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Abstract. Let G be an acylindrically hyperbolic group. We prove that
Bernoulli bond percolation on every Cayley graph of G has a nonunique-
ness phase, in which there are infinitely many infinite clusters. This gen-
eralizes Hutchcroft’s result for Gromov hyperbolic graphs to relatively
hyperbolic groups, mapping class groups and rank-1 CAT(0) groups for
example.
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1. Introduction

In geometric group theory, groups are often studied as a geometric ob-
ject. Some groups resemble Zd while some others resemble free groups and
surface groups. In between them there is a varying degree of hyperbolicity.
Here, the notion of hyperbolicity can either be phrased internally using the
Dehn function, small cancellation or the prevalence of Morse elements, or by
using the group action on hyperbolic spaces, e.g., word hyperbolicity, rela-
tive hyperbolicity, hierarchical hyperbolicity and acylindrical hyperbolicity.
For an overview in this aspect, we refer to M. Bestvina’s survey [Bes23].
There have been efforts to study these hyperbolicity of groups by means
of stochastic processes such as random walks and Markov chains ([Sis18],
[MT18], [MS20], [GS21]).

On the other hand, groups naturally arise in probability theory as sources
of many homogeneous graphs with vertex-transitive automorphism group.
In this paper, we study percolation in groups. It was classically studied for
Euclidean lattices Zd in relation to physical situations where liquid passes
through a porous medium. I. Benjamini and O. Schramm considered its
generalization to Cayley graphs of groups and sketched the general landscape
of the expected phenomena [BS96]. See also papers by I. Benjamini, R.
Lyons, Y. Peres and O. Schramm ([BLPS99b], [BLPS99a]).

Given a connected, locally finite (simplicial) graph Γ, Bernoulli bond per-
colation on Γ is defined by endowing independent Bernoulli random variables
with expectation p to the edges. Edges whose Bernoulli RV takes value 0
are deleted, and those with Bernoulli RV taking value 1 are retained. We
can then ask how the connected components, i.e., clusters, of the resulting
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random subgraph Γ[p] are shaped. To this end, we define two parameters,
called the critical parmeter

pc = pc(Γ) := inf {p ∈ [0, 1] : Γ[p] contains an infinite cluster almost surely} .

and the uniqueness threshold

pu = pu(Γ) := inf {p ∈ [0, 1] : Γ[p] contains a unique infinite cluster almost surely} .

See Subsection 2.1 for further basics of the percolation theory.
Benjamini and Schramm posed several conjectures regarding percolation

in the Cayley graphs of groups beyond Zd. Among them is the following:

Conjecture 1.1 ([BS96, Conjecture 6]). A connected, locally finite, quasi-
transitive graph Γ is non-amenable if and only if pc(Γ) < pu(Γ).

See [HJ06] for an overview of this conjecture.
Let us list some facts for the context. Given a connected graph Γ, we

have 0 ≤ pc ≤ pu ≤ 1 by definition. It is a fact that for each p > pc,
the random graph Γ[p] almost surely has an infinite cluster. When Γ is
quasi-transitive in addition, for each p > pu the random graph Γ[p] almost
surely has a unique infinite cluster. This is due to O. Häggström and Y.
Peres [HP99] for unimodular cases, and due to R. H. Schonmann [Sch99]
in general (see also [HPS99]). Lastly, C. M. Newman and L. S. Schulman
proved in [NS81] for quasi-transitive Γ that, for each p ∈ (0, 1) there exists
N∞(p) ∈ {0, 1,+∞} such that the number of infinite clusters in Γ[p] is
almost surely N∞(p).

Hence for quasi-transitive graphs, N∞(p) = 0 almost surely for p < pc,
N∞(p) = +∞ almost surely for pc < p < pu and N∞(p) = 1 almost surely
for p > pu. In particular, if pc < pu then there exists (uncountably many) p
such that Γ[p] has infinitely many infinite clusters almost surely.

