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Abstract. We study Radon measures on the space of measured lami-
nations on a hyperbolic surface that are invariant under non-elementary
subgroups of the mapping class group. Given a divergence-type sub-
group, we show that its action on the associated space of recurrent
measured laminations is uniquely ergodic by explicitly constructing the
ergodic measure. This generalizes Lindenstrauss–Mirzakhani’s result
and Hamenstädt’s result for the full mapping class group, in which case
the ergodic measure is the Thurston measure. We also show that for a
convex cocompact subgroup, every invariant ergodic Radon measure on
the space of all measured laminations is either the unique measure on
recurrent measured laminations, or a counting measure on the orbit of
a non-recurrent measured lamination.

Our method is geometric and does not rely on continuous or homo-
geneous flows on the ambient space or a dynamical system associated
with a finite measure space. This leads to a unifying approach for vari-
ous metric spaces, including Teichmüller spaces and partially CAT(−1)
spaces.
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1. Introduction

Let S be a connected orientable surface of genus g and with p punctures,
where 3g − 3 + p ≥ 1, i.e., S is a finite-type surface which is not a sphere
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with at most 3 punctures or a torus. The Teichmüller space T = T (S) is
the space of all marked Riemann surface structures on S, or equivalently,
the space of all marked hyperbolic structures on S. The mapping class
group Mod(S) is the group of isotopy classes of orientation-preserving self-
diffeomorphisms of S. The Teichmüller space T is equipped with a natural
metric called the Teichmüller metric, under which the natural action of
Mod(S) is isometric. The Mod(S)-action is properly discontinuous, and its
quotient M := Mod(S)\T is the moduli space of Riemann surfaces.

In Thurston’s theory on surfaces ([FLP79], [Thu22]), the mapping class
group and the Teichmüller space of S are closely related to measured lami-
nations on S. Fixing a complete hyperbolic structure on S of finite volume,
a geodesic lamination on S is a compact subset of S foliated with simple
geodesics. A measured lamination is a geodesic lamination equipped with a
transverse measure. This notion generalizes simple closed curves.

The space of measured laminations on S is denoted by ML = ML(S).
Endowing ML with the weak*-topology, it turns out that ML is home-
omorphic to S6g−7+2p × (0,+∞) ' R6g−6+2p r {0}, where the (0,+∞)-
component corresponds to the scaling of transverse measures on each geo-
desic lamination. Here, the unit sphere S6g−7+2p is identified with the space
PML = PML(S) of projective measured laminations on S. The space
PML can be regarded as the boundary of T .

Another interpretation ofML is given by the celebrated theorem of Hub-
bard and Masur [HM79]. Fixing a Riemann surface structure x ∈ T , the
Hubbard–Masur theorem asserts that the spaceML is homeomorphic to the
space of holomorphic quadratic differentials Q(S, x) on the Riemann surface
(S, x). Each quadratic differential q ∈ Q(S, x) determines a Teichmüller ge-
odesic ray emanating from x ∈ T and the projective class [ξ] ∈ PML of the
measured lamination ξ ∈ ML corresponding to q, given by the Hubbard–
Masur theorem, is accumulated by this Teichmüller geodesic ray.

The spaceML admits a natural Mod(S)-action, which encodes the global
geometry and dynamics of the Teichmüller space. Indeed, the induced
Mod(S)-action on PML is a continuous extension of the Mod(S)-action
on T . Using the train track coordinates on ML, or a natural symplectic
structure on ML, Thurston defined the Mod(S)-invariant measure

µTh on ML

which belongs to the Lebesgue measure class [Thu22]. The measure µTh

is now called Thurston measure, and the Mod(S)-action on (ML, µTh) is
ergodic as shown by Masur [Mas85, Theorem 2]. The Thurston measure has
been a central object in the study of the geometry and dynamics of Mod(S)
and T . For example, many authors including Mirzakhani [Mir08b], Athreya–
Bufetov–Eskin–Mirzakhani [ABEM12], and Erlandsson–Souto [ES16] stud-
ied counting and equidistribution of Mod(Σ)-orbits using the Thurston mea-
sure. It also played a major role in Mirzakhani’s ergodic theory of Thurston’s
earthquake flow [Mir08a].
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1.1. Measure classification for full Mod(S): finite covolume. It is
natural to ask whether the Thurston measure is the only measure on ML
that is suited to the study of the dynamics of Mod(S). Lindenstrauss and
Mirzakhani [LM08], and Hamenstädt [Ham09], independently classified all
Mod(S)-invariant ergodic Radon measures on ML. While the Mod(S)-
action onML is not uniquely ergodic due to the cuspidal feature of Mod(S)
or of M = Mod(S)\T , the Thurston measure turns out to be the unique
Mod(S)-invariant Radon measure on the region where the Teichmüller geo-
desic flow shows interesting dynamics.

More precisely, using the identification ML = Q(S, x) provided by the
Hubbard–Masur theorem, we define the recurrence locus for Mod(S) as the
set RMod(S) ⊂ ML of all measured laminations ξ ∈ ML such that the Te-
ichmüller geodesic ray determined by the corresponding quadratic differen-
tial qξ ∈ Q(S, x) recurs to a compact subset in the quotientM = Mod(S)\T .
One of the main steps in the measure classification by both Lindenstrauss–
Mirzakhani and Hamenstädt is as follows.

Theorem 1.1 ([LM08], [Ham09]). Let µ be a Mod(S)-invariant Radon mea-
sure on RMod(S). Then µ is a constant multiple of µTh.

In the exceptional case when S is a once-punctured torus or a 4-punctured
sphere (i.e., 3g−3+p = 1), homogeneous dynamics comes into play. In this
case, the Teichmüller space is equal to the hyperbolic plane H2 and Mod(S)
is equal to SL(2,Z). Then the Mod(S)-action on ML corresponds to the
SL(2,Z)-action on the horospherical foliation of the unit tangent bundle
T1 H2, or the unipotent flow (or horocyclic flow) on PSL(2,Z)\PSL(2,R).

Furstenberg first proved that the unipotent flow on Γ\PSL(2,R) is uniquely
ergodic with respect to the Haar measure when Γ < PSL(2,R) is a uni-
form lattice [Fur73]. This was extended by Veech to uniform lattices in
semi-simple Lie groups [Vee77]. Generalizing these results, Dani proved for
lattices in reductive groups that the Haar measure is the unique invariant
ergodic Radon measure on the recurrence locus ([Dan78], [Dan81]).

1.2. Measure classification for subgroups: infinite covolume. Given
Theorem 1.1, one can seek an analogous measure classification on ML for
general subgroups of Mod(S), as remarked by Lindenstrauss and Mirzakhani
[LM08, Remark 1.4(2)]. We aim to study this question in this paper.

Before we proceed, let us remark two important ingredients for both
Lindenstrauss–Mirzakhani’s and Hamenstädt’s complete measure classifica-
tion for the full Mod(S)-action. First, the Mod(S)-action has finite covol-
ume with respect to the Masur–Veech volume form on the fiber bundle Q1T
of unit-area holomorphic quadratic differentials over T ([Mas82a], [Vee82]).
The bundle Q1T can be regarded as the unit cotangent bundle over T , and
the Masur–Veech volume is also induced from the Thurston measure. Sec-
ond, the Teichmüller horocyclic flow on the quotient bundle Mod(S)\Q1T
exhibits some non-divergence, as proved by Minsky and Weiss [MW02].
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On the other hand, the quotient Γ\Q1T has infinite volume for a general
subgroup Γ < Mod(S), and it is hard to expect the non-divergence of horo-
cyclic flows on Γ\Q1T . Even for the case that S is a once-punctured torus
or a 4-punctured sphere, when T is the hyperbolic plane, neither holds true.
They serve as obstructions to applying the arguments of [LM08] or [Ham09]
to subgroups of Mod(S).

On the hyperbolic plane H2, the first infinite-covolume examples studied
for this problem is due to Burger [Bur90]. Burger considered a convex co-
compact subgroup Γ < PSL(2,R) whose critical exponent is strictly bigger
than 1/2 and showed that there exists a unique Γ-invariant ergodic Radon
measure on the recurrent horospherical foliation of H2. This was latter gen-
eralized by Roblin [Rob03] for discrete groups of isometries on CAT(−1)
spaces whose Poincaré series is divergent at the critical exponent.

Let us get back to the Teichmüller space T . Before presenting our precise
statements that require the construction of a specific Radon measure, we
summarize our measure classification results as follows:

(1) For non-elementary Γ < Mod(S), there exists at most one Γ-invariant
Radon measure on ML supported on the recurrence locus for Γ.

(2) For non-elementary Γ < Mod(S) of divergence type, the Γ-action on
the recurrence locus is uniquely ergodic.1

(3) For non-elementary convex cocompact subgroups Γ < Mod(S), we
classify all Γ-invariant Radon measures on ML.

As we will see later, we in fact develop machineries for a general metric
space with a partial hyperbolicity, without any assumption on its global
geometry. We use them to deduce versions of (1) and (2) in that setting.

1.3. Main statements. We mainly consider a non-elementary subgroup
Γ < Mod(S), i.e., Γ is not virtually cyclic and contains a pseudo-Anosov
mapping class. There exists 0 < δΓ < +∞, called the critical exponent
of Γ, so that δΓ is the abscissa of convergence of the Poincaré series s 7→∑

g∈Γ e
−sd(x,gx), for (any) x ∈ T . The finiteness of the critical exponent is

due to Kaimanovich and Masur [KM96], and its positivity is by McCarthy
[McC85]. We say that Γ is of divergence type if the Poincaré series diverges
at s = δΓ. Otherwise, Γ is said to be of convergence type.

Generalizing the ergodicity of the Mod(S)-action on (ML, µTh) due to
Masur [Mas85], we construct a Radon measure for non-elementary subgroups
of Mod(S) and show its ergodicity.

Theorem 1.2 (Ergodicity). Let Γ < Mod(S) be a non-elementary subgroup
of divergence type. Then there exists a nonzero, Γ-invariant Radon measure
µΓ on ML such that

the Γ-action on (ML, µΓ) is ergodic.

1By unique ergodicity, we mean that there exists a unique ergodic invariant measure
up to a constant multiple.
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Theorem 1.2 also applies to certain normal subgroups of a divergence-type
group, which are not necessarily of divergence type. See Section 9.2.

The measure µΓ is very explicit. Delaying its construction, we first dis-
cuss unique ergodicity. Similar to RMod(S), we define the recurrence locus
RΓ ⊂ ML for a subgroup Γ < Mod(S) as follows: fixing x ∈ T ,

RΓ :=

ß
ξ ∈ML :

Teichmüller geodesic ray given by qξ ∈ Q(S, x)
recurs to a compact subset in Γ\T

™
where qξ ∈ Q(S, x) is the quadratic differential on the Riemann surface (S, x)
corresponding to ξ ∈ ML, given by the Hubbard–Masur theorem. This set
is Γ-invariant and does not depend on the choice of x ∈ T . We construct
µΓ so that it is Γ-invariant and is supported on the recurrence locus RΓ.
Moreover, we show that this possesses unique ergodicity.

Theorem 1.3 (Unique ergodicity). Let Γ < Mod(S) be a non-elementary
subgroup. Suppose that there exists a nonzero, Γ-invariant Radon measure
µ on ML that is supported on RΓ. Then Γ is of divergence type and

µ is a constant multiple of µΓ.

In other words,

(1) if Γ is of convergence type, then there does not exist nonzero, Γ-
invariant Radon measure on RΓ.

(2) if Γ is of divergence type, then

the Γ-action on (RΓ, µΓ) is uniquely ergodic.

The full mapping class group Mod(S) is of divergence type thanks to
[Mas82a] and [Vee82]. Thus, Theorem 1.3 extends Theorem 1.1.

Farb and Mosher [FM02] introduced another important family of divergence-
type subgroups. A finitely generated Γ < Mod(S) is called convex cocompact
if it has a quasi-convex orbit in T . We establish a measure classification for
Γ on the entire space of measured laminations.

Theorem 1.4 (Convex cocompact subgroups). Let Γ < Mod(S) be a non-
elementary convex cocompact subgroup. Then every Γ-invariant ergodic
Radon measure on ML is either

µΓ or
∑
g∈Γ

Dg·ξ for some ξ ∈MLrRΓ

up to a constant multiple, where Dg·ξ is the Dirac measure at g·ξ ∈MLrRΓ.

In Theorem 10.1, we also obtain the classification of Γ-orbit closures in
ML. This is equivalent to considering the quotient Γ\Q1T and classifying
stable manifolds under the Teichmüller geodesic flow.

Our complete measure classification for convex cocompact Γ is based on
explicit understanding of the Γ-action onMLrRΓ. It would be of indepen-
dent interest to understand such an action for a general subgroup, which is
also relevant to the structure of limit sets in the Thurston boundary PML.



6 INHYEOK CHOI AND DONGRYUL M. KIM

Remark 1.5.

(1) Our focus on non-elementary subgroups is justified by a theorem of
McCarthy and Papadopoulos [MP89, Theorem 4.6]: a non-virtually-
cyclic subgroup Γ < Mod(S) is dynamically irreducible (i.e., ad-
mits a unique minimal closed set on PML) if and only if Γ is non-
elementary.

(2) When a non-elementary subgroup Γ < Mod(S) has purely exponen-
tial growth, i.e., #{g ∈ Γ : d(x, gx) ≤ R} � eδΓR as R → +∞, for
(any) x ∈ T , it is easy to see that Γ is of divergence type. This is
indeed the case for Mod(S) [ABEM12, Theorem 1.2] and for convex
cocompact subgroups [Gek13, Theorem 1.1].

This motivated the studies of Schapira and Tapie [ST21], and
of Yang [Yan19], on strongly positively recurrent (SPR) groups,
also known as statistically convex cocompact (SCC) groups. These
groups are known to have purely exponential growth [Yan19, The-
orem B] (cf. [ST21, Theorem 7.26]). We will not define the notion
of SPR=SCC groups, but let us mention that there are non-convex-
cocompact examples which are SCC [Yan19, Proposition 6.6]. Our
theory applies to these examples as well.

1.4. Explicit construction of invariant Radon measures. We now ex-
plain the construction of the measure µΓ for non-elementary Γ < Mod(S).

Fixing a basepoint x ∈ T , a Borel probability measure ν on PML is
called a δΓ-dimensional conformal measure of Γ if for every g ∈ Γ,

dg∗ν

dν
([ξ]) =

Ç 
Extx(ξ)

Extgx(ξ)

åδΓ
for a.e. [ξ] ∈ PML

where Extx(ξ) denotes the extremal length of ξ ∈ ML on the Riemann
surface (S, x) (see Equation (3.1) for the precise definition). Such a measure
was constructed by Athreya–Bufetov–Eskin–Mirzakahni [ABEM12] for Γ =
Mod(S), by Gekhtman [Gek13] for Γ convex cocompact, and by Coulon
[Cou24] and by Yang [Yan24] in general.

As we fix a basepoint x ∈ T , we can explicitly write the homeomorphism
ML→ PML× (0,+∞) using the Hubbard–Masur theorem as follows:

ξ 7→
(

[ξ],
»

Extx(ξ)
)
.

For a non-elementary subgroup Γ < Mod(S) and a δΓ-dimensional conformal
measure ν of Γ on PML, we define the Radon measure µν on ML by

dµν(ξ) :=
(»

Extx(ξ)
)δΓ−1

· dν([ξ]) dLebR
Ä√

Extx(ξ)
ä
.

It follows from the conformality of ν that µν is Γ-invariant. Moreover, while
the conformal measure ν depends on the choice of x ∈ T , the measure µν is
independent of x since the above mapML→ PML×(0,+∞) also depends
on x.
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When Γ < Mod(S) is a non-elementary subgroup of divergence type,
Coulon [Cou24] and Yang [Yan24] showed that the δΓ-dimensional conformal
measure ν of Γ is unique. Hence, we write

µΓ := µν on ML

in this case. Furthermore, µΓ is supported on the recurrence locus RΓ.

1.5. Horospherical foliations of CAT(−1) spaces. Before discussing the
proof, we present an application to CAT(−1) spaces.

Let X be a proper geodesic CAT(−1) space. Following [Rob03], the space
SX of isometries R → X serves as the role of unit tangent bundle over X.
It admits a geodesic flow SX x R, which we denote by at : SX → SX
for t ∈ R. For u ∈ SX, its stable horosphere (or stable manifold) is the set
H−(u) of v ∈ SX such that the distance between uat and vat tends to 0 as
t → +∞. Stable horospheres form a foliation on SX, called horospherical
foliation of X. The space of its leaves is denoted by H, and admits a natural
action of the isometry group Isom(X).

Roblin studied measure classification for discrete subgroups of Isom(X),
acting on H. The notions of non-elementary and divergence-type subgroups
are defined analogously. For a discrete subgroup Γ < Isom(X), its recurrence
locus RΓ ⊂ H is also defined similarly:

RΓ := {H−(u) ∈ H : uat recurs to a compact subset in Γ\X as t→ +∞}.

We say that Γ has non-arithmetic length spectrum if the stable translation
lengths of elements in Γ generate a dense additive subgroup of R.

Theorem 1.6 (CAT(−1) spaces). Let X be a proper geodesic CAT(−1)
space and Γ < Isom(X) a non-elementary discrete subgroup. Suppose that

(1) Γ is of divergence type, and
(2) Γ has non-arithmetic length spectrum.

Then

the Γ-action on RΓ is uniquely ergodic.

An analogous problem was extensively studied for rank-one symmetric
space; see Burger [Bur90], Roblin [Rob03], Sarig [Sar04], Ledrappier–Sarig
[LS07], Landesberg–Lindenstrauss [LL22], Landesberg–Lee–Lindenstrauss–
Oh [LLLO23] etc. For a general CAT(−1) space, this was proved by Roblin
[Rob03] under a stronger assumption that Γ has a finite Bowen–Margulis–
Sullivan measure. The unique ergodic measures are called the Burger–Roblin
measures in these settings.

Our novelty in this CAT(−1)-setting is removing such a finiteness assump-
tion, which was possible because we do not rely on mixing of continuous flows
or certain dynamical systems with finite measures.
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1.6. More examples. Let us mention one interesting families of examples,
in addition to the mapping class groups and CAT(−1) groups. In [GS19],
Genevois and Stocker considered a geodesically complete proper CAT(0)
space X with a point with a CAT(−1) neighborhood, and a non-elementary
subgroup Γ < Isom(X) acting geometrically on X. They proved that Γ
contains a contracting isometry whose quasi-axis passes through the afore-
mentioned CAT(−1) neighborhood several times. In fact, this contracting
isometry is squeezing. Meanwhile, since Γ acts non-elementarily and geo-
metrically on X, it is necessarily of divergence type [Yan19, Theorem B].

