서이는불가능하고, ag−m 이
성질 P 를만족한다. 다시말해, g−lH ⊋ ag−mH 를만족하는정수 l > 0 이존재한다. 그러면

g−lH ⊋ ag−mH ⊋ abH

로부터, ab 는성질 Q 를가질수없고대신 P 를가져야함을알수있다. 위관찰은곧 G+ 가 G 의부분군이
고 uG+ = G− 라는것이다. 이로써 G+ 가 G 의지수 2 짜리부분군임을알수있다. 물론, G+ 에는 Z
에동형인유한지수부분군이존재한다. 이로써논증이끝난다.
이제성질 P 도 Q 도가지지않는 h ∈ G 가존재하는경우결론 (2) 가성립함을보이겠다. 여기서

{giH}i∈Z 중 hH 와교차할수있는것은기껏해야하나밖에없고, 나머지는모두 giH 와평행하다. 또한,
hH 가 {giH : i ∈ Z} 모두에포함되어있는것은불가능하다. 만약그렇게될경우, 임의의 i > 0 에대해
d∞(Hc, hH) ≥ d∞(Hc, giH) ≥ i 라는얘기가되어, Γ 가연결되어있지않다는모순이생기기때문이다.
마찬가지로, hH 가 {giHc : i ∈ Z} 모두에포함되어있을수없다. 마지막으로, 어떤 n 에대해 g−nHc

및 gnH 를 hH 가분리한다면이는가정에모순이다. 이를모두종합하면, hH 혹은 hHc 중하나는충분
히큰 n 에대해 g−nHc 및 gnH 과겹치지않는다.
이후증명에서는 hH, g−nHc 및 gnH 가서로겹치지않는경우를논하겠다. 나머지경우, 즉 hHc,

g−nHc 및 gnH 가서로겹치지않는경우또한비슷한논법으로다룰수있다.
먼저 D = d∞(hH, gnH) + d∞(hH, g−nHc) +#A 로두자. 그후 hg−D, hg−2D, hg−3D 라는 G 의세

원소를생각하자. 만약이세원소각각이 P 또는 Q 를만족하면, 최소두개는같은종류의성질을가지게된
다. 이때주장 7.4에비추어보면 h〈g〉 전체가그성질을가지게된다. 특히, h 또한 P 또는 Q 를가지게되
어이는모순이다. 따라서그럴수없고, 어떤 k ∈ {1, 2, 3} 에대해 hg−kDH 는 P 도 Q 도가지지않는다.
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이는곧충분히큰 m > n+ 2 에대해 hgkDH 가 g−mHc 및 gmH 둘다와겹치지않거나혹은둘다를포함
한다는뜻이다.
이상황에서만약 hg−kDH 가 g−mHc 및 gmH 와겹치지않는다면어떻게될까? 이경우, hg−kDH

는 g−nHc 및 gnH 중기껏해야한개랑만교차할수있다. 만약 hg−kD 와 gnH 가교차하지않는다면,
이 hg−kD 와 gnH 는서로겹치지않아야한다. hg−kDH 는 gnH ⊋ gmH 를포함할수없고, gnH 도
hg−kDH ⊇ H 를포함할수없으며, hg−kD ∪ gnH 는 gmH 라는부분을놓치기때문이다. 따라서,
hg−kDH 는 hH 와 gnH 사이에낑겨있어야하는데, 이는

d∞(hH, gnH) < D ≤ d∞(hH, hg−kDHc) ≤ d∞(hH, gnH)

라는모순을낳는다. 따라서이러한일은생길수없다. 마찬가지로, hg−kD 와 g−nHc 가교차하지않을
때도비슷한모순이생긴다. 따라서, hg−kDH 가 g−mHc 및 gmH 와겹치지않을수는없고, 둘모두를
포함해야한다. 이제 g−mHc, gmH,hH, hg−kDHc 가모두서로겹치지않는다는것은명백하다. 더하여,
g−m−1Hc, gm+1H,hgH, hg−kD−1Hc 은강하게분리되어있기까지하다. 이는원하는결론이다. □

이제, 명제 3.1의절반을증명할준비가되었다.

命題 7.1. 중점그래프 Γ 에진정으로작용하는대칭군 G ≤ Aut(Γ) 를생각하자. 또, G 가정규 1 차수
원소 g ∈ G 를하나포함하고있고, Z 와동형인유한지수부분군이없다고가정하자. 또 x0 ∈ Γ 를하나고
정하자. 그러면각각의 0 < ϵ < 1 에대해어떤유한집합 {b1, . . . , bT } ⊆ G 및반공간유한개 L1, . . . , LT

가존재하여다음이항상성립한다.
유한집합 A ⊆ G 를임의로생각하자. 그러면크기가 (1− ϵ)#A 이상인 A 의부분집합 A′ 이하나존

재하여, 각각의 a ∈ A′ 마다어떤 i 가존재하여
ax0 ∈ A′x0 ⊆ aLi ⊊ abiL

c
i

가성립한다.

Proof. 보조정리 7.1에의해, G 안의정규 1 차수원소 g1, g2 및반공간 H 가존재하여
g1H, g−1

1 Hc, g2H, g−1
2 Hc

가모두강하게분리되어있다. 이때 id 와 gi 을잇는 S-경로 γi 를하나씩고르자. 그러면적당히큰 n 에
대해 γ1 · x0 및 γ2 · x0 는 g1H

c ∩ g−1
1 H ∩ g2H

c ∩ g−1
2 H 안에갇혀있다고말할수있다. 이때그러면 γi 는

γi · (g1γi) · . . . · (gn−1
i γi)로대체하고, gi 는 gni 으로대체함으로써, γix0 가 g1H

c∩g−1
1 H ∩g2H

c∩g−1
2 H

에갇혀있다고가정할수있다. 또, (g1, g2) 를 (g1g2, g
2
2) 로대체함으로써,

{Hc, g1H, g2H}, {H, g−1
1 Hc, g−1

2 Hc}

라는두모임각각이강하게분리된반공간의모임이라고얘기할수있다. 이때,

M := max
{
d∞(Hc, u1 · · ·u15H) : ui ∈ {g1, g2}

}
+ d∞(x0, g

−1
2 Hc)