Now, for non-amenable quasi-transitive graphs, it is known thatN∞(pc) =
0 almost surely. This is due to I. Benjmaini, R. Lyons, Y. Peres and O.
Schramm [BLPS99b, Theorem 1.1] and is generalized by T. Hutchcroft to
graphs with exponential growth [Hut16, Theorem 1.2]. Hence, for a non-
amenable quasi-transitive graph, pc < pu if and only if N∞(p) = +∞ for
some (countably many) p’s.

Let us go back to the conjecture. The equality pc(Zd) = pu(Zd) was ob-
served by M. Aizenman, H. Kesten and C. M. Newman [AKN87], and by
R. M. Burton and M. Keane [BK89]. A. Gandolfi, M. S. Keane and C. M.
Newman observed in [GKN92] that Burton and Keane’s method general-
izes to amenable graphs. Hence, the only nontrivial direction is the “only
if” direction. A significant breakthrough was made by T. Hutchcroft, who
showed the conjecture for non-amenable quasi-transitive graphs that admit
an action by a non-unimodular group [Hut20b]. We note that the first ex-
ample of a quasi-transitive graph Γ for which all the three cases—N∞ = 0,
N∞ = ∞ and N∞ = 1—take place was the direct product of trees and Z,
which admits a non-unimodular automorphism group [GN90].
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Hence, the remaining case is non-amenable graphs with unimodular au-
tomorphism groups. The most natural examples in this category are Cayley
graphs of non-amenable groups.

We thus focus on Cayley graphs of non-amenable groups. Let G be a
group with a finite generating set S. The Cayley graph Γ(G,S) consists of
the vertex set G and the edge set {vw : ∃s ∈ S ∪ S−1 : v = ws}. The group
G naturally acts as graph automorphisms and the action is vertex transitive,
i.e., for each v, w ∈ V (Γ) = G there exists g ∈ G such that gv = w. The
action is also vertex-faithful, i.e., each vertex has trivial stabilizer.

A strong evidence for Conjecture 1.1 is given by I. Pak and T. Smirnova-
Nagnibeda [PSN00], who proved that every non-amenable group has a Cay-
ley graph for which pc < pu. One can then ask if there are groups all of
whose every Cayley graph satisfy Conjecture 1.1.

In this regard, Hutchcroft showed that the non-uniqueness phase exists
for every Cayley graph of non-amenable word hyperbolic groups [Hut19]. In
fact, Hutchcroft proved the result for more general quasi-transitive Gromov
hyperbolic graphs, by using the Bonk-Schramm embedding of such graphs
into a real hyperbolic space Hd.

The main point of this paper is to generalize Hutchcroft’s result to other
non-amenable groups. Namely, we have:

Theorem A. Let G be an acylindrically hyperbolic group and let Γ be its
Cayley grpah. Then we have pc(Γ) < pu(Γ); in particular, there exist un-
countably many p ∈ (0, 1) such that Γ[p] has infinitely many infinite clusters.

Acylindrically hyperbolic groups encompass word hyperbolic groups, rel-
atively hyperbolic groups and many other groups that act on a Gromov
hyperbolic space in a nontrivial way. These groups have shown to exhibit
interesting dynamical and group-theoretical properties, ([BF02], [Ham08],
[DGO17]), as well as probabilistic behaviour ([Sis18], [MS20], [Cho25]), that
are shared with word hyperbolic groups. We list some examples of acylin-
drically hyperbolic groups:

• (non-elementary) relatively hyperbolic groups;
• non-elementary Kleinian groups (possibly with Zd subgroups);
• free products of nontrivial groups;
• the mapping class group of a finite-type hyperbolic surface;
• the outer automorphism group Out(Fn) of the free group Fn;
• the automorphism group Aut(G) of a hyperbolic group G;
• rank-1 CAT(0) groups such as irreducible CAT(0) cubical groups,
• many Artin groups and 3-manifold groups.

We refer readers to D. Osin’s survey [Osi16] for more details.
Fix a vertex v ∈ G. We denote by χp(v) the expected size (the number

of vertices) of the cluster of v. This does not depend on the choice of v
in the case of Cayley graphs, so we will drop v and write χp. Note that
χp < +∞ for p < pc and χp & (pc − p)−1 are by M. Aizenman and C. M.
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Newman [AN84, Proposition 3.1]. In the course of the proof, we show that
χp . (pc − p)−1, following Hutchcroft’s criterion.