1.7. Metric spaces with squeezing isometries. Our proofs of Theo-
rem 1.2, Theorem 1.3, and Theorem 1.6 are based on the special geometric
feature of the axis of a pseudo-Anosov mapping class and the axis of a
loxodromic isometry on a CAT(−1) space, which we call squeezing property.

In the rest of the introduction, let (X, d) be a proper geodesic metric
space. For a geodeic γ ⊂ X, we denote by πγ(·) the nearest-point projection
map onto γ. We consider two notions of hyperbolicity for γ.

• We say that a geodesic γ ⊂ X is contracting if there exists K > 0
such that, for every geodesic η ⊂ X, points that are K-deep in the
convex hull of πγ(η) is K-close to η.
• We say that a geodesic γ ⊂ X is squeezing if for each ε > 0 there

exists K = K(ε) > 0 such that, for every geodesic η ⊂ X, points
that are K-deep in the convex hull of πγ(η) is ε-close to η.

We say that an isometry g ∈ Isom(X) is contracting (squeezing, resp.) if it
admits a contracting (squeezing, resp.) axis. The squeezing property can be
regarded as a quantitative version of the contracting property. See Figure 1
for a rough sketch, and Section 5 for precise definitions.

η

≥ K

γ

η

≥ K

γ

Figure 1. A contracting geodesic (left) and a squeezing ge-
odesic (right)

It is well known that every geodesic in a CAT(−1) space is squeezing.
Hence, every loxodromic isometry is squeezing there. Furthermore, in the
mapping class group viewed as the isometry group of Teichmüller space,
every pseudo-Anosov mapping class is contracting due to Minsky [Min96],
and moreover, it is squeezing. See Section 4.1 for further context.

We prove the aforementioned results for Teichmüller spaces and CAT(−1)
spaces by studying ergodic theory under the presence of squeezing isometries.
We mainly consider a non-elementary subgroup Γ < Isom(X), i.e., a non-
virtually-cyclic subgroup with a contracting isometry acting properly on X.
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The notion of divergence-type is defined analogously to the one for subgroups
of Mod(S). We say that the squeezing spectrum of Γ

Specsq(Γ) := {translation length of g : g ∈ Γ is squeezing} ⊂ R
is non-arithmetic if Specsq(Γ) generates a dense additive subgroup of R.

It remains to define an object corresponding to the space of measured
laminations on a surface and to the horospherical foliation of a CAT(−1)
space. We consider the product space 2

H := ∂hX × R
where ∂hX is the horofunction boundary of X. Each point in ∂hX is iden-
tified with a 1-Lipschitz cocycle on X, and this induces a natural Isom(X)-
action on the spaceH: the action on the R-component is given by the cocycle
determined by the ∂hX-component. See Section 5.6 for details.

Theorem 1.2 will follow from the following more general statement.

Theorem 1.7 (Ergodicity). Let (X, d) be a proper geodesic metric space
and let Γ < Isom(X) be a non-elementary subgroup. Suppose that

(1) Γ is of divergence type, and
(2) the squeezing spectrum Specsq(Γ) is non-arithmetic.

Then there exists a nonzero, Γ-invariant Radon measure µΓ on H such that

the Γ-action on (H, µΓ) is ergodic.

Remark 1.8. As for Theorem 1.2, our ergodicity result applies to normal
subgroups of a divergence-type group, which are not necessarily of divergence
type (Theorem 8.2).

As in the setting of Teichmüller spaces, the measure µΓ is explicitly con-
structed, and it turns out that µΓ is supported on the region corresponding
to the recurrence locus. This region is given by

Λc(Γ)× R ⊂ H
where Λc(Γ) ⊂ ∂hX is the conical limit set of Γ (Definition 5.17). Delaying
the construction of µΓ, we state the unique ergodicity theorem, from which
Theorem 1.3 and Theorem 1.6 follow.

Theorem 1.9 (Unique ergodicity). Let (X, d) be a proper geodesic metric
space and let Γ < Isom(X) be a non-elementary subgroup such that Specsq(Γ)
is non-arithmetic. Suppose that there exists a nonzero, Γ-invariant Radon
measure µ on H supported on Λc(Γ)× R. Then Γ is of divergence type and

µ is a constant multiple of µΓ.

In other words,

(1) if Γ is of convergence type, then there does not exist a nonzero, Γ-
invariant Radon measure on Λc(Γ)× R.

2We use the same notation as in the CAT(−1) case, because this is precisely the
horospherical foliation when X is CAT(−1).
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(2) if Γ is of divergence type, then

the Γ-action on (Λc(Γ)× R, µΓ) is uniquely ergodic.

1.8. On the proof. Our proof is motivated by Hamenstädt’s argument us-
ing the Patterson–Sullivan theory. Initially formulated by Patterson [Pat76]
and Sullivan [Sul79], the Patterson–Sullivan theory provides a powerful tool
to relate growth, orbit counting, and conformal densities for groups act-
ing on hyperbolic spaces. The general framework for CAT(−1) spaces is
due to Roblin [Rob03]. Coornaert studied the Patterson–Sullivan theory for
Gromov hyperbolic metrics that may not be CAT(−1) [Coo93]. Recently,
Roblin’s and Coornaert’s theories were generalized to metric spaces with
contracting isometries, independently by Coulon [Cou24] and Yang [Yan24].

Another main step is to relate conformal measures with ergodic invariant
measures on ML. The key ingredient we borrow from Teichmüller geome-
try for this purpose is that pseudo-Anosov mapping classes have squeezing
Teichmüller axes. In particular, our proof does not directly make use of
the theory of train tracks, the curve complex, or the dynamical properties
(ergodic theorems, minimality, mixing, equidistribution, etc.) of the geo-
desic/unipotent flows on the Teichmüller space.

We note that non-arithmeticity of the squeezing spectrum is essential.
In general, the horospherical foliation is not uniquely ergodic without non-
arithmeticity: there are uncountably many mutually singular invariant mea-
sures on the horospherical foliation of a standard Cayley graph of a free
group. For non-elementary subgroups of mapping class groups, the non-
arithmeticity was proved by Gekhtman [Gek13] and is elaborated in the
work of Gekhtman and Ma [GM23]. In this sense, we use not only the “par-
tial hyperbolicity” of Mod(S) but also certain features of Mod(S) shared
with Zariski dense subgroups of Lie groups.

1.9. Non-geodesic spaces. There is an important class of metric spaces
that we will not discuss in detail. Let Γ be a non-elementary relatively hy-
perbolic group. Let m be a finitely supported, admissible, symmetric proba-
bility measure on Γ. There is a left-invariant metric dm on Γ associated with
m, called the Green metric. This metric is quasi-isometric to the word met-
ric and is Gromov hyperbolic, but is not geodesic in general. Nonetheless, it
is roughly geodesic. In a sense, every loxodromic element of Γ is a squeezing
isometry with respect to dm, even if it does not possess an axis. Hence, un-
der the non-arithmeticity assumption, we expect that there exists a unique
nonzero, Γ-invariant ergodic Radon measure on the dm-horospherical folia-
tion. This unique measure is in the class of (m-stationary measure)×LebR.

In order to apply our theory to Green metrics, one needs to replace
geodesics with rough geodesics. We leave it for future studies.

1.10. Organization. In Section 2, we present a brief overview of the Te-
ichmüller space, especially about its boundary. We define the Hubbard–
Masur coordinates for the space of measured laminations in Section 3. In
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Section 4, we discuss some aspects of pseudo-Anosov mapping classes, in-
cluding contracting and squeezing properties of their axes. We discuss the
geometry of a general metric space with contracting and squeezing isome-
tries in Section 5. Section 6 is devoted to the Patterson–Sullivan theory with
squeezing isometries. In Section 7, we prove the unique ergodicity (Theo-
rem 1.9). The ergodicity (Theorem 1.7) is proved in Section 8. In Section
9, we deduce our measure classifications on the space of measured lami-
nations (Theorem 1.2, Theorem 1.3, and Theorem 1.4). Our orbit closure
classification is presented in Section 10.
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2. Teichmüller theory

In this section, we review basic Teichmüller theory. Our explanation is
minimal and we refer interested readers to [Mas09], [FM12] and [GM23].

In the rest of this paper, let S be a connected orientable surface of genus
g and with p punctures with 3g − 3 + p ≥ 1. Recall from the introduction
that the Teichmüller spcae T = T (S) is the space of all marked Riemann
surface structures on S. More precisely,

T :=

ß
(X, f) :

X is a Riemann surface and
f : S → X is a diffeomorhism (marking)

™¡
∼

where (X, f) ∼ (Y, h) if h ◦ f−1 : X → Y is isotopic to a bi-holomorphic
diffeomorphism. We equip T with the Teichmüller metric dT , defined as

dT ((X, f), (Y, h)) :=
1

2
log inf

ß
K(φ) :

quasiconformal φ : X → Y
isotopic to h ◦ f−1

™
where K(φ) ≥ 1 denotes the quasiconformal dilatation of φ. The metric dT
is Finsler, proper, uniquely geodesic but not Riemannian. The Teichmüller
space T is homeomorphic to R6g−6+2p.

The mapping class group Mod(S) of S is the group of isotopy classes of
orientation-preserving diffeomorphisms of S. It acts on (T , dT ) by

g · (X, f) := (X, f ◦ g−1) for g ∈ Mod(S) and (X, f) ∈ T .
We note that Mod(S) is more or less the full isometry group of (T , dT ),
as shown by Royden [Roy71, Theorem 2] and by Earle and Kra ([EK74a],
[EK74b]). See also Ivanov’s work [Iva01]. The quotient

M =M(S) := Mod(S)\T
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is the moduli space of Riemann surface structures on S.
Note that in the exceptional case when 3g − 3 + p = 1 (i.e., S is once-

punctured torus or 4-punctured sphere), T = H2. Hence, the major case of
our interest is when 3g − 3 + p ≥ 2.

2.1. Thurston boundary. Recall the space ML = ML(S) of measured
laminations on S, which is homeomorphic to R6g−6+2pr {0}. We denote by
PML = PML(S) the space of projective measured laminations on S, where
the projectivization is given by the scaling of transverse measures. The space
PML can also be identified with the unit sphere inML ' R6g−7+2p r {0},
and hence PML ' S6g−7+2p. Thurston compactified the Teichmüller space
using PML and showed that the Mod(S)-action on T continuously extends
to the compactification T ∪ PML. In this regard, PML is also referred to
as the Thuston boundary of T ([Thu88], [Thu97]).

There is another notion called measured foliation on surfaces. The space
of measured foliations (up to equivalence) on S is denoted by MF =
MF(S), and we also denote its projectivization by PMF = PMF(S).
In fact, PML and PMF give rise to the same compactification of T . By
this we mean that not only the two spaces are homeomorphic via a map
PML → PMF , but also that the convergence in T ∪ PML is equivalent
to the convergence in T ∪ PMF .

While we stick to measured laminations throughout, they are interchange-
able with measured foliations depending on readers’ preference.

2.2. Gardiner–Masur boundary. Gardiner and Masur proposed another
compactification of the Teichmüller space using the so-called Gardiner–
Masur boundary ∂GMT in [GM91]. This compactification T ∪ ∂GMT is
now called the Gardiner–Masur compactification. The Mod(S)-action on T
continuously extends to T ∪ ∂GMT as well.

Both the Thurston compactification and the Gardiner–Masur compacti-
fication are obtained by embedding T into the space RS≥0 of functions on
the set S of isotopy classes of essential simple closed curves on S, and then
taking the closure in the projective space P(RS≥0). Recall that T can also
be viewed as the space of all marked hyperbolic structures on S, Thurston
embedded T using the hyperbolic length, and Gardiner–Masure embedded
T using the extremal length (see Equation (3.1)). In this regard, Gardiner
and Masur proved that the Thurston boundary PML sits in the Gardiner–
Masur boundary ∂GMT as a proper subset [GM91, Theorem 7.1].

2.3. Uniquley ergodic laminations and boundary comparison. A
measured lamination is called uniquely ergodic if the underlying geodesic
lamination admits a unique transverse measure up to scaling. We denote by
UE = UE(S) ⊂ PML the subset of projective classes of uniquely ergodic
measured laminations on S.

On the subset UE ⊂ PML, the accumulation of points in T is well-
behaved: if [ξ] ∈ UE , then for each x ∈ T , there exists a unique Teichmüller
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(geodesic) ray γx : [0,+∞)→ T based at x such that limt→+∞ γx(t) = [ξ] in
the Thurston compactfication ([HM79], [Mas80], [Mas82b]). Furthermore,
for every x, y ∈ T , two rays γx and γy are asymptotic, i.e., there exists
T ∈ R such that limt→+∞ dT (γx(t), γy(t+ T )) = 0 [Mas80].

Moreover, while the identity map T → T does not continuously extends
to an embedding of the Thurston compactification into the Gardiner–Masur
compactification, it extends to a homeomorphism

(2.1)

T ∪ UE T ∪ UE

T ∪ PML T ∪ ∂GMT

⊂ ⊂

as proved by Masur [Mas82b] and recoverd by Miyachi [Miy13].
Thanks to these facts, we can regard UE as a topological subspace of

PML and as a topological subspace of ∂GMT at the same time. As ∂GMT
is identified with the horofunction boundary of (T , dT ), this enables us to
employ the theory of horofunctions in studying Radon measures on ML
that are supported on uniquely ergodic ones.

A sufficient condition for a measured lamination to be uniquely ergodic
is the recurrence of the associated Teichmüller geodesic ray to a compact
subset in the moduli space M = Mod(S)\T . Namely, the Masur criterion
due to Masur [Mas92, Theorem 1.1] asserts that for a Teichmüller geodesic
ray γ : [0,+∞) → T , if there exist a compact subset K ⊂ M and a
sequence tn → +∞ such that γ(tn) ∈ T projects into K ⊂M for all n ∈ N,
then γ converges to a uniquely ergodic lamination in both the Thurston
compactification and the Gardiner–Masur compactification.

2.4. Busemann cocycles. For x, y ∈ T , the function dT (x, ·)−dT (y, ·) on
T may not continuously extend to the Thurston boundary PML. Never-
theless, Miyachi showed that if ξ ∈ ML is uniquely ergodic, then for every
sequence {zn}n∈N ⊂ T converging to [ξ] ∈ UE the limit

βξ(x, y) := lim
n→+∞

dT (x, zn)− dT (y, zn)

exists and is independent of the choice of {zn}n∈N [Miy13, Corollary 1]. The
function β is called the Busemann cocycle. Indeed, it satisfies the cocycle
relation: for w, x, y ∈ T ,

βξ(w, y) = βξ(w, x) + βξ(x, y).

Moreover, for g ∈ Mod(S), it is easy to see

βgξ(gx, gy) = βξ(x, y).

Although βξ only depends on the projective class [ξ], not ξ, we use the
notation βξ for a later purpose.
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3. Hubbard–Masur coordinates for measured laminations

In [HM79], Hubbard and Masur proved that given a point x0 ∈ T , the
space Q(S, x0) of holomorphic quadratic differentials on Riemann surface
(S, x0) is homeomorphic toML, where the homeomorphism is given by the
vertical measured foliation of a given holomorphic quadratic differential on
x0.

This enables us to consider certain coordinate systems onML, which we
call Hubbard–Masur coordinates, by specifying a homeomorphism

ML ' PML× R.
For this, we employ the notion of extremal lengths.

3.1. Extremal lengths. Given a point x ∈ T and the isotopy class α of
a simple closed curve on S, the extremal length of α on Riemann surface
(S, x) is defined as

(3.1) Extx(α) := sup
σ

`α(σ)2

Area(σ)

where the supremum is over all metrics σ conformally equivalent to x, and
`α(σ) is the length of α in the metric σ. The extremal length continuously
extends to the function

Extx :ML→ R
such that Extx(tξ) = t2ξ for all ξ ∈ ML and t > 0, by Kerckhoff [Ker80,
Proposition 3].

Miyachi [Miy13, Corollary 2] and Walsh [Wal19, Section 6] showed that
for [ξ] ∈ UE and x, y ∈ T , the following holds:

(3.2) βξ(x, y) =
1

2
log

Extx(ξ)

Exty(ξ)
.

3.2. Hubbard–Masur coordinates. Fixing a basepoint x0 ∈ T , we now
define the Hubbard–Masur coordinates for ML (with respect to x0) as fol-
lows:

HM :ML→ PML× R

ξ 7→
Å

[ξ],
1

2
log Extx0(ξ)

ã
which is a homeomorphism. We define the Mod(S)-action on PML×R by

g · ([ξ], t) :=

Å
g[ξ], t+

1

2
log

Extg−1x0
(ξ)

Extx0(ξ)

ã
for g ∈ Mod(S), ξ ∈ ML, and t ∈ R. Note that this is well-defined inde-
pendent of the choice of ξ ∈ML.

By Equation (3.2), this can be rephrased in terms of the Busemann func-
tion. For a uniquely ergodic lamination ξ and a mapping class g,

g · ([ξ], t) = (g[ξ], t+ βξ(g
−1x0, x0)).

We now show the equivariance of the action.
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Proposition 3.1. The map HM :ML→ PML×R is Mod(S)-equivariant.

Proof. Let g ∈ Mod(S) and ξ ∈ML. It follows from the definition that

HM(gξ) =

Å
g[ξ],

1

2
log Extx0(g · ξ)

ã
.

Since Extx0(gξ) = Extg−1x0
(ξ), we have

HM(gξ) =

Å
g[ξ],

1

2
log Extx0(ξ) +

1

2
log

Extg−1x0
(ξ)

Extx0(ξ)

ã
. �

3.3. Liu–Su and Walsh’s coordinates on the horofunction bound-
ary. Liu and Su proved in [LS14] and Walsh proved in [Wal19] that the
horofunction boundary for (T , dT ) is equal to the Gardiner–Masur bound-
ary. In both works, fixing a basepoint x0 ∈ T , the authors constructed a
continuous injection

T ∪ ∂GMT → {1-Lipschitz functions on T vanishing at x0},
and its restriction to the Gardiner–Masur boundary

∂GMT → {horofunctions on T vanishing at x0}
is a homeomorphism. See Section 5.6 for more discussion on horofunctions.