로놓겠다.
이제명제 6.1을활용해보자. 현재 G 의작용이거리상진정하기에, G · x0 라는집합은균일하게거리

상진정하다. 주어진 ϵ > 0 에대해, 명제 6.1에서보장하는 N = N(ϵ,M) 을잡자. 그러면각각의유한
집합 A ⊆ G 마다크기가 (1− ϵ)#A 이상인 A 의부분집합 A′ 이하나존재하여, 각각의 a ∈ A′ 마다

#
(
Ax0 ∩HM

(
ax0, {x, x′}

))
≤ N
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이게끔하는 x, x′ ∈ Ax0 가존재한다. 여기서
{c1, c2, . . . , c2N+13} :=

{
u1u2 · · ·uN+14 : ui ∈ {g1, g2}

}
으로잡고, bi := cig

5
1c

−1
i 및 Li = ciH

c 로잡겠다.
이제각 a ∈ A′ 의각점마다명제에서요구하는정수 i 가존재한다는것을논하겠다. 먼저

g21H, g1g2H, g2g1H, g22H

는모두서로겹치지않기에, 최소한하나는 x0 도, a−1x 도, a−1x′ 도포함하지않는다. 그러한것을 ga 라
고표시하겠다. 그러면

{a, x, x′} ⊆ agaH
c, agaH ⊋ agag1 ⊋ H ⊋ . . . ⊋ agag

10
1 H

이성립한다. 더하여, ax0 도 agag
10
1 H 도 ag−1

1 Hc 밖에있으니, 보조정리 5.3에의해
d∞
(
ax0, agag

10
1 H

)
≤ d∞

(
ax0, ag

−2Hc
)
+ d∞

(
ag−2Hc, agag

10
1 H

)
≤ M

이성립한다. 이로부터, agag101 H 의원소들은모두 HM

(
ax0, {x, x′}

) 밖에있음을알수있다.
그렇다면 Ax0 ∩ agag

10
1 H 에는기껏해야 N 개의원소가있다. 따라서 agag

10
1 H 에포함되어있는{

agag
10
1 u1u2 · · ·uNH : ui ∈ {g1, g2}

}
라는 2N 개의서로겹치지않는반공간중, Ax0 의원소를포함하지않는것이분명히존재한다. 그러한선
택지 u1, . . . , uN 들을하나고정했을때,

A′x0 ⊆ agag
10
1 u1 · · ·uNHc ⊊ agag

10
1 u1 · · ·uN · g51H

가성립한다. 따라서, ci = gag
10
1 u1 · · ·uN 인 i 를택하고, Li = ciH

c 및 bi = cig
10
1 c−1

i 를택하면원하던
조건을만족한다. 물론 id 와 bi 사이는적당히 γ1, γ2 혹은그역방향경로들을이어붙인 S-경로로이을수
있다. 이때 (

(γ1) · . . . · (cig51γ1)
)
· x0 ⊊ cig

10
1 Hc

임은분명하다. 마찬가지로, 후반부경로의 x0-궤도가 ciH 에포함됨은분명하다. 이로써경로 γi 의존
재성까지확인하였고증명이끝난다. □

이제남은것은마법보조정리의증명을완수하는것이다.

命題 7.2. 중점그래프 Γ 에진정으로작용하는대칭군 G ≤ Aut(Γ) 를생각하자. 또, G 가정규 1 차수
원소 g ∈ G 를하나포함하고있고, Z 와동형인유한지수부분군이없다고하자. 더하여, g 가꿰뚫는반공
간 H 및점 x0 을하나고정하자. 그러면각각의 N > 20 마다 K > 0 이존재하여

CN (g) :=

{
h ∈ G :

x0 /∈ wgH ⊋ wgNH 3 hx0 혹은 hx0 /∈ wgH ⊋ wgNH 3 x0 가
성립하게끔하는 w ∈ G 가존재하지않음

}
가 K-나무스럽다.

Proof. 대칭 g 를적당히큰거듭제곱으로대체함으로써 x0 /∈ gH ∩ g−1Hc 임을가정할수있다. 이때증
명을위해상수

K := 100
(
d∞(x0, g

100H) + d∞(x0, a
−100(N+1)Hc)

)
를잡겠다.
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먼저 CN (g) 의 0.5K-분리된부분집합중 id 를포함하고또극대인것을하나골라 C′ 라고하자. 이제각
각의 u ∈ C′ 에대해

Ψ(u) := ug40N

을잡아주겠다.
이제다음관찰이필요하다.

主張 7.6. 두원소 u1, u2 ∈ C′ 에대해,

x0 /∈ u1g
5NH ⊋ u1g

35NH ⊋ Ψ(u1)u2g
5NH ⊇ Ψ(u1)u2g

35NH 3 Ψ(u1)Ψ(u2)x0

가성립한다.