Theorem B. Let G and Γ be as in Theorem A. Then at pc = pc(Γ), we
have ∆pc(Γ) < +∞.

This triangle diagram is intimately related to the mean-field critical be-
havior. We rely on Hutchcroft’s L2-boundedness criterion, which also has
some other implications on the mean-field critical behavior. We refer to
[Hut19] and [Hut20a] for these.

1.1. The hitchhicker’s guide to the nonuniqueness. This paper is con-
cerned with probabilistic phenomena on geometric objects that entail hyper-
bolicity. Luckily, probabilistic ingredients were already given by Hutchcroft
[Hut19]. Namely, the gap pc < pu and the triangle diagram bound ∆pc <
+∞ follow from Equation 2.1 and 2.2. Theorem 2.8 and 2.16 provide a way
to guarantee these equations. The rest of the paper will focus on the proof
that acylindrically hyperbolic groups satisfy the assumptions of Theorem
2.8 and 2.16.

Thus, for readers familiar with the theory of acylindrically hyperbolic
groups, the quickest way to read this paper is as follows:

(1) read Definition 2.10 and 2.12,
(2) read Theorem 2.8 and Theorem 2.16,
(3) read Section 5 and study Proposition 5.1,
(4) read Section 6 and study Proposition 6.1, and
(5) read Section 7 and combine Proposition 7.7, 7.10 and 7.12.

Notwithstanding, we recommend the readers to read from Section 2 to
Section 7. This is because:

• Section 2 contains the basics of percolation theory and overview of
Hutchcroft’s theory. This helps understand Theorem 2.8 and Theo-
rem 2.16.
• Subsection 2.3 describes in detail the intuition behind our strategy.
• Section 3 provides necessary hyperbolic geometry.
• Section 4 gives a different proof of Hutchcroft’s hyperbolic magic

lemma without using Benjamini-Schramm’s Euclidean magic lemma
nor Bonk-Schramm’s embedding theorem. This is not needed for
general acylindrically hyperbolic group but is an important proto-
type containing essential ideas.

Moreover, when restricted to groups acting properly on a Gromov
hyperbolic space, Proposition 4.6 and 6.1 are sufficient for the main
theorem. Hence, readers who are mainly interested in relatively
hyperbolic groups (such as non-elementary Kleinian groups and free
products of groups) may read Section 4 and Section 6 only.
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This paper is mostly self-contained but hides two secret ingredients. First,
Hutchcroft’s approach is eventually based on the analysis of the transfer op-
erator. We invite readers to [Hut19, Section 2] for details of operator analy-
sis. Second, the argument for barriers (Proposition 6.1 and 7.12) can be ex-
plained by the fact that acylindrically hyperbolic groups act on a quasi-tree
that enjoys the bottleneck property, which arises from Bestvina-Bromberg-
Fujiwara’s construction ([BBF15], [BBFS19]).

Acknowledgement. The authors thank Tom Hutchcroft and Alessandro
Sisto for their comments on percolation theory and hyperbolic geometry.

2. Preliminaries I: Probability theory

We assume that readers are familiar with finitely generated groups and
simplicial graphs. When a group G is given a generating set S, we define
the word metric dS as

dS(g, h) := inf
{
n ≥ 0 : ∃s1, . . . , sn ∈ S ∪ S−1[h = gs1 · · · sn]

}
,

‖g‖S := dS(id, g).

2.1. Basics of percolation theory. This subsection is intended as a quick
introduction to percolation theory. We refer to [Gri89] for further details.
Readers who are familiar with percolation theory or want to keep it as a
blackbox can skip this subsection.

Let Γ = (V, E) be a connected simplicial graph. We will focus on the case
that V is countable and Γ has uniformly bounded valence. Let 0 ≤ p ≤ 1.
On the product space Ω = {0, 1}E indexed by edges of Γ, we can endow the
product of Bernoulli measures with expectation p. That means, P(ω ∈ Ω :
ω(e) = 1) = p for each e, and ω(e) and ω(e′) are independent for e 6= e′.
Each ω ∈ Ω gives rise to a graph Γ(ω), which is the subgraph of Γ after
removing those edges e with ω(e) = 0.