4. Squeezing property of pseudo-Anosov axes

We now discuss elements of Mod(S), the mapping classes of S. The
celebrated Nielsen–Thurston classification ([Thu88], [FLP79]) asserts that a
mapping class ϕ ∈ Mod(S) is either

• periodic, i.e., ϕn = id for some n ∈ N,
• reducible, i.e., there exists a multicurve on S invariant under ϕ, or
• pseudo-Anosov, i.e., there exists a pair of transverse measured lam-

inations ξ+, ξ− ∈ML and λ > 1 such that

(4.1) ϕ(ξ+) = λ · ξ+ and ϕ(ξ−) =
1

λ
· ξ−.

The measured laminations ξ+ and ξ− are called unstable and stable
measured laminations respectively, and the constant λ > 1 is called
the stretch factor of ϕ.

Among the three categories we are particularly interested in pseudo-
Anosov mapping classes. Let ϕ ∈ Mod(S) be a pseudo-Anosov mapping
class. We summarize some standard facts:

(1) It follows from Equation (4.1) that the unstable and stable measured
laminations of ϕ give two fixed points [ξ+], [ξ−] ∈ PML in the
Thurston boundary. Moreover, on the Thurston compactification
T ∪ PML, ϕ exhibits the north-south dynamics.

More precisely, for each compact subset K ⊂ (T ∪PML)r{[ξ−]},
we have ϕnK → [ξ+] as n→ +∞. Similarly, for each compact subset
K ⊂ (T ∪ PML) r {[ξ+]}, we have ϕnK → [ξ−] as n→ −∞.
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(2) The projective measured laminations [ξ+], [ξ−] ∈ PML are called
attracting and repelling fixed points of ϕ repsecitvely, and they are
in fact uniquely ergodic, i.e., [ξ+], [ξ−] ∈ UE .

(3) There exists a unique bi-infinite Teichmüller geodesic γ ⊂ T whose
endpoints are [ξ±] ∈ PML in the Thurston compactification. More-
over, γ is invariant under ϕ, and the action of ϕ on γ is the transla-
tion by log λ, where λ is the stretch factor of ϕ.

The invariant geodesic γ is called the axis of pseudo-Anosov ϕ.

The first two items are part of Thurston’s proof of the Nielsen–Thurston
classification using the Thurston compactification. We refer the readers to
Thurston’s exposition [Thu88] and textbooks ([FLP79], [FM12]). The last
item is proved in [FLP79], [GM91, Theorem 3.1], and [MS93, Theorem 9.2].

4.1. Contracting property and squeezing property. The two central
dynamical notions in this paper are contracting and squeezing properties of
isometries. In [Min96], Minsky proved that Teichmüller geodesics precom-
pact in the moduli space M = Mod(S)\T are contracting. More precisely,
for each compact subset K ⊂ M, there exists D = D(K) > 0 such that
every geodesic in T that projects into K ⊂M is D-contracting.

Recall that a pseudo-Anosov mapping class has the invariant Teichmüller
geodesic, called axis, which descends to a closed loop inM. Therefore, axes
of pseudo-Anosov mapping classes are contracting. They in fact enjoy a
stronger property, squeezing property, thanks to their peridocity. This es-
sentially follows from Minsky’s contraction theorem in [Min96] and Masur’s
stability theorem in [Mas80]. We give a proof for completeness.

Proposition 4.1. The axis of a pseudo-Anosov mapping class is squeezing.

Proof. Let ϕ ∈ Mod(S) be pseudo-Anosov and denote by γ ⊂ T its axis.
We fix a unit-speed parametrization γ : R → T . Suppose to the contrary
that γ is not squeezing. Then there exists ε > 0 such that for each n ∈ N,
there exist sequences {xn}n∈N, {yn}n∈N ⊂ T and {tn}n∈N ⊂ R such that
γ(tn − an) ∈ πγ(xn) and γ(tn + bn) ∈ πγ(yn) for some an, bn > n while
dT (γ(tn), [xn, yn]) ≥ ε. Since ϕ acts on γ by a translation, we may assume
that tn is bounded.

By [Min96, Contraction Theorem], γ is contracting. Hence by applying
[CCT25, Lemma 2.2] (see Lemma 5.2), there exists C > 0 such that for each
n ∈ N, there exist wn, zn ∈ [xn, yn] satisfying

• dT (wn, γ(tn − an)) ≤ C,
• dT (zn, γ(tn + bn)) ≤ C, and
• [wn, zn] is contained in the C-neighborhood of γ.

Since an, bn → +∞ and tn is bounded, after passing to a subsequence,
[wn, zn] converges to a bi-infinite geodesic contained in the 2C-neighborhood
of γ. Since both endpoints of γ are contained in UE , it follows from [KM96,
Lemma 1.4.2] that the limit of [wn, zn] is the bi-infinite geodesic between
endpoitns of γ, which must be γ.
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On the other hand, tn is bounded and dT (γ(tn), [wn, zn]) ≥ ε for all n ∈ N,
which is a contradiction. This finishes the proof. �

The squeezing property can be considered as a version of CAT(−1) prop-
erty along special directions. It is sensible to generalize some dynamical
phenomena in CAT(−1) spaces to metric spaces with squeezing isometries.
For example, in [Cho24] the first author studied continuity and differentia-
bility of the drift of a random walk on the Teichmüller metric using the
squeezing property of pseudo-Anosov mapping classes.

Remark 4.2. It was pointed out by Minsky that the same argument as in
Proposition 4.1 works for precompact geodesics as well.

5. Contracting and squeezing isometries

In the previous sections, we reviewed basic Teichmüller theory and related
it to the study of metric spaces with squeezing isometries. In this section,
we study squeezing isometries further.

Throughout this section, let (X, d) be a proper geodesic metric space and
fix a basepoint x0 ∈ X. For x, y ∈ X, we denote by [x, y] ⊂ X an arbitrarily
chosen geodesic connecting x to y. For w, z ∈ [x, y], we intrinsically assume
[w, z] to be a segment of [x, y]. Every parametrization of a geodesic is of
unit speed. We denote the isometry group of X by Isom(X).

We say that two geodesics γ1, γ2 ⊂ X are C-equivalent if their Hausdorff
distance is at most C and if their beginning/ending points are pairwise C-
close. When two reals a, b ∈ R differ by at most C, we write a =C b.

5.1. Contracting subsets. For a closed subset A ⊂ X, we denote by
πA(·) : X → 2A the nearest point projection. That means, we define

πA(x) :=

ß
a ∈ A : d(x, a) = inf

z∈A
d(x, z)

™
.

Definition 5.1. Let C ≥ 0. We say that a closed subset A ⊂ X is
C-contracting if for every geodesic γ ⊂ X with d(γ,A) ≥ C we have
DiamπA(γ) ≤ C. We say that A is (strongly) contracting if it is C-
contracting for some C ≥ 0.

By definition, if A ⊂ X is C-contracting, then DiamπA(x) ≤ 2C for
all x ∈ X. It is also easy to see that if A ⊂ X is C-contracting and
x, y ∈ X are in the C-neighborhood of A, then [x, y] is contained in the
2.5C-neighborhood of A.

As an example, every geodesic in a δ-hyperbolic space is C(δ)-contracting
for some C(δ) ≥ 0 depending only on δ. In particular, geodesics in a simpli-
cial tree or H2 are contracting with a uniform contracting constant. More
generally, every (K,B)-quasigeodesic in a δ-hyperbolic space is C(δ,K,B)-
contracting for a constant C(δ,K,B) ≥ 0.

The following is a reminiscent of the Morse lemma in a Gromov hyperbolic
space. We use the version in [CCT25] due to its conciseness, but we note
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that similar results were already observed in ([CDP90, Proposition 10.2.1],
[Sis13, Lemma 2.4, 2.5], [ACT15, Proposition 2.9, Lemma 2.10, Lemma
2.11], [Yan14, Proposition 3.1]).

Lemma 5.2 ([CCT25, Lemma 2.2]). Let γ ⊂ X be a C-contracting geodesic
and x, y ∈ X. Suppose that Diamπγ([x, y]) > C. Then there exist points
p, q ∈ [x, y], with p closer to x than q, such that

• πγ([x, y]) and [p, q] are 4C-equivalent,
• Diam(πγ([x, p]) ∪ {p}) ≤ 2C,
• Diam(πγ([q, y]) ∪ {q}) ≤ 2C, and
• for each x′ ∈ πγ(x) and y′ ∈ πγ(y), [x′, y′] and [p, q] are 10C-

equivalent.

The following is an immediate corollary of Lemma 5.2.

Corollary 5.3. Let γ ⊂ X be a C-contracting geodesic. Then the following
holds.

(1) The map πγ(·) is (1, 4C)-Lipschitz: for each x, y ∈ X,

Diamπγ({x, y}) ≤ d(x, y) + 4C.

(2) Let x ∈ X and γ(t) ∈ πγ(x). Then for every s ∈ R, we have

(5.1) d(x, γ(s)) =4C d(x, γ(t)) + |t− s|.

5.2. Contracting isometries.

Definition 5.4. We say that an isometry g ∈ Isom(X) is axial if there
exists a bi-infinite geodesic γ : R→ X invariant under g such that

g · γ(t) = γ(t+ τg) for all t ∈ R
for some τg > 0. We call γ an axis of g and τg the translation length of g.

An axial isometry g ∈ Isom(X) is called C-contracting for C ≥ 0 if it has
a C-contracting axis.

Given an axial isometry g ∈ Isom(X), note that

τg = lim
n→+∞

d(x, gnx)

n
> 0 for each x ∈ X.

Then we can observe the following:

τg = inf
x∈X

d(x, gx) and τgk = |k|τg for each k ∈ Z.

For each h ∈ Isom(X), hgh−1 is also axial and τhgh−1 = τg.

5.3. Squeezing isometries.

Definition 5.5. We say that a bi-infinite geodesic γ : R → X is squeezing
if for each ε > 0 there exists L = L(ε) > 0 such that for each x, y ∈ X and
t ∈ R with γ(t− a) ∈ πγ(x) and γ(t+ b) ∈ πγ(y) for some a, b ≥ L, we have

d ([x, y], γ(t)) ≤ ε.
We call an axial isometry g ∈ Isom(X) squeezing if it has a squeezing axis.
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By definition, squeezing isometries are contracting. Note that both squeez-
ing and contracting properties are invariant under conjugations. If an isome-
try g ∈ Isom(X) is squeezing, then it has a unique axis (up to reparametriza-
tion). We denote it by Ag. For h ∈ Isom(X), Ahgh−1 = hAg.

As we will see later, squeezing geodesics are well-suited for studying ho-
rofunctions due to the following lemma.

Lemma 5.6. Let γ : R → X be a squeezing geodesic. Fix ε > 0 and let
L = L(ε) > 0 as in Definition 5.5. Let x1, x2, y1, y2 ∈ X and suppose that
for some t ∈ R, we have

πγ(xi)∩γ ((−∞, t− L]) 6= ∅ and πγ(yi)∩γ ([t+ L,+∞)) 6= ∅ for i = 1, 2.

Then we have

d(x1, y1)− d(x1, y2) =8ε d(x2, y1)− d(x2, y2).

Proof. Let i ∈ {1, 2}. By the squeezing property, there exists p ∈ [xi, y1]
and q ∈ [xi, y2] that are ε-close to γ(t). By the triangle inequality, we have

d(xi, y1)− d(xi, y2) =4ε d (γ(0), y1)− d (γ(0), y2) .

This gives the desired estimate. �

5.4. Alignment. We denote the closed K-neighborhoods by NK(·).

Definition 5.7 (Alignment). Let w, x, y, z ∈ X. For a geodesic [x, y] ⊂ X
and K ≥ 0, we say that the sequence (w, [x, y]) is K-aligned if

π[x,y](w) ⊂ NK(x).

Similarly, we call that the sequence ([x, y], z) is K-aligned if (z, [y, x]) is
K-aligned.

Finally, we say that the sequence (w, [x, y], z) is K-aligned if both se-
quences (w, [x, y]) and ([x, y], z) are K-aligned. See Figure 2.

x y

w z

K K

Figure 2. Alignment of geodesics and points.

The following is immediate.
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Lemma 5.8. Let γ ⊂ X be a geodesic of length L ≥ 0, let 0 ≤ D ≤ L and
let x ∈ X. Then (γ, x) is not D-aligned or (x, γ) is not (L−D)-aligned.

If two closed sets are within finite Hausdorff distance, the contracting
property of one set implies that of the other ([ACT15, Lemma 2.8], [Yan19,
Proposition 2.4.(2)]). Furthermore, every subsegment of a contracting geo-
desic is contracting with a uniform contracting constant ([BF09, Lemma 3.2],
[Yan20, Proposition 2.2.(3)]). These facts have the following consequence,
whose proof is included for completeness.

Lemma 5.9. Let g ∈ Isom(X) be a contracting isometry with an axis γ :
R→ X and let x0 ∈ X. Then there exists C = C(g, γ, x0) > 0 such that the
following holds.

(0) γ is C-contracting.
(1) [x0, g

kx0] is C-contracting for all k ∈ Z.
(2) d

(
gkx0, γ(τgk)

)
< C for all k ∈ Z.

(3) Let k ∈ N, let x ∈ X, and let K ≥ C. ThenÄ
x, [x0, g

kx0]
ä

is not K-aligned =⇒ πγ(x) ⊂ γ ([K − C,+∞)) .

(4) Let k ∈ N, let x ∈ X, and let 0 ≤ K ≤ τgk − C. ThenÄ
x, [x0, g

kx0]
ä

is K-aligned =⇒ πγ(x) ⊂ γ ((−∞,K + C]) .

Moreover, C can be chosen so that C(g, γ, x0) = C(gk, γ, x0) for all k ∈ N
and C(g−1, γ̂, x0) = C(g, γ, x0) where γ̂ is the inversion of γ.

We often write C(g) = C(g, γ, x0) by implicitly choosing its axis γ.

Proof. By definition, there exists C0 > 0 so that γ is C0-contracting. Item
(0) holds for all C ≥ C0. Item (2) is also immediate for any C > d(x0, γ(0)).

Let

D = 10
(
C0 + d

(
x0, γ(0)

))
.

We will see that C = 100D plays the desired role.

We first show Item (1). By Lemma 5.2, [x0, g
kx0] and γ([0, τgk]) are D-

equivalent for each k ∈ Z. It suffices to consider k ∈ N with τgk > 98D. Fix
such k ∈ N and observe from Corollary 5.3(2) that for x ∈ X,

• if πγ(x) ∩ γ((−∞, 0)) 6= ∅, then π[x0,gkx0](x) ⊂ N5D(γ(0)).

• if πγ(x) ∩ γ((τgk,+∞)) 6= ∅, then π[x0,gkx0](x) ⊂ N5D(γ(τgk)).

• if πγ(x) ∩ γ([0, τgk]) 6= ∅, then π[x0,gkx0](x) ⊂ N5D(πγ(x)).

Let η ⊂ X be a geodesic such that d(η, [x0, g
kx0]) ≥ 100D. We have two

cases. First, if Diamπγ(η) ≥ D, then there exists a subsegment of η that
is 4C-equivalent to πγ(η). In this case, πγ(η) cannot intersect γ([0, τgk]);

otherwise we have d (η, γ([0, τgk])) ≤ 4C and d
(
η, [x0, g

kx0]
)
≤ 2D, a con-

tradiction. Hence, either πγ(η) ⊂ γ((−∞, 0)) or πγ(η) ⊂ γ((τgk,+∞))
holds. By the above observation, we have Diamπ[x0,gkx0](η) ≤ 100D.
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If Diamπγ(η) < D, then we again have Diamπ[x0,gkx0](η) ≤ 100D by the

above observation. Therefore, Item (1) holds for C = 100D.

We now show Item (3). Let k ∈ N, let K ≥ 100D and suppose that
(x, [x0, g

kx0]) is not K-aligned. Recall that [x0, g
kx0] and γ([0, τgk]) are

D-equivalent. Hence there exist p ∈ π[x0,gkx0](x) and tp ∈ [0, τgk] such that

d(x0, p) > K and d (p, γ(tp)) ≤ D.
Note also that d(x0, γ(0)) ≤ D. We then have

tp ≥ K − 2D.

If there exists t ∈ (−∞,K − 6D] such that γ(t) ∈ πγ(x), then

d(x, γ(tp)) ≥ d(x, γ(K − 6D)) + tp − (K − 6D)−D
≥ d(x, γ(K − 6D)) + 3D

by Corollary 5.3(2). Since 0 ≤ K − 6D ≤ tp ≤ τgk, and since [x0, g
kx0] and

γ([0, τgk]) are D-equivalent, we have

d(x, p) ≥ d(x, γ(tp))−D ≥ d(x, γ(K − 6D)) + 2D ≥ d(x, [x0, g
kx0]) +D,

which contradicts to p ∈ π[x0,gkx0](x). Therefore,

πγ(x) ⊂ γ((K − 6D,+∞))

and hence Item (3) holds for C = 100D.

For Item (4), let k ∈ N and 0 ≤ K ≤ τgk − 100D, and suppose that

(x, [x0, g
kx0]) is K-aligned. Then ([x0, g

kx0], x) is not (d(x0, g
kx0) − K)-

aligned by Lemma 5.8. Note that

d(x0, g
kx0)−K ≥ τgk −K ≥ 100D.

Hence, we can apply (a symmetric version of) Item (3) and deduce that

πγ(x) ⊂ γ((−∞, τgk − (d(x0, g
kx0)−K) + 6D)) ⊂ γ((−∞,K + 6D)).

Therefore, Item (4) holds for C = 100D as well.

The “Moreover” part is straightforward. �

5.5. Non-elementary subgroups of isometries. The class of subgroup
we mainly consider is the following:

Definition 5.10. A subgroup Γ < Isom(X) is called non-elementary if

• Γ is not virtually cyclic,
• the Γ-action on X is proper, and
• Γ contains a contracting isometry.

We say that two contracting isometries g, h ∈ Isom(X) are independent if
their orbits {gix0}i∈Z and {hix0}i∈Z have infinite Hausdorff distance. This
is equivalent to saying that {gix0}i∈Z and {hix0}i∈Z have bounded nearest-
point projections onto each other.
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These two notions are related by the following well known fact: see [BF09,
Proposition 6.5], [Sis18, Corollary 4.4], [ACT15, Lemma 2.23] and [Yan19,
Lemma 2.11, Lemma 2.12]

Lemma 5.11. Let Γ < Isom(X) be a non-elementary subgroup. For a
contracting isometry g ∈ Γ, there exists h ∈ Γ such that hgh−1 and g are
independent. Moreover, there are infinitely many pairwise independent con-
tracting isometries in Γ.