주장7.6의증명. 다음은 i = 1, 2 각각에대한얘기이다. 만약 x0 ∈ uig
NH 이라면

uix0 /∈ uigH ⊋ uig
NH 3 x0

라는얘기가되어 ui ∈ CN (g) 라는가정에모순이다. 따라서 u−1
i x0 /∈ gNH 이다. 마찬가지이유로

uix0 ∈ g−NH 이다.
이제남은것은가운데포함관계, 즉 g−5NH ⊋ u2g

5NH 임을증명하는것이다. 앞에서얘기했다시피
u2x0 는 g−NH 에포함된다. 여기서귀류법을적용하기위해, u2g5NH 가 g−5NH 에포함되지않는즉,
u2g

5NH 와 g−5NHc 가어떤원소 y 를공유한다고가정해보자. 이경우, u2x0 /∈ u5N−1
2 H ⊋ u5N2 H 3 y

및 u2x0 /∈ g−5NHc 3 y 라는위치관계에보조정리 5.5를적용하면 u5N−1
2 H ⊋ g−5NHc 혹은 g−5NHc ⊋

u5N2 H 여야한다. 전자의경우
x0, u2x0 /∈ u2g

5N−2H ⊋ u2g
5N−1H ⊋ g−5NHc

라는위치관계에보조정리 5.4을적용하면
d∞(x0, u2x0) ≤ d∞(u2x0, u2g

5N−2H) + d∞(x0, g
−5NHc) ≤ 0.02K

가된다. 이는 u2 ∈ C′ 라는가정에어긋난다. 후자의경우에도
x0, u2x0 /∈ g−5N+1Hc ⊋ g−5NHc ⊋ u5N2 H

라는위치관계에보조정리 5.4을적용하면
d∞(x0, u2x0) ≤ d∞(u2x0, u2g

5NH) + d∞(x0, g
−5NHc) ≤ 0.02K

가된다. 이는역시 u2 ∈ C′ 라는가정에어긋난다. 따라서 u2g
5NH 가 g−5NH 에포함되어야하고주장

의증명이끝난다. □

主張 7.7. 집합 C′ 의원소 u1, . . . , um 및 v1, . . . , vn 에대해, 만약 Φ(u1) · · ·Φ(um) = Ψ(v1) · · ·Ψ(vn)

이라면 u1 = v1 이다.

주장7.7의증명. 편의를위해 U := Φ(u1) · · ·Φ(um) = Ψ(v1) · · ·Ψ(vn) 라고두자. 주장 7.6에의해,
x0 /∈ u1g

5NH ⊋ u1g
35NH ⊇ . . . ⊋ Φ(u1) · · ·Φ(um−1)umg35NH 3 Ux0,

x0 /∈ v1g
5NH ⊋ v1g

35NH ⊋ . . . ⊋ Φ(v1) · · ·Φ(vn−1)vng
35NH 3 Ux0

가성립한다.
여기서만약 v1x0 ∈ u1g

6NH 라면이는곧 x0 /∈ u1g
5N · gH ⊋ u1g

5N · gNH 3 v1x0 라는의미가되어
v1 ∈ CN (g) 임에모순이다. 따라서 v1x0 /∈ u1g

6NH 이고마찬가지이유로 u1x0 /∈ v1g
6NH 이다.
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이제
x0 /∈ u1g

10NH ⊋ u1g
11NH 3 Ux0, x0 /∈ v1g

10NH ⊋ Ux0

라는위치관계에보조정리 5.5를적용하면, u1g10NH ⊋ v1g
10NH 혹은 v1g

10NH ⊋ u1g
11NH 임을알수

있다. 전자의경우
u1x0, v1x0 /∈ u1g

9NH ⊋ u1g
10NH ⊋ v1g

10NH

라는위치관계에보조정리 5.4를적용해
d∞(u1x0, v1x0) ≤ d∞(u1x0, u1g

10NH) + d∞(v1x0, v1g
10NH) ≤ 0.02K

임을알수있다. 후자의경우
u1x0, v1x0 /∈ v1g

9NH ⊋ v1g
10NH ⊋ u1g

11NH

라는위치관계에보조정리 5.4를적용해
d∞(u1x0, v1x0) ≤ d∞(u1x0, u1g

11NH) + d∞(v1x0, v1g
10NH) ≤ 0.02K

임을알수있다. 어느경우이든, 0.5K-분리된집합인 C′ 에서뽑은 u1, v1 에게는 u1 = v1 임을알려준
다. □

주장 7.7를반복해서적용하면, u1, . . . , um, v1, . . . , vn ∈ C′에대해만약 Φ(u1) · · ·Φ(um) = Ψ(v1) · · ·Ψ(vn)

이면곧 m− n 이고 ui = vi(i = 1, . . . , n) 임을알수있다. 이는곧 Ψ(C′) 가 0-나무스럽다는것이고, C′

는 0.5K-나무스러우며, 따라서 C 는 K-나무스럽다. □

命題 7.3. 중점그래프 Γ 에진정으로작용하는대칭군 G ≤ Aut(Γ) 를생각하자. 또, G 가정규 1 차수
원소 g ∈ G 를하나포함하고있고, Z 와동형인유한지수부분군이없다고하자. 더하여, g 가꿰뚫는반공
간 H 및점 x0 을고정하자. 그러면 K > 0 이존재하여, 충분히큰 T > 0 마다다음이성립한다.
점 x0 와또다른임의의점 x′ ∈ V(Γ) 사이의반공간극대사슬

x0 /∈ L1 ⊋ . . . ⊋ LM 3 x′

를고정한뒤,
Li := {g ∈ G : d∞(gx0, ∂LTi) ≤ 0.001T}

를잡자. 그러면 L1 t . . . t LM/T 는 K-나무스럽다.