When p is small, we remove many edges in probability. Hence the clusters,
the connected components of Γ(ω), are likely to be bounded. One can
imagine that the expected It is convenient to use the notation:

v ↔ω w ⇔ “v and w are connected in Γ(ω)”

for v, w ∈ V. Given v ∈ V we define the cluster

Cω(v) := {w ∈ V : w ↔ω v}.

Then by Fubini’s theorem, we have

Ep #Cω(v) =
∑
w∈V

Pp(v ↔ω w).

By convention, we will write

v ↔ω ∞ ⇔ #Cω(v) = +∞.

(Recall that we focus on locally finite graphs.)
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Note that the space Ω = {0, 1}E and the random graph Γ(ω) ⊆ Γ for ω ∈ Ω
are defined without reference to p. The parameter p affects the underlying
probability measure only. To express the role of p more explicitly, we denote
the random graph by Γ[p] and the underlying measure by Pp.

As we mentioned just before, one can ask if the expected size of clusters
increase as p increases. Furthermore, one can ask if the expected size of
clusters depends on the choice of the root vertex. These questions can be
answered using the following tools.

The space Ω is given a natural order: for ω, ω′ ∈ Ω we write ω ≤ ω′ if
ω(e) ≤ ω(e′) for each e ∈ E . We say that an event A ⊆ Ω is increasing if

∀ω, ω′ ∈ Ω
[
[ω ∈ A ∧ ω ≤ ω′]⇒ ω′ ∈ A

]
.

Standard examples of increasing events include {ω : v ↔ω w} for given
v, w ∈ V, or {ω : v ↔ω +∞} for a given v ∈ V.

Fact 2.1. Let A ⊆ Ω be an increasing event. Then Pp(A) ≤ Pp′(A) holds
for each 0 ≤ p ≤ p′ ≤ 1.

We now state the Harris-FKG inequality, which was first described by T.
E. Harris [Har60] and later generalized by C. M. Fortuin, P. W. Kasteleyn
and J. Ginibre [FKG71]:

Proposition 2.2. [Harris-FKG] Let A,B ⊆ Ω be increasing events. Then

Pp(A ∩B) ≥ Pp(A) · Pp(B)

for each p.

The Harris-FKG inequality can be used, for example, to show that the
average size of clusters does not depend on the choice of the root vertex.

The Harris-FKG inequality looks like a generalization of the strict equality
for independent events. One can ask if the reverse inequality also holds in
certain circumstances. The BK inequality partially explains this.

Given an increasing event A and ω ∈ A, there can be a set W ⊆ {e ∈ E :
ω(e) = 1} ⊆ E such that 1W ⊆ A holds, i.e.,

∀ω′ ∈ Ω
[
∀e ∈W [ω′(e) = 1]⇒ ω′ ∈ A

]
.

In this situation, we call W a witness for A in ω. If W ′ ⊆ W are both
witnesses for E in ω, we say that W ′ is a sub-witness of W .

For example, let v, w ∈ V, let ω ∈ Ω and suppose that there exists a path
(e1, . . . , en) in Γ(ω) connecting v to w. Then this path becomes a witness
for A := {v ↔ w} in ω: {e1, . . . , en} are all given value 1 by ω, and for
ω′ ∈ Ω, ω′(ei) = 1 for each i implies ω′ ∈ A.

Now, for two increasing events A,B ⊆ Ω, we define another measurable
set A ◦B ⊆ Ω, called the disjoint occurrence of A and B, as follows:

A ◦B :=

{
ω ∈ Ω :

ω ∈ A ∩B, ∃witness W ⊆ E for A in ω and
∃witness W ′ ⊆ E for B in ω such that W ∩W ′ = ∅

}
.
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Figure 1. Two configurations from percolation in Z2. In
the left configuration, the path u→↑↑↑→ v and v ↓→↓→↑ w
are disjoint witnesses for A := {u ↔ v} and B := {v ↔
w}, respectively. In the right configuration, there are several
witnesses for the events A and B in ω, but none of them are
disjoint; they all contain Edge (∗).