The following is a variant of the so-called extension lemma of Yang. We
include the proof of this variant for the sake of completeness.

Lemma 5.12 (Extension lemma [Yan19, Lemma 1.13]). Let Γ < Isom(X)
be a non-elementary subgroup. Then for each contracting isometry ϕ ∈ Γ,
there exist a1, a2, a3 ∈ Γ and κ = κ(ϕ) > 0 such that

• [x0, ϕ
nx0] is κ-contracting for all n ∈ N and

• for each x, y ∈ X, there exists a ∈ {a1, a2, a3} that makes

(x, a · [x0, ϕ
nx0], aϕna · y) κ-aligned for all n ∈ N.

Moreover, κ can be chosen so that κ(ϕk) = κ(ϕ) for all k ∈ Z.

Proof. Note that the “Moreover” part is straightforward. Hence we prove
the first claim. Let γ : R → X be an axis of ϕ, which is contracting. By
[Sis18, Corollary 4.4] and [Yan19, Lemma 2.11], the set

E(ϕ) := {h ∈ Γ : {ϕix0}i∈Z and h{ϕix0}i∈Z have finite Hausdorff distance}
is a finite extension of 〈ϕ〉 and πγ(hγ) has finite diameter for every h /∈ E(ϕ).
Since Γ is non-elementary, it is neither virtually cyclic nor a union of two
virtually cyclic subgroups. Hence, there exist h, h′ ∈ Γ such that πuγ(vγ)
has finite diameter for every distinct pair of elements u, v ∈ {id, h, h′}.

Let C = C(ϕ, γ, x0) be as in Lemma 5.9. We choose κ ≥ 100C such that

• Diam{x0, hx0, h
′x0} < 0.01κ and

• πuγ(vγ) ⊂ uγ([−0.01κ, 0.01κ]) for distinct u, v ∈ {id, h, h′}.
Now let x ∈ X. Suppose (x, [x0, ϕ

mx0]) is not κ-aligned for some m ∈ N.

Claim. Then (x, h[x0, ϕ
nx0]) is κ-aligned for all n ∈ N.

To show this, suppose to the contrary that (x, h[x0, ϕ
nx0]) is also not

κ-aligned for some n ∈ N. Then πh[x0,ϕnx0](x) is at least 0.9κ-far from hx0,
whereas πh[x0,ϕnx0](x0) is 2d(x0, hx0)-close to hx0, i.e., it is 0.02κ-close to
hx0. Lemma 5.2 tells us that [x0, x] has a subsegment [p, q] that is contained
in the 0.04κ-neighborhood of h[x0, ϕ

nx0], and such that d(p, q) ≥ 0.8κ and
d(x0, p) ≤ d(x0, hx0) + 0.02κ ≤ 0.05κ. Similarly, [x0, x] has a subsegment
[p′, q′] that is contained in the 0.04κ-neighborhood of [x0, ϕ

mx0], and such
that d(x0, q

′) ≥ 0.8κ and d(x0, p
′) ≤ 0.05κ.

Then two subsegments [p, q] and [p′, q′] of [x0, x] have an overlap of length
at least 0.7κ. Hence, there exist points P ∈ [x0, ϕ

mx0] and Q ∈ h[x0, ϕ
nx0]
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that are 0.65κ-far from x0 and are 0.08κ-close to each other. We can take
P ′ ∈ γ that is 0.01κ-close to P and Q′ ∈ hγ that is 0.01κ-close to Q. Then
d(P ′, Q′) ≤ 0.1κ and πγ(Q′) is 0.2κ-close to P ′. Since d(x0, P

′) ≥ 0.64κ,
πγ(hγ) contains a point that is 0.44κ-far from x0.

On the other hand, πγ(hγ) ⊂ γ([−0.01κ, 0.01κ]) and d(x0, γ(0)) ≤ 0.01κ.
This is a contradiction. Therefore, (x, h[x0, ϕ

nx0]) is κ-aligned for all n ∈ N.

Similarly, we conclude that (x, h′[x0, ϕ
nx0]) is κ-aligned for all n ∈ N. The

same argument applies after replacing id with h or h′. We conclude that
there exist at least two elements a ∈ {id, h, h′} such that (x, a[x0, ϕ

nx0]) is
100κ-aligned for all n ∈ N. Likewise, for every y ∈ X, (a−1[ϕ−nx0, x0], y) is
100κ-aligned for all n ∈ N for at least two elements a ∈ {id, h, h′}. Hence,
we can choose a ∈ {id, h, h′} that works for both x and y. �

5.6. Horofunctions and cocycles. Let Lip1(X) be the space of R-valued
1-Lipschitz functions on X and let Lip1

x0
(X) be its subspace vanishing at

the basepoint x0, i.e.,

Lip1(X) := {f : X → R : f is 1-Lipschitz},
Lip1

x0
(X) := {f ∈ Lip1(X) : f(x0) = 0},

equipped with the compact-open topology. Here, Lip1
x0

is closed in Lip1(X).
Recall that X is separable as it is given a proper metric. Therefore,

Lip1
x0

(X) is compact, Hausdorff, and second countable [MT18, Proposition

3.1]. Hence, it is completely metrizable and is Polish. We identify Lip1(X)
and Lip1

x0
(X)× R via the homeomorphism

(5.2) f ∈ Lip1(X) 7→ (f − f(x0), f(x0)) .

The group Isom(X) naturally acts on Lip1(X) by g · f := f ◦ g−1 for
g ∈ Isom(X) and f ∈ Lip1(X). However, this action does not leave Lip1

x0
(X)

invariant.
Due to this subtlety, we identify Lip1

x0
(X) with the space of R-valued

1-Lipschitz cocycles on X, i.e., c : X ×X → R such that |c(x, y)| ≤ d(x, y)
and c(x, z) = c(x, y) + c(y, z) for all x, y, z ∈ X. For each f ∈ Lip1(X), we
define the associated cocycle βf : X ×X → R by

βf (x, y) = f(x)− f(y).

Its restriction to Lip1
x0

(X) gives the homeomorphism between Lip1
x0

(X)
and the space of all R-valued continuous cocycles. Then the identifiaction
Lip1(X) ' Lip1

x0
(X)× R in Equation (5.2) can be rephrased as

f 7→ (βf , f(x0)).

The Isom(X)-action on Lip1(X) is now given as follows: for g ∈ Isom(X)
and f ∈ Lip1(X),

g · (βf , f(x0)) = (βg·f , f(x0) + βf (g−1x0, x0)).
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Note that on the first component, which corresponds to Lip1
x0

(X), we have
βf 7→ βg·f .

There is a natural embedding ι : X ↪→ Lip1
x0

(X), defined by

ι : z ∈ X 7→ [fz(·) := d(·, z)− d(x0, z)] .

The closure of ι(X) ⊂ Lip1
x0

(X) is called the horofunction compactification

of X and is denoted by X
h
. The complement X

h r ι(X) is called the
horofunction boundary (or horoboundary) of X and is denoted by ∂hX.

As the space Lip1
x0

(X) is identified with the space of 1-Lipschitz cocycles,

we also regard elements of ∂hX as Busemann cocycles, by identifying

f ∈ ∂hX ←→ βf (·, ·).

Using this identification, the Isom(X)-action on ∂hX is given by

βf (·, ·) 7→ βg·f (·, ·) for g ∈ Isom(X) and f ∈ ∂hX.

This is the continuous extension of the isometric action of Isom(X) on X
in the following sense. Let {zi}i∈N ⊂ X be a sequence such that fzi → f ∈
Lip1

x0
(X). Then for every g ∈ Isom(X), we have

d(·, gzi)− d(x0, gzi) = d(g−1(·), zi)− d(x0, zi) + d(x0, zi)− d(g−1x0, zi)

→ f(g−1(·))− f(g−1x0).

This implies

βfzi (·, ·)→ βg·f (·, ·).
In terms of the identification Lip1(X) ' Lip1

x0
(X) × R, the subspace of

Lip1(X) corresponding to ∂hX is the space

(5.3) H := ∂hX × R,

which is Isom(X)-invariant. As a subspace of Lip1(X), H does not depend
on the choice of the basepoint x0 ∈ X. What depends on the choice of
x0 is the description of Isom(X)-action on H in terms of the identification
H = ∂hX × R.

We call elements of ∂hX ×R horofunctions. Horofunctions that differ by
an additive constant correspond to the same Busemann cocycle.

Both ∂hX and H = ∂hX ×R are Polish. Hence, every locally finite Borel
measure on these spaces is Radon, i.e., it is both inner and outer regular on
Borel subsets.

We now extend the notion of alignment to horofunctions.

Definition 5.13. Let ξ ∈ ∂hX and γ ⊂ X be a compact geodesic. For
K ≥ 0, we say that (ξ, γ) is K-aligned if for every sequence {zi}i∈N ⊂ X
converging to ξ, (zi, γ) is K-aligned eventually (i.e., for all large i ∈ N). We

define the alignment for (γ, ξ′) and (ξ, γ, ξ′) similarly for ξ′ ∈ Xh
.

By abuse of notation, for a Busemann cocycle βξ that corresponds to

ξ ∈ ∂hX, we say that (βξ, γ) is K-aligned when (ξ, γ) is K-aligned. Lastly,
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for an element f ∈ H, we say that (f, γ) is K-aligned if (βf , γ) is K-aligned.
We define the alignment for triples similarly.

For contracting geodesics, we observe the following:

Lemma 5.14. Let γ ⊂ X be a C-contracting compact geodesic for C > 0.
Let ξ ∈ ∂hX and {zi}i∈N ⊂ X be a sequence converging to ξ. Then we have

lim sup
N→+∞

Diam
⋃
k≥N

πγ(zk) ≤ 9C.

Proof. Since γ is compact and zn → ξ, there exists N > 0 such that

d(x, zk)− d(y, zk) =0.1C d(x, zl)− d(y, zl) for all k, l > N and x, y ∈ γ.

Now suppose to the contrary that Diam(πγ(zk) ∪ πγ(zl)) > 9C for some
k, l > N . Then by Lemma 5.2, there exist p, q ∈ [zk, zl] such that

Diam({p} ∪ πγ(zk)) ≤ 2C and Diam({q} ∪ πγ(zl)) ≤ 2C.

Note that d(p, q) > 5C. Let p′ ∈ πγ(zk) and q′ ∈ πγ(zl) be arbitrary points.
We then have

d(zk, p
′) ≤ d(zk, p) + 2C ≤ (d(zk, q)− 5C) + 2C ≤ d(zk, q

′)− C.
For a similar reason, we have d(zl, q

′) ≤ d(zl, p
′) − C. This contradicts the

condition for k, l > N . �

The following version of extension lemma can easily be deduced from
Lemma 5.12 and Lemma 5.14:

Lemma 5.15 (Extension lemma). Let Γ < Isom(X) be a non-elementary
subgroup. Let ϕ ∈ Γ be a contracting isometry, and let κ = κ(ϕ) > 0 and

a1, a2, a3 ∈ Γ be as given in Lemma 5.12. Then for each ξ, ξ′ ∈ Xh
, there

exists a ∈ {a1, a2, a3} such that

(ξ, a · [x0, ϕ
nx0], aϕna · ξ′) is 10κ-aligned for all n ∈ N.

Remark 5.16. There is a way to extend the the nearest-point projection

πγ(·) to X
h

(cf. [Cou24, Definition 3.8]). For ξ ∈ ∂hX, we can define

πγ(h) :=

ß
x ∈ γ : βξ(x, x0) = inf

y∈γ
βξ(y, x0)

™
.

Then one can show that if {zi}i∈N ⊂ X is a sequence converging to ξ ∈ ∂hX,
then πγ(zi) → πγ(ξ) up to a uniform error. One can define alignment in
terms of this extended nearest-point projection as well.

5.7. Conical limit sets. We finish this section by defining conical limit
sets, which are also called radial limit sets.

Definition 5.17. Let Γ < Isom(X) be a subgroup acting properly on X.
A point ξ ∈ ∂hX is called a conical limit point of Γ if there exist K > 0 and
an infinite sequence {gn}n∈N ⊂ Γ such that

βξ(x0, gnx0) ≥ d(x0, gnx0)−K for all n ∈ N.
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We denote the conical limit set by Λc(Γ) ⊂ ∂hX.

For example, given a geodesic ray γ ⊂ X whose K-neighborhood contains
infinitely many poitns in a Γ-orbit, the horofunction made as a limit point
of γ is conical. One can see that Λc(Γ) is Γ-invariant.

6. Patterson–Sullivan theory with squeezing isometries

In this section, we review Coulon’s and Yang’s extensions of the Patterson–
Sullivan theory about conformal densities ([Cou24], [Yan24]). Continuing
the setting of Section 5, we let (X, d) be a proper geodesic metric space.
Given a non-elementary subgroup Γ < Isom(X) with a squeezing isome-
try, we focus on a certain subset of the conical limit set of Γ and study its
properties from the viewpoint of theories of Coulon and Yang.

In the rest of this section, we fix a basepoint x0 ∈ X. The notion of
conforaml density plays an important role.

Definition 6.1. For Γ < Isom(X) and δ ≥ 0, a family of Borel measures
{νx}x∈X on ∂hX is called a δ-dimensional conformal density of Γ if

• (Γ-invariance) for every g ∈ Γ and x ∈ X,

g∗νx = νgx,

• (δΓ-conformality) for every x, y ∈ X, two measures νx and νy are in
the same class and

dνx
dνy

(ξ) = e−δ·βξ(x,y) a.e., and

• (normalization) νx0(∂hX) = 1.

Note that the normalization is only for convenience, in order to have
uniqueness of a conformal density in a certain case.

In our setting, Coulon and Yang constructed conformal densities, extend-
ing the construction of Patterson [Pat76] and Sullivan [Sul79] for the case
that X is a real hyperbolic space. For a subgroup Γ < Isom(X) that acts
properly on X, the critical exponent δΓ ≥ 0 of Γ is defined as the abscissa
of convergence of the Poincaré desires s 7→

∑
g∈Γ e

−sd(x,gx), x ∈ X.

Proposition 6.2 ([Cou24, Proposition 4.3], [Yan24, Lemma 6.3]). Let Γ <
Isom(X) be a non-elementary subgroup such that δΓ < +∞. Then there
exists a δΓ-dimensional conformal density of Γ.

6.1. Guided limit sets. The following notion is a variant of Coulon’s con-
tracting limit sets [Cou24] and Yang’s (L,F)-limit sets [Yan24].

Definition 6.3. Let Γ < Isom(X) be a non-elementary subgroup. Let
ϕ ∈ Γ be a contracting isometry and let C(ϕ) > 0 be as in Lemma 5.9 and
fix K ≥ C(ϕ). We say that ξ ∈ ∂hX is a (ϕ,K)-guided limit point of Γ if
for each sufficiently large n ∈ N, there exists h ∈ Γ such that

(x0, h[x0, ϕ
nx0], ξ) is K-aligned.
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The collection of (ϕ,K)-guided limit points of Γ called the (ϕ,K)-guided
limit set of Γ. We denote it by Λϕ,K(Γ).

Later, ϕ ∈ Γ is often assumed to be squeezing. In such cases, we give
special names to (ϕ,K)-guided limit points and the (ϕ,K)-guided limit set,
(ϕ,K)-squeezed limit points and the (ϕ,K)-squeezed limit set, respectively.

We first discuss some properties of guided limit sets.

Lemma 6.4. Let Γ < Isom(X) be a non-elementary subgroup. Let ϕ ∈ Γ
be a contracting isometry and let C = C(ϕ) > 0 be as in Lemma 5.9. Then
for each K > C,

Λϕ,K(Γ) = Λϕ,C(Γ).

Moreover, Λϕ,C(Γ) is Γ-invariant.

Proof. Let γ : R→ X be an axis of ϕ chosen for the constant C = C(ϕ) in
Lemma 5.9. Fix K > C. We then set

N = d(K + 100C)/τϕe.
Now pick an arbitrary ξ ∈ Λϕ,K(Γ) and let {zi}i∈N ⊂ X be a sequence
converging to ξ. Since ξ is (ϕ,K)-guided, for each large enough n ∈ N there
exists h ∈ Γ such that (x0, h[x0, ϕ

n+2Nx0], zi) is K-aligned for all large i ∈ N
Since d(x0, ϕ

n+2Nx0) ≥ (n+ 2N)τϕ > K + C, Lemma 5.9(4) tells us that

πhγ(x0) ⊂ hγ
(
(−∞,K + C]

)
and

πhγ(zi) ⊂ hγ
([

(n+ 2N)τϕ −K − C,+∞
))

for all large i ∈ N.

We now show that

(x0, hϕ
N [x0, ϕ

nx0], ξ) is C-aligned.

Suppose to the contrary that (x0, hϕ
N [x0, ϕ

nx0]) is not C-aligned. Then by
Lemma 5.9(3), we have πhγ(x0) ⊂ hγ ([τϕN,+∞)). Since K + C < τϕN ,

this is a contradiction. Therefore, (x0, hϕ
N [x0, ϕ

nx0]) is C-aligned.
Similarly, using (n + 2N)τϕ − K − C > (n + N)τϕ, we deduce that(
hϕN [x0, ϕ

nx0], zi
)

is C-aligned for all large i ∈ N. Since this is the case

for arbitrary sequence {zi}i∈N ⊂ X convering to ξ, (x0, hϕ
N [x0, ϕ

nx0], ξ) is
C-aligned. We conclude ξ ∈ Λϕ,C(Γ), proving the first statement.