Proof. 이번에는조금더품이필요하다. 보조정리 7.1에의해어떤 a1, . . . , a4 ∈ G 가존재해다음이성립
한다:

그어느 x, y, z ∈ V(Γ) 에대해서도, {x, y, z} ⊆ aigH
c ∩ aig

−1Hc 인 i 가존재함.
이들을가지고

K := 100
(
d∞(x0, g

100H) + d∞(x0, a
−100(N+1)Hc) +

4max
i=1

d∞(x0, aix0)
)

를정의할수있다. 이 K 는 x′ 에는의존하지않음에유의하라.
특히 {x, y, z} = {x0, x0, x′} 에대한선택지를 t 라고정해두자. 그리고각 g ∈ Li 마다, {x, y, z} =

{x0, u−1x0, u
−1x′} 에대한선택지를 s(u) 라고표기하겠다, 그런후

Φ(u) := us(u)g200t

로고정하겠다.
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이번에도 tiLi 의 0.5K-분리된부분집합중극대인것을하나골라 C′ 라고하겠다. 이전증명과비슷하
게정렬성에관한주장을먼저증명한뒤단사성을증명하려고한다.
사실정렬성은증명할것이별로없다. 임의의 u1 ∈ C′ 를골랐을때, x0 /∈ u1s(u1)H 이라는것은 s 의정

의로부터바로따라나온다. 그다음으로, 임의의 u2 ∈ C′ 를추가로고르자. 이때 LT/2 이라는초평면은
x0 과 x′ 사이에끼어있음을기억하라. 그런데 u2s(u2)gH 및 u2s(u2)g

2H 는이두점모두포함하지않는
다. 보조정리 5.3에의해, LT/2 은 u2s(u2)g

2H 를완전히포함하거나혹은서로겹치지않아야한다. 그런
데이때 u2x0 은 Lc

1 에도 u2s(u2)g
2H 에도포함되어있지않다. 따라서만약위의후자의경우

d∞(u2x0, L
c
T/2) ≤ d∞(u2x0, u2s(u2)g

2H) ≤ 0.1T

인데이는 u2x0 와 Lc
T/2 사이에반공간 LT/2+1, LT/2+2, . . . , LT 가끼어있다는사실에모순이다. 따라서

L1 ⊋ u2s(u2)g
2H 이다.

마찬가지논법으로, t−1g−2H ⊋ L1 임을알수있다. 이를모두조합하면정렬성
x0 /∈ u1s(u1)H ⊋ u1s(u1)g

198H ⊋ Φ(u1)u2s(u2)g
2H ⊋ Φ(u1)u2s(u2)g

200H 3 Φ(u1)Φ(u2)x0

임을알수있다.
이제, 임의의 u1, v1 ∈ C′ 에대해 v1x0 ∈ u1s(u1)g

30H 일수있는지알아보겠다. 이때 u1x0 ∈
N0.001T (∂Lm) 인 m 을먼저잡아두겠다. 이제 x0 과 x′ 는모두 u1s(u1)gH ⊋ u1s(u1)g

2H 바깥에있음
을유의하라. 보조정리 5.3(및보조정리 5.4의증명도참조) 에따라어떤 m′ 이존재해

x0 /∈ L1 ⊋ . . . ⊋ Lm′ ⊇ u1s(u1)g
2H, u1s(u1)g

2Hc ⊇ Lm′+1 ⊋ . . . ⊋ LM 3 x′

여야한다. 그러면 |m′ − m| ≤ 0.001T + d∞(x0, s(u1)x0) + d∞(x0, g
2H) ≤ 0.002T 여야한다. 또

v1x0 ∈ N0.001T (∂Lk) 인 k 를잡으면, Lm′ 과 Lk 사이에있는모든 Li 들은 v1x0 과 Lk 사이에낑겨있음
을알수있다. 이로부터 |m′− k| ≤ 0.001T 임도알수있다. 즉, |m− k| ≤ 0.002T 이고, 이로부터 m = k

여야함을알수있다.
그런데 u1 와 v1 가같은반공간 Lm 의경계에있으면서그사이에 u1s(u1)gH ⊋ . . . ⊋ u1s(u1)g

30H

가낑겨있다는것은, u1s(u1)gH ⊋ . . . ⊋ u1s(u1)g
30H 가강하게분리되어있다는사실에모순이다. 따라

서이러한일은일어날수없다.
위이유와정렬성을함께결합해이전증명과같이논증하면단사성또한얻는다. 이로써 Φ(C′) 가나무스

럽다는것을알수있고, tiLi 은따라서 K-나무스럽다. □

命題 7.4. 유한집합 S 로생성되는군 G 가중점그래프 Γ 에진정으로작용한다고하자. 또, G 가정규
1 차수원소 g 를하나포함하고있고, Z 와동형인유한지수부분군이없다고가정하자. 또, g 가꿰뚫는반
공간 H 및점 x0 ∈ Γ 를하나고정하자. 또한실수열

a := (d∞(Hc, gnH))11n=1

을두겠다. 그러면충분히큰 T 및임의의 N 에대해다음이성립한다.
임의의점 x, x′ ∈ V(Γ) 에대해, id 와 Ha,D

(
x0, {x, x′}) \ND(id) 바깥을잇는임의의 S-경로는반드

시셋중하나를만족해야한다:
(1) CN (g) \ND/10(id) 을지나거나,
(2) x0 와 x 사이에끼인임의의극대사슬 x0 /∈ L1 ⊋ . . . ⊋ L0.1N ⊋ . . . 3 x 에대해

Li := {g ∈ G : d∞(gx0, ∂LTi) ≤ 0.001T} (i = 1, . . . , 0.1N/T )

각각을지나거나, 혹은
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(3) x0 와 x′ 사이에끼인임의의극대사슬 x0 /∈ L′
1 ⊋ . . . ⊋ L′

0.1N ⊋ . . . 3 x 에대해
L′
i := {g ∈ G : d∞(gx0, ∂L

′
Ti) ≤ 0.001T} (i = 1, . . . , 0.1N/T )

각각을지난다.