For example, in Figure 1 shows two different configurations in A∩B, where
A := {u ↔ v} and B := {v ↔ w}. The left configuration lies in A ◦ B,
whereas the right one does not.

We can now state the BK inequality, which is due to J. van den Berg and
H. Kesten [vdBK85].

Proposition 2.3. [BK inequality] Let A,B ⊆ Ω be increasing events for
which every witness has a finite sub-witness. Then for each p we have

Pp(A ◦B) ≤ Pp(A) · Pp(B).

Often, we want a more precise information about the growth of Pp(A) for
a given event A. For this it is beneficial to have a formula for derivatives of
Pp(A). Russo’s formula serves this purpose.

Given an increasing event A ⊆ Ω and w ∈ Ω, we say that e ∈ A is pivotal
for the event A if ω enters A after turning e on, and ω is excluded from A
by turning e off. More formally, e is pivotal for A (given ω) if ωe ∈ A and
ωe /∈ A for

ωe(f) :=

{
1 f = e

ω(f) f ∈ E \ {e} , ωe(f) :=

{
0 f = e

ω(f) f ∈ E \ {e} .

We now record Russo’s formula [Rus81]:

Proposition 2.4. Let A ⊆ Ω be an increasing event. Then(
d

dp

)
+

Pp(A) ≥
∑
e∈E

Pp(e is pivotal for A) =
1

1− p
∑
e∈E

Pp(e is closed and pivotal for A).

Here, (d/dp)+ denotes the lower right Dini derivative.
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We now focus on the percolation in
Pp is G-ergodic: every G-invariant event occurs with probability 0 or 1.
We now define the critical parameter for Γ:

pc = pc(Γ) := inf{p ∈ [0, 1] : Pp(C(id) is infinite) > 0}.

Then all clusters are almost surely finite for p < pc. By ergodicity of Pp
under the G-action, there is almost surely an infinite cluster for p > pc.

We then define the uniqueness threshold for Γ:

pu = pu(Γ) := inf{p ∈ [0, 1] : Pp(there is a unique infinite cluster) > 0}.

For every value of p, the number of infinite clusters is almost surely constant
and is among {0, 1,∞}. Furthermore, the number is infinite for pc < p < pu.
It is a theorem by Häggström, Peres and Schonmann that there is almost
surely a unique infinite cluster for every p > pu.

2.2. Overview of Hutchcroft’s strategy. We now explain Hutchcroft’s
theory in [Hut19]. Throughout, Γ will be a Cayley graph of a finitely gen-
erated group G. This graph is connected, has a uniformly bounded valency
and is vertex-transitive.

Recall that for a given parameter 0 ≤ p ≤ 1 we defined the random graph
Γ[p] by randomly deleting edges from Γ. We define the two-point function

τp(g, h) := Pp(g ↔ h) = Pp(∃path connecting g and h in Γ[p]).

We abbreviate τp(id, g) by τp(g). Then τp(g, h) = τp(g
−1h) for each g, h ∈ G.

We now introduce the triangle diagram

∆p := sup
g∈G

∑
h,k∈G

τp(g, h)τp(h, k)τp(k, g).

We call the expected size of the identity cluster the susceptibility :

χp := Ep[C(id)] =
∑
g∈G

τp(g).

It is a fact that χp < +∞ for 0 ≤ p < pc and limp↗pc χp = +∞.
Let us now define

ιp := 1− sup

{∑
g,h∈K τp(g, h)

χp ·#A
: A ⊆ G finite

}
.

A naive counting shows that ιp ≥ 0 always holds. It is however nontrivial
to show that ιp gets closer to 1 as p↗ pc, which is one of our main goals.

We can now state:

Theorem 2.5 ([Hut19, Proposition 2.7]). Let Γ be a Cayley graph of a
finitely generated group. If

lim inf
p↗pc

pc − p
1− p

χp

√
1− ι2p = 0,

then pc(Γ) < pu(Γ) and ∆pc(Γ) < +∞.
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Hence, we can conclude pc(Γ) < pu(Γ) once we establish

lim sup
p↗pc

(pc − p)χp < +∞,(2.1)

lim
p↗pc

sup

{∑
g,h∈A τp(g, h)

χp ·#A
: A ⊆ G finite

}
= 0.(2.2)

In order to show Equation 2.1, Hutchcroft proved the following for Gro-
mov hyperbolic graph that admits a vertex-transitive action by a unimodular
group. We restrict ourselves to the case of Cayley graphs.