We now show that Λϕ,C(Γ) is Γ-invariant. Fix ξ ∈ Λϕ,C(Γ) and g ∈
Γ. Then for each sufficiently large n ∈ N, there exists h ∈ Γ such that
(x0, h[x0, ϕ

nx0], ξ) is C-aligned. It is clear that (gx0, gh[x0, ϕ
nx0], gξ) is

C-aligned. By Corollary 5.3(1), this implies that (x0, gh[x0, ϕ
nx0], gξ) is

(5C + d(x0, gx0))-aligned. Hence, gξ is a (ϕ, 5C + d(x0, gx0))-guided limit
point of Γ, and therefore gξ ∈ Λϕ,C(Γ) by the first statement. This shows
the desired Γ-invariance. �

Definition 6.5. We say that a non-elementary subgroup Γ < Isom(X) is
of divergence type if δΓ < +∞ and its Poincaré series diverges at δΓ, i.e., we
have

∑
g∈Γ e

−δΓd(x0,gx0) = +∞.
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As a part of their generalizations of Hopf–Tsuji–Sullivan dichotomy, Coulon
and Yang proved the following:

Proposition 6.6 ([Yan24, Theorem 1.14], [Cou24, Theorem 1.4]). Let Γ <
Isom(X) be a non-elementary subgroup of divergence type. Let ϕ ∈ Γ be a
contracting isometry and let C = C(ϕ) > 0 be as in Lemma 5.9. Then for
every δΓ-dimensional conformal density {νx}x∈X of Γ and for every x ∈ X,
Λϕ,C(Γ) is νx-conull.

6.2. Squeezed limit sets and ergodic properties. As mentioned above,
we call the guided limit sets for squeezing isometries the squeezed limit sets.

Definition 6.7. Let Γ < Isom(X) be a non-elementary subgroup containing
a squeezing isometry ϕ ∈ Γ. Let C(ϕ) > 0 be as in Lemma 5.9 and fix
K ≥ C(ϕ). We say that ξ ∈ ∂hX is a (ϕ,K)-squeezed limit point of Γ if for
each sufficiently large n ∈ N, there exists h ∈ Γ such that

(x0, h[x0, ϕ
nx0], ξ) is K-aligned.

The collection of (ϕ,K)-squeezed limit points of Γ called the (ϕ,K)-squeezed
limit set of Γ. We use the same notation Λϕ,K(Γ) for this.

This notion of squeezed limit sets play a key role in this paper. Impor-
tantly, the following observation leads us to have ergodicity of conformal
densities on ∂hX, as we will see. In the following, we regard points in ∂hX
as horofunctions X → R vanishing at x0.

Lemma 6.8. Let Γ < Isom(X) be a non-elementary subgroup containing
a squeezing isometry ϕ ∈ Γ. Let C = C(ϕ) > 0 be as in Lemma 5.9. For
ξ, ζ ∈ ∂hX, if ξ ∈ Λϕ,C(Γ) and ‖ξ − ζ‖∞ < +∞, then ξ = ζ.

Proof. Let γ : R → X be the unique axis of ϕ. Let ξ, ζ ∈ ∂hX given
as in the statement, regarding them as horofunctions vanishing at x0. Let
B := ‖ξ − ζ‖∞ < +∞. This implies that for every x ∈ X we have

(6.1) ξ(x) =B ζ(x).

We fix an arbitrary x ∈ X and an arbitrary ε > 0. Our goal is to prove
that ξ(x) =ε ζ(x). Let L = L(0.01ε) > 0 be as in Definition 5.5 for γ, and
let n ∈ N be a sufficiently large integer such that

n >
100(L+ C +B + d(x0, x))

τϕ
.

Now, let {zi}i∈N ⊂ X be a sequence converging to ξ. Since ξ ∈ Λϕ,C(Γ),
there exists h ∈ Γ such that (x0, h[x0, ϕ

nx0], zi) is C-aligned for all large
i ∈ N. Since nτϕ − C > C, Lemma 5.9(4) tells us that

πhγ(x0) ⊂ hγ ((−∞, 2C]) and

πhγ(zi) ⊂ hγ ([nτϕ − 2C,+∞)) for all large i ∈ N.
(6.2)

Since πγ(·) is (1, 4C)-Lipschitz by Corollary 5.3(1), we have

πhγ(x) ⊂ hγ ((−∞, 6C + d(x0, x)]) .
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By Corollary 5.3(2), Equation (6.2) implies that

(6.3) d (zi, hγ(nτϕ − 2C))−d (zi, hγ(nτϕ − 19C − 2B)) =8C −(2B+17C).

Now let {z′i}i∈N ⊂ X be a sequence converging to ζ.

Claim. We have

(6.4) πhγ(z′i) ⊂ hγ ([nτϕ − 20C − 2B,+∞)) for all large i ∈ N.

Suppose to the contrary that, passing to a subsequence, we have

(6.5) πhγ(z′i) ⊂ hγ ((−∞, nτϕ − 18C − 2B]) for all i ∈ N.
Here, the fact that πhγ(z′i) is 2C-small is used. By Corollary 5.3(2), Equation
(6.5) implies that

d
(
z′i, hγ(nτϕ − 2C)

)
− d

(
z′i, hγ(nτϕ − 18C − 2B)

)
=8C 2B + 16C.

Comparing this with Equation (6.3), we observe that ξ(a)− ξ(b) and ζ(a)−
ζ(b) differ by more than 4B for two points a := hγ(nτϕ − 2C) and b :=
hγ(nτϕ − 19C − 2B). This contradicts Equation (6.1). The claim follows.

Hence, Equation (6.4) holds. Therefore, for each large enough i we have

πhγ(x0), πhγ(x) ⊂ hγ ((−∞, 6C + d(x0, x)]) and

πhγ(zi), πhγ(z′i) ⊂ hγ ([nτϕ − 20C − 2B,+∞)) .

Since nτϕ−20C−2B ≥ 6C+d(x0, x)+2L, we conclude from Lemma 5.6 that
d(x0, zi)−d(x, zi) =ε d(x0, z

′
i)−d(x, z′i). Since both ξ and ζ are horofunctions

vanishing at x0, taking the limit i→ +∞ yields ξ(x) =ε ζ(x). �

To discuss ergodicity of conformal densities, Coulon [Cou24] considered
conformal densities restricted to the reduced horoboundary instead of the
usual horoboundary. Yang [Yan24] considered another notion encompassing
the reduced horoboundary, namely, the reduced convergence boundary.

Instead of defining these objects precisely, let us point out that Coulon’s
and Yang’s ergodicity results are formulated in terms of saturated Borel
subsets of ∂hX, that is, E ⊂ ∂hX with a property that if ξ ∈ E and
ζ ∈ ∂hX satisfy ‖ξ − ζ‖∞ < +∞, then ζ ∈ E. Hence, by Proposition 6.6
and Lemma 6.8, their ergodicity results can be stated as follows:

Proposition 6.9 ([Yan24, Theorem 1.16], [Cou24, Theorem 1.5]). Let Γ <
Isom(X) be a non-elementary subgroup containing a squeezing isometry, and
let {νx}x∈X be a δΓ-dimensional confomal density of Γ. If Γ is of divergence
type, then the Γ-action on (∂hX, νx) is ergodic for all x ∈ X.

The above ergodicity indeed implies the uniqueness of δΓ-dimensional
conformal density when Γ is as in Proposition 6.9. Indeed, if {νx}x∈X and
{ν ′x}x∈X are δΓ-dimensional conformal densities of Γ, then {(νx+ν ′x)/2}x∈X
is also a δΓ-dimensional conformal density of Γ. Since νx is absolutely con-
tinuous with respect to (νx + ν ′x)/2 for each x ∈ X, the ergodicity applies
to their Radon–Nikodym derivatives which are Γ-invariant due to the con-
formality. Therefore, νx = ν ′x for all x ∈ X.
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7. Rigidity of ergodic invariant Radon measures

Let (X, d) be a proper geodesic metric space. In this section, we prove
the rigidity of ergodic invariant Radon measures (Theorem 1.9).

7.1. Candidates for measures. We first define a Radon measure which
will be the unique measure with desired properties in our rigidity theorem.
To do this, we fix a basepoint x0 ∈ X and identify H = ∂hX × R as in
Equation (5.3). Recall that the Isom(X)-action on H is written as follows:
for g ∈ Isom(X) and (ξ, t) ∈ H, we have

g(ξ, t) = (gξ, t+ βξ(g
−1x0, x0)).

Via this identification, we define a Radon measure on H as follows:

Definition 7.1. Let Γ < Isom(X) be a non-elementary subgroup contain-
ing a squeezing isometry and ν := {νx}x∈X be a δΓ-dimensional conformal
density of Γ. We define a Radon measure µν on H = ∂hX × R by setting

dµν(ξ, t) := eδΓ·t · dνx0(ξ) dt.

When Γ is of divergence type in addition, we write

µΓ := µν .

Remark 7.2. It follows from the conformality of ν that µν is Γ-invariant.
Moreover, considering H as a subspace of Lip1(X), the measure µΓ does not
depend on the choice of x0 ∈ X. When Γ is of divergence type, there exists
a unique δΓ-dimensional conformal density {νx}x∈X of Γ by Proposition 6.2
and Proposition 6.9. This is a reason for writing µΓ = µν in this case.

To present a precise statement, we also consider the following notion for
the distribution of translation lengths of squeezing isometries.

Definition 7.3. For a subgroup Γ < Isom(X), its squeezing spectrum is

Specsq(Γ) := {τg ∈ R : g ∈ Γ is a squeezing isometry}.
We call that the squeezing spectrum is non-arithmetic if it generates a dense
additive subgroup of R.

7.2. Rigidity of measures. Let us restate Theorem 1.9, our main rigidity
theorem. Recall the notion of conical limit set from Definition 5.17.

Theorem 7.4. Let Γ < Isom(X) be a non-elementary subgroup with non-
arithmetic squeezing spectrum. Suppose that there exists a Γ-invariant Radon
measure µ on H supported on Λc(Γ)×R. Then Γ is of divergence type, and

µ is a constant multiple of µΓ.

The rest of this section is devoted to the proof of Theorem 7.4. We
prove the theorem by establishing a robust relation between invariant Radon
measures and squeezed limit sets. Note that due to ergodic decompositions,
it suffices to consider invariant ergodic measures.
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7.3. Concentration on squeezed limit sets. We first show that invariant
ergodic Radon measures on H are charged on squeezed limit sets.

Theorem 7.5. Let Γ < Isom(X) be a non-elementary subgroup, let ϕ be a
contracting isometry in Γ and let C = C(ϕ) be as in Lemma 5.9.

Let µ be a Γ-invariant ergodic Radon measure on H supported on Λc(Γ)× R.
Then the measure µ is supported on

Λϕ,C(Γ)× R ⊂ H.
Proof. Let κ(ϕ) > 0 and a1, a2, a3 ∈ Γ be as in Lemma 5.12 for Γ. Let
C(ϕ) > 0 be as in Lemma 5.9 for g = ϕ. We set C0 := 10(κ(ϕ) + C(ϕ)).

For each K > 0 let

HK :=

ß
(ξ, t) ∈ H :

∃ an infinite sequence {gi}i∈N ⊂ Γ s.t.
βξ(x0, gix0) ≥ d(x0, gix0)−K for all i ∈ N

™
.

Then Γ · HK ⊂ H is Γ-invariant. Moreover,

Λc(Γ)× R =
⋃
K>0

Γ · HK .

Since ΛcΓ× R has positive µ-value,

Γ · HK has positive µ-value for all large K > 0.

We fix such K > 100C0 + 2
∑3

i=1 d(x0, aix0). Then it follows from the Γ-
invariance of µ that µ(HK) > 0. For each R > 0, we set HK,R := {(ξ, t) ∈
HK : −R ≤ t ≤ R}. Since HK = ∪∞R=1HK,R,

µ(HK,R) > 0 for all large R > 0.

We fix such R > 0.
Now we pick n > 100(C0 +K)/τϕ and k > 0. We define a map

F = Fn,k : HK,R → H
as follows. For each Ξ ∈ HK,R, there exists g ∈ Γ such that

(7.1) d(x0, gx0) > k and βΞ(x0, gx0) ≥ d(x0, gx0)−K.
Among many such g’s, take the one with minimal d(x0, gx0) and call it gΞ.3

Then the map Ξ ∈ HK,R 7→ gΞ is Borel measurable. By Lemma 5.15, there
exists aΞ ∈ {a1, a2, a3} such that 4

(7.2)
(
x0, gΞ · aΞ[x0, ϕ

nx0], gΞ · aΞϕ
naΞ · g−1

Ξ Ξ
)

is C0-aligned.

This map Ξ 7→ aΞ is also Borel measurable. We now set

F (Ξ) := gΞ · aΞϕ
naΞ · g−1

Ξ Ξ.

Let

D := 100

(
C0 + τϕn+

3∑
i=1

d(x0, aix0)

)
.

3There exists a technicality when several candidates tie. An easy rescue is to first
enumerate Γ = {g(1), g(2), . . .}, and we choose the earliest whenever there is a tie.

4Again, when more than one of {a1, a2, a3} do the job we choose the earliest.
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Claim. We have that

(7.3) F is at most 3 ·#{g ∈ Γ : d(x0, gx0) ≤ D}-to-one.

To prove this claim, suppose that we have Ξ,Ξ′ ∈ HK,R with the same

image F (Ξ) = F (Ξ′) =: (ξ0, t0) ∈ ∂hX × R.
Let {ui}i∈N ⊂ X be a sequence converging to ξ0. Up to a subsequence,

(x0, gΞaΞ[x0, ϕ
nx0], ui) is C0-aligned for all i ∈ N.

Here, note that d(x0, ϕ
nx0) ≥ τϕn ≥ 100C0. It follows from Lemma 5.2 that

for each i ∈ N, there exists P ∈ [x0, ui] such that d(gΞaΞx0, P ) ≤ 3C0, and
similarly, there exists Q ∈ [x0, ui] such that d(gΞ′aΞ′x0, Q) ≤ 3C0. We have
three cases.

(1) If d(x0, gΞx0) < d(x0, gΞ′x0)− 0.5D: In this case, along [x0, ui], P is
closer to x0 than Q is, and d(P,Q) ≥ 0.5D − 6C0. For convenience
we write η := gΞaΞ[x0, ϕ

nx0]. Note that by Corollary 5.3(2),

d(ui, η) ≥ d(ui, gΞaΞx0)− d(gΞaΞx0, gΞaΞϕ
nx0)

≥ d(ui, P )− 3C0 − d(x0, ϕ
nx0)

≥ d(ui, Q) + 0.2D

> d(ui, gΞ′aΞ′x0) + d(aΞ′x0, x0) + C0

≥ d(ui, gΞ′x0) + C0.

This implies that d(η, [ui, gΞ′x0]) ≥ C0. Since η is C0-contracting,
Diamπη([ui, gΞ′x0]) ≤ C0. Since (x0, η, ui) is C0-aligned, we also
have that

(7.4) (x0, η, gΞ′x0) is 2C0-aligned.

Denote by ξ′ ∈ ∂hX the Busemann cocycle component of Ξ′ and
let {z′i}i∈N ⊂ X be a sequence converging to ξ′. We claim that

(7.5) (η, z′i) is (K + 30C0)-aligned for all large i ∈ N.

Suppose to the contrary that, passing to a subsequence, (η, z′i) is
never (K + 30C0)-aligned. We choose

p ∈ πη(x0), q ∈ πη(z′i), and r ∈ πη(gΞ′x0).

By Equation (7.4) and the assumption that (η, z′i) is not (K+30C0)-
aligned, r is closer to gΞaΞϕ

nx0 than p and q are. Moreover, we have
d(p, r), d(q, r) ≥ K + 25C0. Now, it follows from Lemma 5.2 that

d(x0, z
′
i) ≤ d(x0, η) + d(p, q) + d(η, z′i),

d(gΞ′x0, z
′
i) =8C0 d(gΞ′x0, η) + d(r, q) + d(η, z′i), and

d(x0, gΞ′x0) =8C0 d(x0, η) + d(p, r) + d(η, gΞ′x0).



INVARIANT RADON MEASURES ON ML 33

Then we have

d(x0, gΞ′x0) + d(gΞ′x0, z
′
i)− d(x0, z

′
i)

≥ 2d(gΞ′x0, η) + 2 min(d(p, r), d(q, r))− 16C0

≥ 2K + 34C0

In particular, d(x0, z
′
i)−d(gΞ′x0, z

′
i) ≤ d(x0, gΞ′x0)−K−C0. Taking

the limit i→ +∞, we have

βΞ′(x0, gΞ′x0) ≤ d(x0, gΞ′x0)−K − C0.

This contradicts the definition of gΞ′ , and therefore Equation (7.5)
follows.

By Lemma 5.2, it follows from Equation (7.4) and Equation (7.5)
that [x0, z

′
i] passes through the 4C0-neighborhood of gΞaΞx0, for all

large i ∈ N. This implies

βΞ′(x0, gΞaΞx0) ≥ d(x0, gΞaΞx0)− 8C0.

Since K > 100C0 + 2
∑3

i=1 d(x0, aix0), we have

βΞ′(x0, gΞx0) = βΞ′(x0, gΞaΞx0) + βΞ′(gΞaΞx0, gΞx0)

≥ d(x0, gΞaΞx0)− 8C0 − d(aΞx0, x0)

≥ d(x0, gΞx0)− 8C0 − 2d(aΞx0, x0)

> d(x0, gΞx0)−K.

Meanwhile, we also have k < d(x0, gΞx0) < d(x0, gΞ′x0) − 0.5D.
This contradicts to the definition of gΞ′ that d(x0, gΞ′x0) is minimal
among the elements of Γ satisfying Equation (7.1).

(2) If d(x0, gΞ′x0) < d(x0, gΞx0) − 0.5D: In this case, one can obtain a
similar contradiction as in (1).

(3) If d(x0, gΞx0) =0.5D d(x0, gΞ′x0): Recall that for each fixed i ∈ N,
we have P,Q ∈ [x0, ui] such that d(gΞaΞx0, P ), d(gΞ′aΞ′x0, Q) ≤ 3C0.
Hence, we have

d(gΞx0, P ), d(gΞ′x0, Q) ≤ 0.1D.

Since both P and Q belong to the geodesic [x0, ui], this, together
with d(x0, gΞx0) =0.5D d(x0, gΞ′x0), implies

d(gΞx0, gΞ′x0) ≤ D.

Now when Ξ is given (and hence aΞ, gΞ are given as well),

Ξ′ = gΞ′a
−1
Ξ′ ϕ

−na−1
Ξ′ (g−1

Ξ′ gΞ)aΞϕ
nag−1

Ξ Ξ

is determined by g−1
Ξ′ gΞ and aΞ′ ∈ {a1, a2, a3}. The number of these

choices is at most 3 ·#{g ∈ Γ : d(x0, gx0) ≤ D}.
Therefore, Equation (7.3) follows.
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We simply write M := 3 ·#{g ∈ Γ : d(x0, gx0) ≤ D}. Then we have

µ(F (HK,R)) = µ

Ñ ⋃
g∈Γ,a∈{a1,a2,a3}

F ({Ξ ∈ HK,R : gΞ = g, aΞ = a})

é
≥ 1

M

∑
g∈Γ,a∈{a1,a2,a3}

µ (F ({Ξ ∈ HK,R : gΞ = g, aΞ = a}))

=
1

M

∑
g∈Γ,a∈{a1,a2,a3}

µ
(
gaϕnag−1{Ξ ∈ HK,R : gΞ = g, aΞ = a}

)
=

1

M

∑
g∈Γ,a∈{a1,a2,a3}

µ ({Ξ ∈ HK,R : gΞ = g, aΞ = a})

=
1

M
µ(HK,R).