Proof. 증명을위해 h ∈ Ha,D
(
x0, {x, x′}) \ ND(id) 를임의로정하자. 그러면 x0 와 hx0 사이에는

x0 /∈ L 3 hx0, d
∞(x0, L) = D/2 인반공간 L 이존재한다. 이 L 의경계의 T -근방

L := {g ∈ G : d∞(∂L, gx0) < T}

을잡으면, id 와 h 를잇는 S-경로는반드시 L 을한번은지나게되어있다. 이시점을 h′ 라고하자. 만약
h′ ∈ CN (g) 라면증명이끝난다. 만약아니라면,

x0 /∈ wgH ⊋ . . . ⊋ wgNH 3 h′±1x0

인 w 가존재한다. 일단 wgNH 3 h′x0 인경우를논하겠다. 나머지경우도논증은비슷하다.
이때, wgN−TH 는반드시 L 을포함한다. 여기서만약 x, x′ /∈ wgN−T−20H 라면, x0, x, x

′ /∈
wgN−T−20H ⊋ wgN−TH 3 h±1x0및 d∞(x0, wg

N−TH) ≤ D/2라는사실로부터 h ∈ Ha,D
(
x0, {x, x′})

라는모순을얻게된다. 따라서그럴수없고, x혹은 x′ 와 x0 사이에는최소한 wgH ⊋ . . . ⊋ wgN−T−20H

이라는 0.5N 개이상의반공간이위치한다. 이반공간들을 id 와 h′ 사이 S-경로가넘어야함은물론이다.
이로부터 2 번혹은 3 번결과를유도할수있다. □

8. 더자세한 CAT(0) 기하학
補題 8.1. 모든중점그래프는이분그래프 (bipartite graph) 이다.

Proof. 모순을이끌어내기위해, 어떤그래프 Γ 에홀수길이사이클이있다고가정하자. 그런홀수사이
클중가장길이가작은것을잡고, 그꼭짓점을순서대로 v1, v2, . . . , v2n+1 이라고이름붙이자. 이때만약
d(v1, vn) 이 n 보다작을경우, 그거리를실현시키면서 v1 에서 vn 으로향하는측지선을 P 라고잡았을
때, v1

P
−− vn − vn−1 − . . .− v2 − v1 및 v1

P
−− vn − vn+1 − . . .− v2n+1 − v1 은둘다길이 2n 이하이고,

둘중하나는길이가홀수이다. 이는 v1 − v2 − . . .− v2n+1 − v1 이최소홀수길이사이클이라는사실에모
순이다. 따라서 d(v1, vn) = n 이성립한다.
마찬가지로이유로 d(vn+1, v1) = n 이성립한다. 물론 d(vn, vn+1) = 1 이다. 이제 v1, vn, vn+1 의중

점 m 을잡으려고하면, d(vn,m) = 1
2 [n+ 1 − n] = 1/2 라는계산이나온다. 이러한거리를만족하는꼭

짓점 m 은존재하지않기때문에, Γ 는중점그래프가아니다. □

補題 8.2 (사각형보조정리). 중점그래프 Γ 상의두꼭짓점 x, y 을잇는측지선두개
γ1 = (x = p0, p1, . . . , pn−1, pn = y), γ1 = (x = q0, q1, . . . , qn−1, qn = y),

를생각하자. 그러면 d(x, r) = n− 2 이면서 pn−1 및 qn−1 과동시에인접해있는꼭짓점 r 이존재한다.

Proof. 먼저, pn−1 = qn−1 인경우에는 r = pn−2 로잡으면된다.
만약 pn−1 6= qn−1 이라면, 그둘간의거리는정확히 2 이다. 왜냐면 pn−1 − y − qn−1 라는경로가존

재하기에 d(pn−1, qn−1) 는 2 보다작거나같으며, 또그래프의이분성때문에 d(pn−1, qn−1) 는짝수여야
하기때문이다.
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Figure 9. 보조정리 8.3에서의상황도

이경우, x, pn−1, qn−1 의중점 r 을잡으면,

d(x, r) =
1

2
[d(x, pn−1) + d(x, qn−1)− d(pn−1, qn−1)] = n− 2,

d(pn−1, r) =
1

2
[d(x, pn−1) + d(pn−1, qn−1)− d(x, qn−1)] = 1,

d(qn−1, r) =
1

2
[d(x, qn−1) + d(pn−1, qn−1)− d(x, pn−1)] = 1

을만족한다. 이로써증명이끝났다. □

이제초평면의모양을더자세히이해해보자. 그래프안의 4-사이클이란, 서로다른모서리 e1, e2, e3, e4

및 서로다른꼭짓점 v1, v2, v3, v4 가
ei = vivi+1 (i = 1, 2, 3), e4 = v4v1

형태로배열되어있는부분그래프임을기억하라.

補題 8.3. 중점그래프 Γ 안의점들 a, b1, b2, b3, c1, c2, c3 에대해, □ab1c2b3, □ab2c3b1, □ab3c1b2 가모
두 4-사이클을이룬다고가정하자. 그러면 □mc1b2c3, □mc2b3c1, □mc3b1c2 가각각 4-사이클이게끔
하는 m 라는점이존재하며, 이 8 개의점은모두서로다르다.

Proof. 먼저가정을만족하는 a, b1, b2, b3, c1, c2, c3 7 개의점은서로결코같을수없다. 예를들어,
a, b1, c2, b3 끼리같을수없음은 4-사이클의정의로부터바로나온다. 또, 만약 c1 와 c2 가같다면,
a, b1, b2, b3, c1 = c2 가 K2,3 그래프를이룬다는것을알수있다. 이는곧 a 도 c1 도서로다른세점 b1, b2, b3

의중점이된다는것이다. 이는중점의유일성에모순이므로불가능하다. 비슷한논리로, c1, c2, c3 은모두
다르다. 이로써 7 개의점이다다르다는것을알수있다.
특히, c1, c2, c3 은서로다른점이면서길이 2 짜리경로로서로연결되어있기에, 서로간의거리가

2 이다. 이세점의중점 m 를잡으면, 세점으로부터거리 1 에있게된다. 이점이만약 b1 과같다면,
a, c1, b1, b2, b3 이 K2,3 그래프를형성해마찬가지로모순이된다. 따라서 m 은 b1 일수없고, 마찬가지로
b2 일수도 b3 일수도없다. 또한 a, c1, c2, c3 일수도없음은홀짝성에의해분명하다. 이로써, 8 개의점이
모두서로다르다는것을확인했다. 아울러 □mcibi+1ci+2(mod i) 가 4-사이클이라는것은분명하다. □

補題 8.4. 중점그래프 Γ 안에 4-사이클
C1 = □u0u1v1v0, C2 = □u1u2v2v1, . . . , Cn = □un−1unvnvn−1
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이주어져있는데, 이때 Ci−1 과 Ci 는변 uivi 를공유한다고하자. 더하여, dΓ (v0u0, vnun) = 1 이라고
가정하자. 그러면 □v0u0unvn 은 4-사이클이다.