Now to see the image of F , let Ξ = (ξ, t) ∈ HK,R. For simplifity, write
g := gΞ and a := aΞ. Then

F (Ξ) = (gaϕnag−1ξ, t+ βξ((gaϕ
nag−1)−1x0, x0))

For each sequence {ui}i∈N ⊂ X converging to gaϕnag−1ξ ∈ ∂hX, we have

βξ((gaϕ
nag−1)−1x0, x0) = βgaϕnag−1ξ(x0, gaϕ

nag−1x0)

= lim
i→+∞

d(x0, ui)− d(gaϕnag−1x0, ui).

By Equation (7.2) and Lemma 5.2, we have for all large i ∈ N that

βξ((gaϕ
nag−1)−1x0, x0) =15C0 d(x0, gax0) + d(x0, ϕ

nx0) + d(gaϕnx0, ui)

− d(gaϕnag−1x0, ui)

=C0 d(x0, gax0) + d(x0, ϕ
nx0)

+ βgaϕnag−1ξ(gaϕ
nx0, gaϕ

nag−1x0)

=d(x0,ax0) d(x0, gx0) + d(x0, ϕ
nx0)

+ βξ(ga
−1x0, gx0) + βξ(gx0, x0)

=d(x0,ax0) d(x0, gx0) + d(x0, ϕ
nx0) + βξ(gx0, x0)

=K d(x0, ϕ
nx0).

Therefore,

t+ βξ((gaϕ
nag−1)−1x0, x0) ∈ [−R−D,R+D].

In addition, by Equation (7.2), we have d(x0, gax0) > k −
∑3

i=1 d(x0, aix0)
and that (x0, ga[x0, ϕ

nx0], F (Ξ)) is C0-aligned.
This implies that F (HK,R) is contained in

Bk;n :=

(ζ, s) ∈ H :

−R−D ≤ s ≤ R+D and ∃h ∈ Γ such that

d(x0, hx0) > k −
∑3

i=1 d(x0, aix0) and
(x0, h[x0, ϕ

nx0], ζ) is C0-aligned

 .
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Hence, we have

µ(Bk;n) ≥ µ(HK,R)/M > 0.

Note that the set Bk;n is decreasing in k. Since µ is a Radon measure and

Bk;n ⊂ ∂hX × [−R −D,R +D] which is compact, we have µ(Bk;n) < +∞.
Therefore, setting

Bn :=
⋂
k>0

Bk;n,

we have

µ(Bn) = lim
k→+∞

µ(Bk;n) ≥ µ(HK,R)/M > 0.

Now, Γ · Bn is a Γ-invariant set of positive µ-measure. Hence, by the
Γ-ergodicity of µ, we have that Γ ·Bn is µ-conull, and therefore⋂

n

Γ ·Bn is µ-conull.

We then show that for each (ζ, s) ∈
⋂
n Γ ·Bn, we have ζ ∈ Λϕ,2C0(Γ). This

finishes the proof by Lemma 6.4.
Let (ζ, s) ∈

⋂
n Γ · Bn. Then for each large enough n ∈ N, there exists

h0 ∈ Γ so that

(x0, h[x0, ϕ
nx0], h−1

0 ζ) is C0-aligned for infinitly many h ∈ Γ.

In other words,

(h0x0, h0h[x0, ϕ
nx0], ζ) is C0-aligned for infinitely many h ∈ Γ.

Among infinitely many such h ∈ Γ, we can choose one such that

d(h0x0, h0h[x0, ϕ
nx0]) > d(x0, h0x0) + C0

and hence

d([h0x0, x0], h0h[x0, ϕ
nx0]) > C0.

Since h0h[x0, ϕ
nx0] is C0-contracting, we now have that (x0, h0h[x0, ϕ

nx0])
is 2C0-aligned. Therefore,

(x0, h0h[x0, ϕ
nx0], ζ) is 2C0-aligned.

Since this holds for all large n ∈ N, we conclude ζ ∈ Λϕ,2C0(Γ). �

Theorem 7.5 applies to each contracting isometry of Γ. We thus define:

Definition 7.6. Let Γ < Isom(X) be a non-elementary subgroup. For each
contracting isometry ϕ ∈ Γ, let C(ϕ) > 0 as in Lemma 5.9. We then define

ΛMyr(Γ) :=
⋂

ϕ∈Γ, contracting

Λϕ,C(ϕ)(Γ).

In other words, every point in ΛMyr(Γ) is a (ϕ,C(ϕ))-guided limit point of
Γ for all contracting ϕ ∈ Γ.
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Remark 7.7. The set ΛMyr(Γ) is closely related to the Myrberg limit set. A

point ξ ∈ ∂hX is a called a Myrberg limit point of Γ if there exists c > 0
such that for each g1, g2 ∈ Γ, there exists h ∈ Γ such that

h[x, ξ) is c-close to hx0 and hgx0, with hx0 coming earlier.

The Myrberg limit set is the set of all Myrberg limit points of Γ.
When Γ < Isom(X) is non-elementary, Yang proved in [Yan24, Corollary

4.17] that the Myrberg limit set of Γ is equal to the intersection of (ϕ,C(ϕ))-
guided limit sets for all contracting isometries ϕ ∈ Γ.

Considering Lemma 6.4, Theorem 7.5 implies that:

Corollary 7.8. Let Γ < Isom(X) be a non-elementary subgroup. Let µ be
a Γ-invariant ergodic Radon measure on H supported on Λc(Γ) × R. Then
the measure µ is supported on

ΛMyr(Γ)× R ⊂ H.

7.4. Neighborhoods in squeezed limit sets. We have seen that the
squeezed limit sets is the genuine region for invariant ergodic measures.
Let us now introduce a notion of neighborhoods of squeezed limit points.
For g, ϕ ∈ Isom(X), C > 0, and n ∈ N, we set

UC(g;ϕ, n) :=
¶
ξ ∈ ∂hX : (x0, g[x0, ϕ

nx0], ξ) is C-aligned
©
.

The interesting case is where ϕ is a squeezing isometry.

Lemma 7.9. Let Γ < Isom(X) be a non-elementary subgroup containing a
squeezing isometry ϕ ∈ Γ, and let C = C(ϕ) > 0 be as in Lemma 5.9. Then

{UC(g;ϕ, n) : g ∈ Γ, n ∈ N}

forms a basis for the topology of Λϕ,C(Γ) ⊂ ∂hX.

In other words, for each ξ ∈ Λϕ,C(Γ), for each open set O ⊂ ∂hX with
ξ ∈ O and for each N ∈ N, there exist g ∈ Γ, n > N , and an open set
V ⊂ ∂hX such that

ξ ∈ V ⊂ UC(g;ϕ, n) ⊂ O.

Proof. Let γ : R→ X be the unique axis of ϕ. We fix ξ ∈ Λϕ,C(Γ), an open

set O ⊂ ∂hX containing ξ, and N ∈ N.
Let us first recall that ∂hX is given a compact-open topology. Hence, the

set of the form

OR,ε := {ζ ∈ ∂hX : |ξ(x)− ζ(x)| < ε for all x ∈ NR(x0)} for R, ε > 0

forms a local basis for ξ. Fix R, ε > 0 such that OR,ε ⊂ O. We may assume
that ε < C.

Let L = L(0.01ε) > 0 be the constant as in Definition 5.5 for γ. Let
R′ := dR+100C

τϕ
e and L′ := d2L+100C

τϕ
e, and take k ∈ N such that

k > R′ + L′ + d100C/τϕe+N.
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Let {zi}i∈N ⊂ X be a sequence converging to ξ. Since ξ ∈ Λϕ,C(Γ), there
exists h ∈ Γ such that ξ ∈ UC(h;ϕ, k), i.e.,Ä

x0, h[x0, ϕ
kx0], zi

ä
is C-aligned for all large i ∈ N.

Since τϕk > 2C, Lemma 5.9(4) tells us that

(7.6)
πhγ(x0) ⊂ hγ ((−∞, 2C]) and

πhγ(zi) ⊂ hγ([τϕk − 2C,+∞)) for all large i ∈ N.
By the (1, 4C)-Lipschitzness of πhγ(·) in Corollary 5.3(1), we have

(7.7) πhγ(x) ⊂ hγ ((−∞, 6C +R]) for all x ∈ NR(x0).

In view of Equation (7.6) and Lemma 5.9(3), (x0, hϕ
R′ [x0, ϕ

L′x0]) is C-

aligned. Similarly, (hϕR
′
[x0, ϕ

L′x0], zi) is C-aligned for all large i ∈ N.
Therefore,

ξ ∈ UC(hϕR
′
;ϕ,L′).

Now let ζ ∈ UC(hϕR
′
;ϕ,L′) and take a sequence {z′i}i∈N ⊂ X converging

to ζ. Then by Lemma 5.9(4),

πhγ(z′i) ⊂ hγ
(
[(R′ + L′)τϕ − 2C,+∞)

)
for all large i ∈ N.

Combining this with Equation (7.6) and Equation (7.7), we can apply Lemma
5.6 and conclude that for each x ∈ NR(x0),

d(x, zi)− d(x0, zi) =ε/2 d(x, z′i)− d(x0, z
′
i) for all large i ∈ N.

This implies that |ξ(x)− ζ(x)| < ε for all x ∈ NR(x0), and therefore

ξ ∈ UC(hϕR
′
;ϕ,L′) ⊂ OR,ε ⊂ O.

Now, set

V := {ζ ∈ ∂hX : |ξ(x)− ζ(x)| < ε for all x ∈ hγ([0, τϕk])}

which is an open neighborhood of ξ. We then show V ⊂ UC(hϕR
′
;ϕ,L′),

which finishes the proof.
Let ζ ∈ V and {z′i}i∈N ⊂ X a sequence converging to ζ.

Claim. We have

(7.8) πhγ(z′i) ⊂ hγ ([τϕk − 20C,+∞)) for all large i ∈ N.

If not, then after passing to a subsequence,

d
(
z′i, hγ(τϕk − 2C)

)
− d

(
z′i, hγ(τϕk − 20C)

)
=8C 18C for all i ∈ N

by Corollary 5.3(2). On the other hand, by Equation (7.6), it follows from
Corollary 5.3(2) that after passing to a subsequence,

d (zi, hγ(τϕk − 20C))− d (zi, hγ(τϕk − 2C)) =8C 18C for all i ∈ N.
These imply that

βζ(hγ(τϕk − 2C), hγ(τϕk − 20C)) =8C 18C and

βξ(hγ(τϕk − 20C), hγ(τϕk − 2C)) =8C 18C.
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Equivalently,

ζ(hγ(τϕk − 2C))− ζ(hγ(τϕk − 20C)) =8C 18C and

ξ(hγ(τϕk − 2C))− ξ(hγ(τϕk − 20C)) =8C −18C.

This contradicts the fact that |ξ(x)− ζ(x)| < ε for all x ∈ hγ([0, τϕk]).

Hence, Equation (7.8) holds, and Lemma 5.9(3) tells us that

(x0, hϕ
R′ [x0, ϕ

L′x0], ζ) is C-aligned.

This shows ζ ∈ UC(hϕR
′
;ϕ,L′), and therefore V ⊂ UC(hϕR

′
;ϕ,L′) as de-

sired. �

7.5. Quasi-invariance under translations. For a ∈ R, consider a map
Ta : H → H given by (ξ, t) 7→ (ξ, t + a). For a Radon measure µ on H, we
consider its pullback measure T ∗aµ: for each Borel subset E ⊂ H,

T ∗aµ(E) := µ(TaE).

For a contracting g ∈ Isom(X), we simply write Tg := Tτg . We show that
invariant ergodic measures on H are quasi-invariant under this translation.

Theorem 7.10. Let Γ < Isom(X) be a non-elementary subgroup containing
a squeezing isometry. Let µ be a Γ-invariant ergodic Radon measure on H
supported on Λc(Γ)× R. Then for a squeezing isometry ϕ ∈ Γ, there exists
λ ≥ 0 such that

dT ∗ϕµ

dµ
= eλ a.e.

Proof. Let ϕ ∈ Γ be a squeezing isometry and let C = C(ϕ) > 0 be as in
Lemma 5.9, with the choice of axis γ : R → X. Note that for every n ∈ N,
τϕn = n · τϕ and C(ϕn) = C(ϕ). Since Tϕ commutes with the Γ-action on

H, T ∗ϕ−nµ is also Γ-invariant and ergodic. Hence, if
dT ∗ϕn (T ∗

ϕ−n
µ)

dT ∗
ϕ−n

µ = eλ1 and

dT ∗
ϕn+1 (T ∗

ϕ−n
µ)

dT ∗
ϕ−n

µ = eλ2 for some λ1, λ2 ∈ R, then
dT ∗ϕµ

dµ = eλ2−λ1 . Therefore, it

suffices to consider the case that

τϕ > 100C.

We first aim to show that

(7.9) (T ∗ϕν)(E) ≥ ν(E)

for each Borel subset E ⊂ H. By Corollary 7.8, µ is supported on Λϕ,C(Γ)×
R.

Step 1. First consider the case that E = K × I for a compact subset
K ⊂ Λϕ,C(Γ) and a compact interval I ⊂ R.

We fix some open subset O ⊂ ∂hX such that K ⊂ O and ε > 0. Let
L = L(0.001ε) > 0 be as in Definition 5.5 for γ. By Lemma 7.9, for each
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ξ ∈ K, there exist an element g(ξ) ∈ Γ and n(ξ) > (2L+ 100C)/τϕ + 4 such
that

ξ ∈ UC (g(ξ);ϕ, n(ξ)) ⊂ O.

Let U := {UC (g(ξ);ϕ, n(ξ)) : ξ ∈ K}, which is a countable collection of sets.
For convenience, let us enumerate U based on their distance from x0, i.e, let

U = {U1, U2, . . .}

where Ui := UC(gi;ϕ, ni) for each i ∈ N so that

d(x0, g1ϕ
n1x0) ≤ d(x0, g2ϕ

n2x0) ≤ · · · .

We will now define a subcollection

V := {Ui(1), Ui(2), . . .} ⊂ U

by inductively defining i(1), i(2), . . .. We let i(1) = 1. Now, having defined
i(1), . . . , i(N), define i(N + 1) as the smallest j ∈ N such that Uj is disjoint
from Ui(1) ∪ · · · ∪ Ui(N).

For each l ∈ N, we set

(7.10) Cl := Ui(l) ∪
⋃{

Uk : k ≥ i(l), Uk ∩ Ui(l) 6= ∅
}
.

Then {Cl : l ∈ N} is a covering of K contained in O. Indeed, for k ≥ 1, if
k 6= i(l) for all l ∈ N, then Uk intersects Ui(1) ∪ · · · ∪ Ui(l0) where i(l0) is the
maximal index less than k.

Claim. For each l ∈ N,

(7.11) Cl ⊂ UC
(
gi(l);ϕ, ni(l) − 1

)
.

To see this claim, let k ≥ i(l) be such that Uk = UC(gk;ϕ, nk) and Ui(l)

have a common element ξ. Then for every z ∈ X close enough to ξ in X
h
,

(7.12)
(
x0, gi(l)[x0, ϕ

ni(l)x0], z
)

is C-aligned.

By Lemma 5.2, there exists q ∈ [x0, z] that is 3C-close to gi(l)ϕ
ni(l)x0. Sim-

ilarly, by the condition ξ ∈ Uk, [x0, z] contains a point p that is 3C-close to
gkϕ

nkx0. Since k ≥ i(l), our enumerating convention tells us that

d(x0, p) ≥ d(x0, gkϕ
nkx0)− 3C ≥ d(x0, gi(l)ϕ

ni(l)x0)− 3C ≥ d(x0, q)− 6C.

In other words,

d(z, p) ≤ d(z, q) + 6C.

If d(z, p) ≤ 10C, then we have d(z, gkϕ
nkx0) ≤ 13C. By the (1, 4C)-

Lipschitzness of πgi(l)[x0,ϕni(l)x0](·) in Corollar 5.3(1), we have

Diamπgi(l)[x0,ϕ
ni(l)x0]({z, gkϕ

nkx0}) ≤ 17C.
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If d(z, p) > 10C, then we take a point p† ∈ [z, p] such that d(p, p†) = 10C.
Then Diam[p†, z] = d(p, z)− 10C, and hence

d
Ä
gi(l)[x0, ϕ

ni(l)x0], [p†, z]
ä
≥ d

(
gi(l)[x0, ϕ

ni(l)x0], z
)
−Diam[p†, z]

≥ d(z, q)− 3C − d(z, p) + 10C

≥ C.
By the C-contracting property of gi(l)[x0, ϕ

ni(l)x0], we have

Diamπgi(l)[x0,ϕ
ni(l)x0]({z, p

†}) ≤ C.

Since d(p, gkϕ
nkx0) ≤ 3C, we have d(p†, gkϕ

nkx0) ≤ 13C, and hence

Diamπgi(l)[x0,ϕ
ni(l)x0]({z, gkϕ

nkx0}) ≤ 18C

by Corollary 5.3(1).
Hence, in any case, together with Equation (7.12), we have that

(7.13) (x0, gi(l)[x0, ϕ
ni(l)x0], gkϕ

nkx0) is 19C-aligned.

Now let ζ ∈ Uk be arbitrary. Then for every z′ ∈ X close to ζ in X
h
,

(x0, gk[x0, ϕ
nkx0], z′) is C-aligned

and hence [x0, z
′] passes through the 3C-neighborhood of gkϕ

nkx0 as before.
Hence, we have

Diamπgi(l)[x0,ϕ
ni(l)x0]([x0, z

′]) ≥ d(gi(l)x0, gi(l)ϕ
ni(l)x0)

−Diam
(
πgi(l)[x0,ϕ

ni(l)x0](x0) ∪ {gi(l)x0}
)

−
(
d([x0, z

′], gkϕ
nkx0) + 4C

)
−Diam

(
πgi(l)[x0,ϕ

ni(l)x0](gkϕ
nkx0) ∪ {gi(l)ϕni(l)x0}

)
≥ 100C − C − (3C + 4C)− 19C

≥ 70C

where we applied Corollary 5.3(1) in the first inequality, and Equation (7.12),
Equation (7.13), and that d([x0, z

′], gkϕ
nkx0) ≤ 3C in the second.