Proof. 필요하다면 vi 와 ui 의라벨링을뒤바꿔, v0 이 vnun 로부터거리 1 에있고 u0 는 vnun 에포함되
지않는다고가정하겠다. 이제주어진명제를 n 및 S :=

∑n
i=1 d(v0, vi) 에대한귀납법으로증명하겠다.

먼저 n 이 1 인경우는자명하고, n = 2 이불가능함도어렵지않게확인할수있다.
이제 n 이 2 보다큰경우를논하겠다. 먼저 i ∈ {1, . . . , n} 중 d(v0, vi) 가최대가되는 i 를하나잡

자. 이때, 만약최댓값이 1 이라면, 이는 d(v0, v2) = 0, 즉 v0 = v2 임을의미한다. 이경우, u0 와 u2

는일치해야한다. 만약그렇지않을경우, v0 = v2, u1, v1, u0, u2 는 K2,3 부분그래프의꼭짓점이되기때
문에 Γ 가중점그래프라는사실에모순이기때문이다. 이제 C3, . . . , Cn 에대해귀납가정을적용하면
−−→v0u0 =

−−→v2u2 와 −−→vnun 이어떤 4-사이클의평행한두변이라는결론을이끌어낼수있다.
만약최댓값이 2 이상이라면, 잡은 i 는 1 보다크고 n 보다작을것이다. 그러면 d(v0, vi−1) 및

d(v0, vi+1) 는 d(v0, vi) 와 1 만큼차이나는데, d(v0, vi) 의최대성으로부터 d(v0, vi − 1) = d(v0, vi +

1) = d(v0, vi) − 1 임을관찰할수있다. 이때만약 vi−1 = vi+1 라면, Ci, Ci+1 에귀납가정을적용해
−−−−−→vi−1ui−1 = −−−−−→vi+1ui+1 를이끌어낸뒤 C1, . . . , Ci−1, Ci+2, . . . , Cn 에귀납가정을적용해 −−→v0u0 = −−→vnun 임
을결론낼수있다.
이제 vi−1 와 vi+1 가다른점인경우를다루자. 사각형보조정리를이용하면 □vi−1vivi+1v

′ 가 4-사이
클이면서 d(v0, v

′) = d(v0, vi) − 2 이게끔하는꼭짓점 v′ 가존재한다. 이제보조정리 8.3을사용하면,
Ci := □vi−1v

′u′ui−1, Ci+1 := □vi+1v
′u′ui+1 가둘다 4-사이클이게끔하는점 u′ 가존재한다. 이제순차

적으로인접한 4-사이클들 C1, . . . , Ci−1, C
′
i, C

′
i+1, . . . , Cn 에대해서는귀납가정을적용할수있다. 왜냐

면 d(v0, v
′) < d(v0, vi+1) 이기때문이다. 이로써증명이끝난다. □

이로부터다음을쉽게관찰할수있다.

系 8.1. 중점그래프 Γ 의초평면 h 를하나생각하자.

(1) 임의의 v ∈ V(h) 에대해, v 에인접한모서리 eh(v) ∈ h 는유일하게존재한다. 이때, eh(v) 의
다른한꼭짓점을 ιh(v) 라고적겠다.

(2) 그래프 Γ 안의어떤 4-사이클의모서리를순서대로 e1, e2, e3, e4 라고했을때, 만약 e1 ∈ h 라면
{e1, e2, e3, e4} ∩ h = {e1, e3} 가정확히성립한다.

(3) 만약두꼭짓점 v, w ∈ V(h) 가 N(h) \ h 에서서로이웃한다면, ιh(v) 및 ιh(w) 또한그러하다.
(4) 그래프 Γ 안의어떤 4-사이클의네꼭짓점중어느세개가 V(h) 에들어있다면, 나머지하나또한

V(h) 에들어있다.

Proof. (1) 꼭짓점 v ∈ V(h) 에인접한 h 의원소 e = uv, e′ = u′v 를생각하자. 초평면 h 의정의상,
연달아인접한 4-사이클

C1 = □uu1v1v, C2 = □u1u2v2v1, . . . Cn−1 = □un−2un−1vn−1vn−2, Cn = □un−1u
′vvn−1

이존재한다. 이때보조정리 8.4로부터, □un−1uvvn−1 또한 4-사이클임을알수있다. 만약이때
v′ 와 v 가일치하지않는다면, u, u′, vn−1, v, un−1 가 K2,3 부분그래프를형성하므로모순이다.
따라서 u′ = u 라고결론지을수있다.

(2) (1) 로부터곧바로따라나온다.
(3) (2) 로부터곧바로따라나온다.
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(4) 어떤 4-사이클 □xyzw 에대해 x, y, z ∈ h 라고하자. 만약 ιh(x), ιh(y), ιh(z) 중그어느것이라
도 {x, y, z, w} 에속한다면, 이는곧 □xyzw 의네변중평행한어느두변이 h 에속한다는뜻이다.
그경우 w 는자동으로 V(h) 에들어간다. 만약그렇지않다면, (3) 에의해 □xyιh(y)ιh(x) 및
□yzιh(z)ιh(y) 모두 4-사이클이된다. 이제보조정리 8.3을적용하면, □xwvιh(x) 및 □zwvιh(z)

가 4-사이클을이루게끔꼭짓점 v 를잡을수있다. 이는곧 w ∈ V(h) 및 v = ιh(w) 를의미하는것
이다. □

이제초평면에관해앞에서주장한사실들을증명하겠다. 그전에개념하나를도입하자. 초평면 h 가
주어졌을때, h 의꼭짓점집합이생성해내는 Γ 의부분그래프 N(h) 를 h 의운반함 (carrier) 혹은근방
(neighborhood) 라고한다. 다시말해, N(h) 의꼭짓점집합은 h 의것과일치하고, N(h) 의모서리집합
은 {xy ∈ E(Γ) : x, y ∈ V(h)} 이다.