We then apply Lemma 5.2 and obtain two points u, v ∈ [x0, z
′] such that

(1) [u, v] and πgi(l)[x0,ϕ
ni(l)x0]([x0, z

′]) are within Hausdorff distance 4C,

(2) Diam
(
πgi(l)[x0,ϕ

ni(l)x0]([x0, u]) ∪ {u}
)
≤ 2C,

(3) Diam
(
πgi(l)[x0,ϕ

ni(l)x0]([v, z
′]) ∪ {v}

)
≤ 2C, and

(4) for each u′ ∈ πgi(l)[x0,ϕ
ni(l)x0](x0) and v′ ∈ πgi(l)[x0,ϕ

ni(l)x0](z
′), [u′, v′]

and [u, v] are within Hausdorff distance 10C.

Since d([x0, z
′], gkϕ

nkx0) ≤ 3C, it follows from Equation (7.13) and Corol-
lary 5.3(1) that there exists w ∈ [x0, z

′] such that

(7.14) Diam
(
πgi(l)[x0,ϕ

ni(l)x0](w) ∪ {gi(l)ϕni(l)x0}
)
≤ 26C.
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By the condition (2) above, Equation (7.13), and d(x0, ϕ
ni(l)x0) > 100C, we

must have w /∈ [x0, u], and hence w ∈ [v, z′] or w ∈ [u, v].

• If w ∈ [v, z′], then it follows from (3) above that

Diam
(
πgi(l)[x0,ϕ

ni(l)x0](z
′) ∪ {gi(l)ϕni(l)x0}

)
≤ 28C.

• If w ∈ [u, v], then it follows from (4) above that for each pair of two
points u′ ∈ πgi(l)[x0,ϕ

ni(l)x0](x0) and v′ ∈ πgi(l)[x0,ϕ
ni(l)x0](z

′), there

exists w′ ∈ [u′, v′] such that d(w,w′) ≤ 10C. We then have

Diam
(
πgi(l)[x0,ϕ

ni(l)x0](w) ∪ {w′}
)
≤ 20C.

Together with Equation (7.14), Diam{w′, gi(l)ϕni(l)x0} ≤ 46C. Since
v′ is inbetween w′ and gi(l)ϕ

ni(l)x0, and v′ ∈ πgi(l)[x0,ϕ
ni(l)x0](z

′) is

arbitrary, we have

Diam
(
πgi(l)[x0,ϕ

ni(l)x0](z
′) ∪ {gi(l)ϕni(l)x0}

)
≤ 46C.

Therefore, (gi(l)[x, ϕ
ni(l)x0], z′) is 46C-aligned.

By Lemma 5.9(4), we have

(7.15)
πgi(l)γ(z′) ⊂ gi(l)γ

(
[τϕni(l) − 47C,+∞)

)
⊂ gi(l)γ

(
[τϕ(ni(l) − 1) + 3C,+∞)

)
.

By Lemma 5.9(3), this implies that (gi(l)[x0, ϕ
ni(l)−1x0], z′) is C-aligned.

This is the case for every z′ close to ζ ∈ Uk, so we conclude

ζ ∈ UC
(
gi(l);ϕ, ni(l) − 1

)
.

The claim is now established.

For each l ∈ N we now define a map Fl : Cl × I → H. For g = gi(l) we let

(7.16) Fl : Ξ 7→ gϕg−1Ξ.

We have µ (Fl(Cl × I)) = µ(Cl × I) as µ is Γ-invariant.

Claim. We have

(7.17) Fl(Cl × I) ⊂ Ui(l) × (ε-neighborhood of I + τϕ).

To see this, we simply write g = gi(l) and n = ni(l) − 1. We then fix
Ξ = (ξ, t) ∈ Cl × I. Note that

Fl(Ξ) = (gϕg−1ξ, t+ βξ(gϕ
−1g−1x0, x0)).

Let {zi}i∈N ⊂ X be a sequence converging to ξ.
We first show that gϕg−1ξ ∈ Ui(l), which follows once we show that

(x0, g[x0, ϕ
n+1x0], gϕg−1zi) is C-aligned for all large i ∈ N,
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Since Ui(l) 6= ∅, we already have that (x0, g[x0, ϕ
n+1x0]) is C-aligned. Now

suppose to the contrary that (g[x0, ϕ
n+1x0], gϕg−1zi) is not C-aligned for

large i ∈ N. By Lemma 5.9(3), we have

πgγ(zi) ⊂ gγ((−∞, nτϕ]).

This contradicts Equation (7.15). Therefore, gϕg−1ξ ∈ Ui(l).
For the second component, it suffices to show

(7.18) |βξ(gϕ−1g−1x0, x0)− τϕ| < ε.

Note that

βξ(gϕ
−1g−1x0, x0) = lim

i→+∞
d(gϕ−1g−1x0, zi)− d(x0, zi).

By Equation (7.11),

(x0, g[x0, ϕ
nx0], zi) is C-aligned for all large i ∈ N.

Hence, for all large i ∈ N, it follows from Lemma 5.9(4) that

(7.19) πgγ(x0) ⊂ gγ ((−∞, 2C]) and πgγ(zi) ⊂ gγ ([nτϕ − 2C,+∞)) .

Since nτϕ − 4C > 2L and gγ is squeezing (Definition 5.5), there exists
p ∈ [x0, zi] such that

d(p, gγ(nτϕ/2)) ≤ 0.001ε.

Meanwihle, note that
(
gϕ−1g−1x0, g[x0, ϕ

nx0]
)

is also C-aligned; other-

wise, we have πgγ(gϕ−1g−1x0) ⊂ gγ([0,+∞)) by Lemma 5.9(3), and there-
fore πgγ(x0) ⊂ gγ([τϕ,+∞)) which contradicts Equation (7.19). Hence, it
follows from Lemma 5.9(4) that

πgγ(gϕ−1g−1x0) ⊂ gγ ((−∞, 2C]) .

Together with Equation (7.19) and nτϕ − 4C > 2L + 2τϕ, the squeezing
property of gγ implies that there exist q1, q2 ∈ [gϕg−1x0, zi], with q1 coming
earlier than q2, such that

d (q1, gγ(nτϕ/2− τϕ)) , d (q2, gγ(nτϕ/2)) < 0.001ε.

Now we have

d(gϕ−1g−1x0, zi)− d(x0, zi) =
(
d(gϕ−1g−1x0, q1) + d(q1, q2) + d(q2, zi)

)
− (d(x0, p) + d(p, zi))

=0.006ε d
(
gϕ−1g−1x0, gγ(nτϕ/2− τϕ)

)
+ d (gγ(nτϕ/2− τϕ), gγ(nτϕ/2))

+ d (gγ(nτϕ/2), zi)

− d (x0, gγ(nτϕ/2))− d (gγ(nτϕ/2), zi)

= d (gγ(nτϕ/2− τϕ), gγ(nτϕ/2)) = τϕ.

Taking the limit i→ +∞, Equation (7.18) follows. This completes the proof
of the claim.
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Now by the above claim and disjointness of Ui(l)’s, we have

µ(O × (ε-neighborhood of I + τϕ)) ≥ µ

(⋃
l

Fl(Cl × I)

)
=
∑
l

µ (Fl(Cl × I))

=
∑
l

µ(Cl × I)

≥ µ(K × I).

Note that µ(O× (ε-neighborhood of I + τϕ)) < +∞ since µ is Radon. Since
ε > 0 and an open set O ⊃ K are arbitrary, we have

(T ∗ϕµ)(K × I) = µ(K × (I + τϕ)) ≥ µ(K × I).

Step 2. Consider the case that E = A × B for Borel A ⊂ ∂hX and an
interval B ⊂ R. Since µ is supported on Λϕ,C(Γ)× R, we may assume that
A ⊂ Λϕ,C(Γ). By the inner regularity of µ and T ∗ϕµ, there exist compact
subsets E1, E2 ⊂ E such that

|µ(E)− µ(E1)| < ε and |(T ∗ϕµ)(E)− (T ∗ϕµ)(E2)| < ε.

Considering projections of E1 ∪E2 to A and B, we obtain compact subsets
K ⊂ A and I ⊂ B so that

|µ(E)− µ(K × I)| < ε and |(T ∗ϕµ)(E)− (T ∗ϕµ)(K × I)| < ε.

By taking the convex hull of I (recall that B is an interval), we may assume
that I is a compact interval. Applying Step 1 to K × I, we have

(T ∗ϕµ)(E) ≥ µ(E)− 2ε.

Since ε > 0 is arbitrary, (T ∗ϕµ)(E) ≥ µ(E) follows.

Step 3. When E ⊂ H is a finite union of open sets of the form O1 × O2

for open sets O1 ⊂ ∂hX and open intervals O2 ⊂ R, E is a disjoint union of
finitely many Borel subsets of the form A×B, where A ⊂ ∂hX is Borel and
B ⊂ R is an interval. Hence, (T ∗ϕµ)(E) ≥ µ(E) follows from Step 2.

Step 4. When E ⊂ H is an open set, E is a countable union of open sets
of the form O1 × O2 for open sets O1 ⊂ ∂hX and open intervals O2 ⊂ R.
Hence, (T ∗ϕµ)(E) ≥ µ(E) follows from Step 3.

Step 5. Finally, suppose that E ⊂ H is a Borel subset. Then it follows
from Step 4 and the outer regularity of µ and T ∗ϕµ that

(T ∗ϕµ)(E) ≥ µ(E).

Now we have shown Equation (7.9). Hence, we can consider the Radon–

Nikodym derivative dµ
dT ∗ϕµ

. Since both µ and T ∗ϕµ are Γ-invariant, dµ
dT ∗ϕµ

is

Γ-invariant as well. By Γ-ergodicity of T ∗ϕµ, dµ
dT ∗ϕµ

is constant T ∗ϕµ-a.e., which
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must be positive. Hence, there exists λ ∈ R such that
dT ∗ϕµ

dµ = eλ µ-a.e., and

moreover, λ ≥ 0 by Equation (7.9). This completes the proof. �

7.6. Proof of the rigidity. Let us now prove Theorem 7.4.

Proof of Theorem 7.4. By ergodic decomposition, it suffices to consider a
Γ-invariant ergodic Radon measure µ on H supported on Λc(Γ)× R.

Let

A :=

ß
a ∈ R : ∃λ(a) ∈ R such that

dT ∗aµ

dµ
= eλ(a) a.e.

™
.

It is straightforward that A is an additive subgroup of R and λ : A → R is
an additive homomorphism. Moreover, by Theorem 7.10,

Specsq(Γ) ⊂ A.

Hence, it follows from non-arithmeticity of Specsq(Γ) that A ⊂ R is dense.

Claim. There exists δ ≥ 0 such that

λ(a) = δ · a for all a ∈ A.

To see this claim, choose a nonzero a ∈ A and set δ := λ(a)/a. By
Theorem 7.10, we can choose a ∈ A so that δ ≥ 0. It suffices to show that
for every nonzero a′ ∈ A, λ(a′)/a′ = δ as well. There are two cases.

(1) If a and a′ are are commensurable, i.e., ma = na′ for some m,n ∈ Z,
then the conclusion follows from

mλ(a) = λ(ma) = λ(na′) = nλ(a′).

(2) If a and a′ are not commensurable, then suppose to the contrary
that δ′ := λ(a′)/a′ is distinct from δ.

Let R > 0 be large enough so that O := ∂hX × (−R,R) satisfies
0 < µ(O) < +∞. Let K ⊂ O be an arbitrary compact subset. Then
there exists ε > 0 such that K ⊂ ∂hX × (−R− ε, R+ ε).

Since a and a′ are not commensurable and δ 6= δ′, there exist
N,M ∈ Z such that N > εδ+1

|a′||δ−δ′| and |Ma−Na′| < ε. Then setting

s := Ma−Na′ ∈ A, we have

|λ(s)| = |Mλ(a)−Nλ(a′)|
= |(Ma−Na′)δ + (δ − δ′)Na′|
≥ |δ − δ′||a′|N − εδ > 1.

Replacing s with −s if necessary, we may assume that λ(s) > 1.
Then we have

µ(O) ≥ µ(TsK) = (T ∗s µ)(K) = eλ(s)µ(K) > eµ(K).

Since K ⊂ O is arbitrary, we have µ(O) ≥ eµ(O), which is absurd.
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Therefore, the claim follows.

Now consider an arbitrary a ∈ R. Since A ⊂ R is dense, there exists a
sequence {ai}i∈N ⊂ A converging to a. Let U ⊂ H be an open subset and
K ⊂ U a compact subset. Then for all large i ∈ N, TaiK ⊂ TaU , and hence

µ(TaU) ≥ µ(TaiK) = eλ(ai)µ(K) = eδaiµ(K).

Taking the limit i → +∞, we have µ(TaU) ≥ eδaµ(K). Since K ⊂ U is
arbitrary, this implies µ(TaU) ≥ eδaµ(U). By the same argument, we also
have µ(U) ≥ e−δaµ(TaU). Hence, we have (T ∗aµ)(U) = eδtµ(U). Since this
holds for any open subset U ⊂ H, we have

T ∗aµ = eδt · µ.

This implies that there exists a finite Borel measure ν0 on ∂hX so that µ is
decomposed on H = ∂hX × R as follows:

dµ(ξ, t) = eδt · dν0(ξ) dt.

By the Γ-invariance of µ, it is easy to see that for each g ∈ Γ,

dg∗ν0

dν0
(ξ) = e−δβξ(gx0,x0) for ν0-a.e. ξ ∈ ∂hX.

Then for x ∈ X, define the measure νx on ∂hX by setting

dνx(ξ) :=
e−δβξ(x,x0)

ν0(∂hX)
dν0(ξ).

This is well-defined, and moreover the family {νx}x∈X is a δ-dimensional
conformal density of Γ. Since {νx}x∈X is supported on Λc(Γ), δ = δΓ and
that Γ is of divergence type as a result of the generalized Hopf–Tsuji–Sullivan
dichotomy ([Cou24, Corollary 4.25], [Yan24, Theorem 1.14]). Therefore,

µ =
1

ν0(∂hX)
· µΓ,

which completes the proof. �

8. Existence of ergodic invariant Radon measures

We continue the setting of Section 7. In this section, we prove the er-
godicity of the invariant Radon measure defined in Definition 7.1. This was
stated as Theorem 1.7 in the introduction.

Theorem 8.1. Let Γ < Isom(X) be a non-elementary subgroup with non-
arithmetic squeezing spectrum. If Γ is of divergence type, then

the Γ-action on (H, µΓ) is ergodic.

Moreover, µ is supported on Λc(Γ)×R ⊂ H. Furthermore, up to scalar, µ is
the unique Γ-invariant Radon measure on H that is supported on Λc(Γ)×R.
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Note that µ being supported on Λc(Γ)×R is due to Coulon [Cou24] and
Yang [Yan24] (Proposition 6.6). In addition, the unique ergodicity follows
from Theorem 7.4, once we show the ergodicity. Hence, it suffices to show
that µΓ is Γ-ergodic. This is a special case of the following, together with
Proposition 6.9:

Theorem 8.2. Let Γ < Isom(X) be a non-elementary subgroup of diver-
gence type. Let Γ0 / Γ be a normal subgroup such that

• Specsq(Γ0) is non-arithmetic and

• the Γ0-action on ∂hX is ergodic with respect to the δΓ-dimensional
conformal density of Γ.

Then,

the Γ0-action on (H, µΓ) is ergodic.

To prove the ergodicity, we consider the notion of essential subgroups,
which was introduced by Schmidt [Sch77]. For a conformal density ν =
{νx}x∈X , all measures in the family ν are in the same measure class. Hence,
in discussing positivity of a Borel subset, we simply use the notation ν.

Definition 8.3. Let Γ < Isom(X) and let ν be a conformal density of Γ.
We define the subset Eν(Γ) ⊂ R as follows: a ∈ Eν(Γ) if for each ε > 0 and
a Borel subset E ⊂ ∂hX with ν(E) > 0, there exists g ∈ Γ such that

ν
Ä
E ∩ gϕg−1E ∩ {ξ ∈ ∂hX : |βξ(x0, gϕg

−1x0)− a| < ε}
ä
> 0.

It is easy to see that Eν(Γ) is a closed subgroup of R. We call Eν(Γ) the
essential subgroup for Γ and ν.

The size of the essential subgroup plays a role of criterion for the ergodicity
of actions onH. The following was proved in [Sch77] for abstract measurable
dynamical systems, and more direct proof for a particular case of CAT(−1)
spaces was given in [Rob03]. The same proof works in our setting as well.

Proposition 8.4 ([Sch77], [Rob03, Proposition 2.1]). Let Γ < Isom(X) and
let ν be a conformal density of Γ. Then the Γ-action on (H, µν) is ergodic
if and only if the Γ-action on (∂hX, ν) is ergodic and Eν(Γ) = R.

In this perspective, the following is the main step in the proof of Theo-
rem 8.2, which was proved by Roblin [Rob03] when X is CAT(−1). The
CAT(−1) property was crucially used in [Rob03] to have a nice visual met-
ric on the boundary that guarantees Vitali covering relation of a specific
form. In our setting, the lack of Gromov hyperbolicity is an obstruction to
consider such a visual metric, and hence we present another proof that does
not require metrizing the boundary.

Lemma 8.5. Let Γ < Isom(X) be a non-elementary subgroup of divergence
type and ν a δΓ-dimensional conformal density of Γ. Let ϕ ∈ Γ be a squeezing
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isometry. Then for each ε > 0 and a Borel subset E ⊂ ∂hX with ν(E) > 0,
there exists g ∈ Γ such that

ν
Ä
E ∩ gϕg−1E ∩ {ξ ∈ ∂hX : |βξ(x0, gϕg

−1x0)− τϕ| < ε}
ä
> 0.

In particular, if Γ0 / Γ is a normal subgroup, then

Specsq(Γ0) ⊂ Eν(Γ0).

Proof. Let C = C(ϕ) > 0 be as in Lemma 5.9. By Proposition 6.6, ν is
supported on Λϕ,C(Γ). Together with the inner regularity of ν, it suffices to
consider compact subsets of Λϕ,C(Γ).