補題 8.5. 중점그래프 Γ 의초평면 h 를하나생각하자. 그러면다음이성립한다.
(1) 초평면 h 의근방은볼록하다 (convex). 다시말해, 근방안의두꼭짓점을잇는 Γ-측지선은반드
시근방안에갇혀있다.

(2) 초평면 h 는전체공간을정확히둘로나누고, 따라서 h 에면한반공간은정확히두개다.
(3) 초평면 h 에들어있는임의의모서리 xy, vw ∈ h 에대해, d(x, v) = d(y, w) 이다.

Proof. (1) 먼저, x, y ∈ V(h) 에대해, N(h) 안의경로들을이용해 dh(x, y) 를정의하겠다. 즉,
dh(x, y) ≤ n 라는것은 x 와 y 를잇는길이 n 이하인 N(h) 안의경로가존재한다는것이다.
이제임의의 x, y ∈ V(h) 에대해 I(x, y) ⊆ N(h) 임을 dh(x, y) 에대한귀납법으로증명하겠

다. 먼저 dh(x, y) = 0, 즉 x 와 y 가일치할때는더물을것이없다. 다음으로 dh(x, y) = 1, 즉 x

와 y 가인접한경우도더물을것이없다.
이제 dh(x, y) ≤ n− 1 일때명제가성립한다고가정한뒤, dh(x, y) = n 인경우를생각해보자.

그리고길이 d(x, y) 짜리 Γ-측지선 (x = p0, p1, . . . , pd(x,y) = y) 를임의로잡자. 우리의목표는
이측지선이 N(h) 에포함됨을보이는것이다.
여기서, x 와 y 사이를잇는길이 n 짜리 N(h)-측지선 (x = q0, q1, . . . , qn = y) 를하나생각할

수있다. 그러면 (q1, . . . , qn) 는길이 n− 1 짜리 N(h)-측지선이면서 Γ-측지선이기도하다. 이
는 q1 과 y 사이에는귀납가정을적용할수있기때문이다.
한편, d(q1, y) 는 d(x, y) 와정확히 1 만큼차이나야한다. 먼저 d(x, y) = n − 2 가불가

능함을설명하고자한다. 귀류법을위해 d(x, y) = n − 2 라고가정해보자. 이는 (q1, q0 =

p0, p1, . . . , pn−2) 및 (q1, q2, . . . , qn) 가 q1 와 y 를잇는 Γ-측지선임을뜻한다. 사각형보조정리
를적용하면, x 및 q2 에동시에인접하는꼭짓점 u 중 d(u, y) = n− 3 인것이존재한다는뜻이다.
여기서 x 와 q2 는 y 로부터의 dh-거리가다르기때문에다른꼭짓점이며, q1 과 u 또한 y 로부터
의 d-거리가다르기때문에다른꼭짓점이다. 즉 □xq1q2u 는 4-사이클이며, 그꼭짓점중최소세
개는 h 의꼭짓점이다. 따름정리 8.1(4) 에의해, u 또한 h 의꼭짓점이된다. 따라서

dh(x, y) ≤ 1 + dh(u, y) = n− 2

를얻게되는데, 이는가정에모순이다. 따라서, d(x, y) = n− 2 는불가능하다.
따라서 d(x, y) = n 임을알수있고, (p0, . . . , pn) 및 (q0, . . . , qn) 은 x 와 y 사이를잇는두 Γ-측

지선이다. 이제사각형보조정리를적용하면, p1 및 q1 에이웃한꼭짓점 u 중 d(u, y) = n − 2

인것을잡을수있다. 만약이때 p1 = q1 라면, dh(q1, y) = n − 1 이므로귀납가정에의해
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p1, . . . , pn ∈ V(h) 임을결론지을수있다. 따라서 p1 6= q1 인경우만남았다. 이경우 □p1xq1u 는
4-사이클이된다.
이때, d(q1, u) + d(u, y) = 1 + n− 2 = n− 1 = d(q1, y) 이므로, u 는 q1 과 y 사이를잇는어

느 Γ-측지선위에있다. 이측지선에는귀납가정을적용할수있음을상기하라. 이에 u ∈ V(h) 임
을결론지을수있다. 즉 □p1xq1u 의꼭짓점중 x, q1, u 가 h 의꼭짓점인것이다. 그러면따름정리
8.1(4) 에의해, p1 ∈ V(h) 또한성립한다. 이말인즉

dh(p1, y) ≤ 1 + dh(u, y) = n− 1

라는것이고, 귀납가정에의해 p1, . . . , pn 모두 h 에포함되어있다. 이로써증명이끝난다.
(2) 초평면 h 에들어있는모서리 e = xy 를하나편의대로고르자. 이제각점 v ∈ V(Γ) 에대해

f(v) := d(v, x)− d(v, y)