Let K ⊂ Λϕ,C(Γ) be a compact subset and let ε be a positive number
smaller than τϕ. Suppose that for each g ∈ Γ,

ν
Ä
K ∩ gϕg−1K ∩ {ξ ∈ ∂hX : |βξ(x0, gϕg

−1x0)− τϕ| < ε}
ä

= 0.

Our goal is to show ν(K) = 0.
To do this, let O ⊂ ∂hX be an open subset containing K. We will then

construct a Borel subset E(O) ⊂ O such that

(8.1) ν(K ∩ E(O)) = 0 and ν(E(O)) ≥ e−2δΓτϕ · ν(K).

Before we proceed, let us see how this leads to our goal. Suppose that we
have constructed E(O). By ν(E(O) r K) ≥ e−2δΓτϕ · ν(K) and the inner
regularity, there exists a compact subset K(O) ⊂ E(O) rK such that

ν(K(O)) ≥ 0.5e−2δΓτϕ · ν(K).

In particular, K(O) is disjoint from both K and ∂hX r O. Now we induc-
tively define

K1 := K
Ä
∂hX
ä

and Ki := K
Ä
∂hX r (K1 ∪ · · · ∪Ki−1)

ä
for i ∈ N.

Then Ki’s are pairwise disjoint subsets with ν(Ki) ≥ e−2δΓτϕ · ν(K) for all
i ∈ N. Since ν is finite, we must have ν(K) = 0.

Hence, it remains to find a set E(O) ⊂ O satisfying Equation (8.1). We
revisit the proof of Theorem 7.10, considering the cover U and its subcollec-
tion V for K and O. Especially, for l ∈ N, we consider Cl ⊂ O in Equation
(7.10) and the restriction Fl = gi(l)ϕg

−1
i(l) : Cl → ∂hX of the map in Equation

(7.16), where gi(l) ∈ Γ is given there.
We now see that

E(O) :=
⋃
l∈N

Fl(Cl ∩K)

satisfies Equation (8.1). First, note that
⋃
l∈N Fl(Cl ∩K) ⊂

⋃
l∈NCl ⊂ O by

Equation (7.17).
It follows from (7.18) that for each l ∈ N,

(8.2) Fl(Cl) ⊂
¶
ξ ∈ ∂hX : |βξ(x0, gi(l)ϕg

−1
i(l)x0)− τϕ| < ε

©
.
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We then have

K ∩ Fl(Cl ∩K)

⊂ K ∩ gi(l)ϕg−1
i(l)K ∩

¶
ξ ∈ ∂hX : |βξ(x0, gi(l)ϕg

−1
i(l)x0)− τϕ| < ε

©
and hence our hypothesis on K implies ν(K ∩ Fl(Cl ∩K)) = 0. Therefore,

ν

(
K ∩

⋃
l∈N

Fl(Cl ∩K)

)
= 0,

showing the first claim in Equation (8.1).
Now it remains to estimate ν

(⋃
l∈N Fl(Cl ∩K)

)
. By Equation (8.2) and

ε < τϕ, we have for each l ∈ N that

ν(Fl(Cl ∩K)) =

∫
Cl∩K

e
−δΓβξ(gi(l)ϕ−1g−1

i(l)
x0,x0)

dν(ξ) ≥ e−2δΓτϕν(Cl ∩K).

By Equation (7.17), we also have that Fl(Cl ∩ K)’s are pairwise disjoint.
Therefore,

ν

(⋃
l∈N

Fl(Cl ∩K)

)
=
∑
l∈N

ν(Fl(Cl ∩K))

≥ e−2δΓτϕ
∑
l∈N

ν(Cl ∩K) ≥ e−2δΓτϕ · ν

(⋃
l∈N

(Cl ∩K)

)
Since K ⊂

⋃
l∈NCl as in Equation (7.10), this implies

ν

(⋃
l∈N

Fl(Cl ∩K)

)
≥ e−2δΓτϕ · ν(K).

Therefore, the second claim in Equation (8.1) follows. �

Proof of Theorem 8.2. Let ν be the δΓ-dimensional conformal density of Γ.
By Lemma 8.5, Specsq(Γ0) ⊂ Eν(Γ0). Since Specsq(Γ0) is non-arithmetic and
Eν(Γ0) is a closed subgroup of R, we have Eν(Γ0) = R. By the assumption
that the Γ0-action on (H, ν) is ergodic, it follows from Proposition 8.4 that
the Γ0-action on (H, µν) is ergodic. By definition, µν = µΓ, and hence this
completes the proof. �

9. Subgroups of mapping classs groups and
measure classification

In the rest of this paper, let S be a connected orientable surface of genus
g and with p punctures with 3g − 3 + p ≥ 1. We apply results in previous
sections to the case that X is the Teichmüller space T = T (S). In this
section, we deduce Theorem 1.2, Theorem 1.3, and Theorem 1.4.



INVARIANT RADON MEASURES ON ML 49

9.1. Non-elementary subgroups of the mapping class group. For
Γ < Mod(S), Γ is non-elementary if and only if Γ contains two pseudo-
Anosov mapping classes with disjoint sets of fixed points in the Thurston
boundary PML. Since the axis of a pseudo-Anosov mapping class is squeez-
ing as in Proposition 4.1, a non-elementary subgroup Γ < Mod(S) is a non-
elementary subgroup Γ < Isom(T ) with a squeezing isometry in the sense
of Definition 5.10.

In fact, it follows from the Nielsen–Thurston classification that the class
of pseudo-Anosov mapping calsses are precisely the class of squeezing isome-
tries in Mod(S). Hence, the following gives the non-arithmeticity of squeez-
ing spectra:

Theorem 9.1 (Non-arithmeticity, [GM23, Theorem 4.1]). Let Γ < Mod(S)
be a non-elementary subgroup. Then

SpecpA(Γ) := {dT -translation length of ϕ : ϕ ∈ Γ, ϕ is pseudo-Anosov}

generates a dense additive subgroup of R.

The notion of divergence-type is defined similarly. Fixing a basepoint
x0 ∈ T , the Poincaré series of a non-elementary subgroup Γ < Mod(S) is

PΓ(s) :=
∑
g∈Γ

e−sdT (x0,gx0).

Since Mod(S) has exponentially bounded growth [KM96, Theorem 1.3.2]
and contains a free subgroup [McC85, Theorem B], there exists 0 < δΓ <
+∞ such that PΓ(s) diverges for s < δΓ and converges for s > δΓ.

We call δΓ the critical exponent of Γ. If PΓ(δΓ) = +∞, we say that Γ is
of divergence type. Otherwise, Γ is of convergence type.

9.2. Ergodicity and Unique ergodicity. We first deduce Theorem 1.2
and Theorem 1.3 from our theory in Section 5, Section 6, Section 7, and
Section 8, by setting (X, d) = (T , dT ). We keep fixing a basepoint x0 ∈ T .

Given a non-elementary subgroup Γ < Mod(S), recall the notion of re-
currence locus for Γ from the introduction:

RΓ :=

ß
ξ ∈ML :

Teichmüller geodesic ray given by qξ ∈ Q(S, x0)
recurs to a compact subset in Γ\T

™
where qξ ∈ Q(S, x0) is the holomorphic quadratic differential corresponding
to ξ ∈ML, given by the Hubbard–Masur theorem.

In terms of the Hubbard–Masur coordinates we introduced in Section 3.2,
it follows from the Masur criterion [Mas92, Theorem 1.1] that

HM(RΓ) ⊂ UE × R.

Recall that UE sits in both PML and ∂GMT , with the same topology
[Miy13, Theorem 2]. Hence, UE × R sits in both PML× R 'ML via the
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Hubbard–Masur coordinates and ∂GMT ×R ' ∂hT ×R via the coordinates
in Section 3.3. That means, the identification

ι : UE × R ⊂ML → UE × R ⊂ ∂hT × R = H
is a homeomorphism. Hence, a Borel measure µ onML supported on UE×R
can be viewed as Borel measures on ∂hT × R supported on UE × R. Note
that ι preserves the R-coordinate. Combining altogether, we have that

(9.1) (ι ◦HM)(RΓ) = Λc(Γ)× R ⊂ H,
Furthermore, if µ is locally finite onML, then ι∗µ is also locally finite on

∂hT ×R. Indeed, for a compact subset K ⊂ ∂hT ×R, the set {t : (ξ, t) ∈ K∩
(UE×R)} is bounded. This implies that the ι−1(K∩(UE×R)) is precompact,
as it sits in PML× [−R,R] for some large R > 0. If µ(ι−1(K ∩ (UE ×R)))
is assumed to be finite, then ι∗µ(K) is finite as well. In conclusion, locally
finite measures on ML supported on UE × R are also locally finite when
viewed on ∂hT × R. Since ∂hT × R is Polish, such measures are Radon.

Hence, if Γ is of divergence type, then we can pullback the measure µΓ on
Λc(Γ) × R defined in Definition 7.1, via the embedding ι ◦ HM. This gives
the measure on RΓ which is the same as the one constructed in Section 1.4,
also denoted by µΓ abusing the notation.

Therefore, together with the non-arithmeticity in Theorem 9.1, the er-
godicity (Theorem 1.2) and the unique ergodicity (Theorem 1.3) follow from
Theorem 8.1 and Theorem 7.4 respectively. Note that as in Theorem 8.2,
an analogous ergodicity theorem for normal subgroups can also be deduced.

9.3. Convex cocompact subgroups of the mapping class group. In
[FM02], B. Farb and L. Mosher introduced the following notion:

Definition 9.2. A finitely generated subgroup Γ < Mod(S) is called convex
cocompact if Γ has a quasi-convex orbit in T .

Some important features of convex cocompact subgroups are as follows:

Theorem 9.3 ([FM02, Theorem 1.1]). Let Γ < Mod(S) be a convex cocom-
pact subgroup. Then

(1) Γ is a hyperbolic group,
(2) there exists a Γ-equivariant embedding

∂Γ ↪→ UE ⊂ PML
where ∂Γ denotes the Gromov boundary of Γ, and

(3) denoting by Λ(Γ) ⊂ UE the image of the embedding in (2), Γ acts
cocompactly on its weak-hull WH(Γ) ⊂ T , the union of all bi-infinite
Teichmüller geodesics with endpoints in Λ(Γ).

We now discuss the divergence-type of non-elementary convex cocompact
subgroups. Theorem 9.3 asserts that every non-elementary convex cocom-
pact subgroup Γ < Mod(S) is Gromov hyperbolic when endowed with either
a word metric or the Teichmüller metric on its orbit. By [Coo93, Théorème
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7.2], Γ has purely exponential growth, i.e., there exists C > 1 (depending on
the choice of the basepoint x0) such that

1

C
eδΓr ≤ #{g ∈ Γ : dT (x0, gx0) < r} ≤ CeδΓr for all r > C.

This implies that Γ is of divergence type. In fact, Gekhtman studied in
[Gek13] the finiteness and the mixing property of the Bowen–Margulis–
Sullivan measure associated with Γ. As a result, he obtained that the
quantity e−δΓ#{g ∈ Γ : dT (x0, gx0) < r} converges to a finite limit as r
tends to infinity.

In addition, it follows from the work of McCarthy–Papadopoulos [MP89]
that the set Λ(Γ) ⊂ PML is the unique minimal subset of Γ, and moreover
the Γ-action on the complement PMLrΛ(Γ) is properly discontinuous. In
this regard, the set Λ(Γ) ⊂ PML can be viewed as the limit set of Γ.

Furthermore, the cocompactness in Theorem 9.3(3) and the embedding
in Equation (9.1) give a characterization of the recurrence locus for Γ:

(9.2) RΓ = {ξ ∈ML : [ξ] ∈ Λ(Γ)}.

Hence, the proper discontinuity of the Γ-aciton on PML r Λ(Γ) implies
that the Γ-action on MLrRΓ is properly discontinuous as well. Thus any
Γ-invariant ergodic measure onMLrRΓ is a counting measure on a single
Γ-orbit, up to a constant multiple. Since Γ is of divergence type, Theorem
1.4 follows from Theorem 1.3.

10. Classification of orbit closures

In this section, we prove the following classification of orbit closures:

Theorem 10.1. Let Γ < Mod(S) be a non-elementary convex cocompact
subgroup. Then for each ξ ∈ML, either

Γ · ξ is discrete or Γ · ξ = RΓ.

More precisely,

• if ξ /∈ RΓ, then Γ · ξ is discrete.
• if ξ ∈ RΓ, then Γ · ξ = RΓ.

As mentioned earlier, the Γ-action on PML r Λ(Γ) is properly discon-
tinuous [MP89]. Hence, in the viewpoint of the characterization of RΓ in
Equation (9.2), it suffices to show that the Γ-action on RΓ is minimal.

We do this by adjusting a standard argument of classifying horospher-
ical orbit closures for Kleinian groups, which is based on nice shapes of
horospheres in hyperbolic spaces. As we do not have such a well-shaped
horosphere in the Teichmüller space, we use a recent theory of exapnd-
ing coarse cocycles for convergence group actions by Blayac–Canary–Zhu–
Zimmer [BCZZ24] and an interpretation of the action of convex cocompact
subgroups as expanding coarse cocycles given by the second author and
Zimmer [KZ25].



52 INHYEOK CHOI AND DONGRYUL M. KIM

From the viewpoint of the characterization in Equation (9.2) and the
discussion in Section 5.6, the minimality of the Γ-action on RΓ follows once
we show that the Γ-action on Λ(Γ)× R given by

g · (ξ, t) = (gξ, t+ βξ(g
−1x0, x0))

is minimal, recalling that x0 ∈ T is a fixed basepoint.
Given a pseudo-Anosov g ∈ Mod(S), we denote by g+, g− ∈ PML its

attracting and repelling fixed points, respectively.

Lemma 10.2. For each (ξ, t) ∈ Λ(Γ)×R and a pseudo-Anosov g ∈ Γ, there

exists s ∈ R such that (g+, s) ∈ Γ · (ξ, t) or (g−, s) ∈ Γ · (ξ, t).

Proof. By Theorem 9.3(3), there exists a sequence {gn}n∈N ⊂ Γ such that
gnx0 → ξ within a bounded neighborhood of a Teichmüller geodesic ray
towards ξ ∈ UE . This implies

(10.1) βξ(gnx0, x0)→ −∞ as n→ +∞.
This also implies the conical convergence in the Cayley graph of a hy-

perbolic group Γ, identifying ∂Γ = Λ(Γ) by Theorem 9.3(2). After passing
to a subsequence, we may assume that g−1

n ξ converges to some ζ ∈ Λ(Γ).
Suppose first that g− 6= ζ.

Fix an open neighborhood U ⊂ Λ(Γ) of ζ such that g− /∈ U . Then there
exists a compact subset K in the Cayley graph of Γ such that every bi-
infinite geodesic with endpoints g− ∈ ∂Γ and a point in U intersects K.
Passing to a subsequence, we may assume that g−1

n ξ ∈ U for all n ∈ N. This
implies

(10.2) sup
k,n∈N

|βg−1
n ξ(g

−kx0, x0)− d(g−kx0, x0)| < +∞

(see [KZ25, Proposition 12.6] and [BCZZ24, Section 5] for details).
Observe that for k, n ∈ N,

gkg−1
n (ξ, t) = (gkg−1

n ξ, t+ βξ(gnx0, x0) + βg−1
n ξ(g

−kx0, x0)).

Then by Equation (10.2), for each n ∈ N, we can choose kn ∈ N so that the
sequence

t+ βξ(gnx0, x0) + βg−1
n ξ(g

−knx0, x0) is bounded.

By Equation (10.1), we also have kn → +∞ as n→ +∞.
After passing to a subsequence, we can set

s := lim
n→+∞

(
t+ βξ(gnx0, x0) + βg−1

n ξ(g
−knx0, x0)

)
.

Since g−1
n ξ ∈ U and g− /∈ U , we have

gkng−1
n ξ → g+ as n→ +∞.

This finishes the proof in this case.
If g− = ζ, then we have g+ 6= ζ. Hence, we can apply the same argument

replacing g with g−1 and this completes the proof. �
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Proof of Theorem 10.1. For each s ∈ R, consider the map

as : Λ(Γ)× R→ Λ(Γ)× R
(ξ, t) 7→ (ξ, t+ s)

which gives the R-action on Λ(Γ)×R, commuting with the Γ-action. Hence,
we can consider it as a right R-action. Note that this was denoted by Ts in
Section 7.5; we use the new notation to consider it as an action on the right.

To prove the desired minimality, we fix (ξ, t) ∈ Λ(Γ)×R and ε > 0. By the
non-arithmeticity in Theorem 9.1, there exist pseudo-Anosovs g1, . . . , gk ∈ Γ
such that the additive subgroup 〈τg1 , . . . , τgk〉 ⊂ R generated by their dT -
translation lengths is ε-dense.

By Lemma 10.2, after replacing g1 with g−1
1 if necessary, we have

(g+
1 , s1) ∈ Γ · (ξ, t) for some s1 ∈ R.

Then for every j ∈ Z,

gj1(g+
1 , s1) = (g+

1 , s1 + βg+
1

(g−j1 x0, x0)) = (g+
1 , s1 + jτg1) = (g+

1 , s1)ajτg1

belongs to Γ · (g+
1 , s1) ⊂ Γ · (ξ, t). This implies

Γ · (g+
1 , s1)a〈τg1 〉 ⊂ Γ · (ξ, t).

Applying the same argument to Γ · (g+
1 , s1), we inductively obtain that for

some sk ∈ R,

Γ · (g+
k , sk)a〈τg1 ,...,τgk 〉 ⊂ Γ · (ξ, t).

Now let (ζ, s) ∈ Λ(Γ) × R be arbitrary. Since the Γ-action on Λ(Γ) is
minimal, there exists a sequence {hn}n∈N ⊂ Γ such that hng

+
k → ζ as

n → +∞. Since 〈τg1 , . . . , τgk〉 is ε-dense, for each n ∈ N, there exists tn ∈
〈τg1 , . . . , τgk〉 such that

|s− (sk + βg+
k

(h−1
n x0, x0) + tn)| < ε.

Hence, after passing to a subsequence, the sequence hn(g+
k , sk)atn converges

to (ζ, s′) ∈ Γ · (ξ, t) for some s′ ∈ R with |s − s′| ≤ ε. Since this holds for

each ε > 0, we have (ζ, s) ∈ Γ · (ξ, t). This finishes the proof. �
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