라고정의된함수를고려할것이다. 홀짝성및삼각부등식에의해, f(v) ∈ {+1,−1} 임은쉽게확
인할수있다. 또, {v : f(v) = −1} 안의임의의꼭짓점으로부터 x 까지측지선을그었을때, 그측
지선은 {v : f(v) = −1} 안에있어야한다. 실제로, 그런측지선 (p0, p1, . . . , pn = x) 이주어졌
을때,

d(pi, x) = n− i, d(p1, y) ≥ d(x, y)− d(x, pi) ≥ (n+ 1)− i

이기때문이다.
이제주장하고싶은것은, v, w ∈ V(Γ) 에대해 vw ∈ h 일필요충분조건이 f(v) 6= f(w) 라는

것이다. 편의상 f(v) = −1 인경우에집중하겠다. 이를위해 d(v, x) 에대한귀납법을쓸것이다.
먼저, d(v, x) = 0, 즉 v = x 인경우를살펴보자. 이때 f(v) = −1 6= 1 = f(w) 라는조건은곧

x = v 및 y = w 임을의미한다. 이경우 vw = xy ∈ h 임은분명하다. 역으로, 만약 vw 가 h 에
들어있으면따름정리 8.1(1) 에의해 w = y 임을알수있다. 이때 f(v) = −1 및 f(w) = 1 임은
분명하다.
다음으로, d(v, x) ≤ n−1에대해주장을가정한뒤, d(v, x) = n인경우를들여다보겠다. 먼저

f(v) = −1및 f(w) = 1을가정해보자. 이때 d(v, y) = d(v, x)−f(v) = n+1이성립하고,이값
은 d(w, y) 와정확히 1 만큼차이난다. 만약 d(w, y) = n+ 2 라면, f(w) = d(w, x)− d(w, y) ≤
d(w, v) + d(v, x) − d(w, y) ≤ 1 + n − (n + 1) = 0 이되어, f(w) = 1 에위배된다. 따라서
d(w, y) = n 임을알수있다. 다시말해 d(v, y) = d(v, x) + d(x, y) = d(v, w) + d(w, y) 이며, w
도 x 도 I(v, y) 에포함된다는것을알수있다.
이를활용하기위해, (v, w, p2, . . . , pn, y) 및 (v, q1, q2, . . . , qn−1, x, y) 라는두 Γ-측지선을고

려하자. 이제사각형보조정리를사용하면, d(u,w) = d(u, q1) = 1, d(y, u) = n − 1 인꼭
짓점 u 가존재한다. 물론이때 u 와 v 는다른점이다. 더하여, d(x, q1) = n − 1 인반면
d(x,w) = d(w, y) + f(w) = n+ 1 이라는사실로부터 q1 6= w 임도알수있다. 즉 □vq1uw 는실
제로 4-사이클이다.
이때, d(q1, x) = n − 1 이고 n = d(v, y) − 1 ≤ d(q1, y) ≤ d(q1, x) + 1 = n 임을관찰할수

있다. 더하여, d(u, y) = n − 1 이고 d(u, x) ≥ d(y, x) − 1 = n 임을알수있다. 종합하자면,
f(q1) = −1 이고 f(u) = 1 이다. 이제귀납가정을 q1u 에적용하면 q1u ∈ h 을얻는다. 이모서
리와 4-사이클안에서평행한변 vw 또한 h 에속하는것은물론이다.
역으로, vw 가 h 에속한다는것을가정해보자. 이때 v 와 x 를잇는 Γ-측지선 (v =

p0, . . . , pn = v) 를하나잡자. (1) 에의해이측지선전체는 N(h) 에들어있으며, 또측지선의전
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체꼭짓점에서 f 값이항상 −1 로일정하다. 이제만약 p1 = w 라면, p1v 는 h 의원소이면서,
f(p1) = −1 이고 d(p1, x) = n− 1 이다. 귀납가정에의해 f(v) = 1 이되는데, 이는모순이다.
따라서 p1 과 w 는다른점이다. 이것이 v 와 x 를임의의점에대해성립하므로, w 는 v 에비해
x 로부터멀리있는점이고 d(w, x) = d(v, x) + 1 = n+ 1 이다.
한편, 다시 Γ-측지선 (v = p0, . . . , pn = v) 를하나잡자. 이측지선위에서 f 값이 −1 이므

로, 귀납가정에의해각각의 pipi+1 는 h 에속하지않는모서리이다. 이제 qi := ιh(pi) 로잡자.
그러면따름정리 8.1(3) 에의해, (w, q1, . . . , qn) 은 Γ-경로가된다. 더하여, qn := ιh(x) = y 가
성립한다. 이로부터 d(w, y) ≤ n 임을안다. 이를종합하면 f(w) = 1 임을알수있다. 이로써
f(v) = −1 6= f(w) = 1 과 vw ∈ h 가동치임을확인했다.
이로써, {v : f(v) = 1} 와 {v : f(v) = −1} 사이를잇는모서리는반드시 h 안에들어있음

을확인했다. 따라서두집합은 Γ \ h 에서분리되어있다. 더욱이, {v : f(v) = ±1} 의점들은
{v : f(v) = ±1} 안에서이어질수있음도측지선을이용해앞에서확인했다. 이때사용되는모서
리들은 h 밖에있는것들이므로, {v : f(v) = ±1} 가 Γ \ h 에서연결되어있음을결론지을수있
다.

(3) 위논증에서, xy ∈ h 를하나고정한뒤 vw ∈ h 를뽑으면
d(v, x)− d(v, y) = f(v) 6= f(w) = d(w, x)− d(w, y)

임을확인했다. 먼저 f(v) = −1 인경우에대해다루겠다. 그말인즉 f(w) = 1 임을가정하겠다
는말과같다. 여기서 d(v, y) 와 d(w, y) 는정확히 1 차이나는데, 만약 d(w, y) = d(v, y) + 1 이
라면

d(w, x)− d(w, y) ≤ d(v, x) + 1− d(w, y) ≤ d(v, x)− d(v, y) = f(v)

가되어모순이다. 따라서 d(w, y) = d(v, y)−1 = d(v, x)이다. 또한 d(w, x) = d(w, y)+f(w) =

d(w, y) + 1 = d(v, x) + 1 = d(v, y) 도성립한다. f(v) = 1 인경우도비슷하게증명할수있다.
□
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