Proposition 2.6 (Supporting Hyperplane Theorem, [Hut19, Corollary 4.3]).
Let G be a non-elementary word hyperbolic group with a finite generating set
S. Then there exists r > 0 such that the following holds.

For each finite set A ⊆ G there exists A′ ⊆ A with #A′ ≥ #A/2 such
that for each u ∈ A′, there exists v ∈ G with dS(u, v) ≤ r such that HG(u, v)
is a proper discrete halfspace with A ⊆ HG(u, v).

This is accompanied by:

Proposition 2.7. Let G be a non-elementary word hyperbolic group with a
finite generating set S. Then there exists R > 0 such that, for each u, v ∈ G
that gives rise to a proper discrete halfspace HG(u, v), there exists g ∈ G
with ‖g‖S ≤ 2dS(u, v) +R such that HG(u, v) and gHG(u, v) are disjoint.

The precise shape of HG(u, v) is not important. We only need that
HG(u, v) is large enough to contain A, but also small enough such that
some reasonably close translates of HG(u, v) do not overlap. Let us put
them in a more abstract language:

Theorem 2.8 ([Hut19, Section 5.1]). Let Γ = Cay(G,S) be the Cayley
graph of a finitely generated group G. Let H = {H(g) : g ∈ G} be a
collection of subsets of G. Suppose that there exists R > 0 such that the
following holds:

For each finite set A ⊆ G there exists A′ ⊆ A with #A′ ≥
#A/2 such that for each a ∈ A′, there exists g, h ∈ G such
that ‖g‖S , ‖h‖S ≤ R, A ⊆ aH(g) and H(g) ∩ hH(g) = ∅.

Then Equation 2.1 holds for Γ.

This is proven in [Hut19, Subsection 5.1] for proper discrete halfspaces in
G. We present Hutchcroft’s proof in Appendix A for completeness.

The proof of Equation 2.2 is more involved. Using Benjamini and Schramm’s
magic lemma for Euclidean spaces, Hutchcroft proved a magic lemma for
real hyperbolic space Hd:

Proposition 2.9 (hyperbolic magic lemma, [Hut19, Proposition 4.1]). Let
X be a closed convex set of Hd and let Y be a coarsely dense and uniformly
locally finite subset of X. Then for every ε > 0 there exists a constant N(ε)
such that for every finite set A ⊂ Y there exists a subset A′ ⊆ A with the
following properties:
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(1) #A′ ≥ (1− ε)#A.
(2) For each v ∈ A′, there exists a pair of halfspaces H1, H2 ⊆ Hd such

that dH2(v,H1 ∪H2) ≥ ε−1 and #
(
A \ (H1 ∪H2)

)
≤ N(ε).

The precise shape of halfspaces Hi in Proposition 2.9 is again not impor-
tant, but we will have to impose some “smallness” of Hi in terms of ε. More
precisely, we need that Ep #{g ∈ C(id) : gx0 ∈ Hi} . εχp. Let us introduce
some terminology.

Definition 2.10. Let G be a group with a finite generating set S. For
subsets A,B,C ⊆ G, we say that B is a dS-barrier between A and C if
every dS-path (g0, g1, . . . , gn) ⊆ G starting at A (i.e., g0 ∈ A) and ending at
C (i.e., gn ∈ C) intersects B (i.e., ∃i[gi ∈ B]).

We record Hutchcroft’s observation about barriers:

Lemma 2.11 ([Hut19, Proof of Lemma 5.4]). Let G be a group with a finite
generating set S. Let A,B ⊆ G be such that B is a dS-barrier between id
and A. Then

Ep #
(
C(id) ∩A

)
≤ Ep #

(
C(id) ∩B

)
· χp

for each 0 ≤ p < pc.

Proof. For each a ∈ A and b ∈ B we define Eb := {ω : id ↔ b} and
Fb,a := {ω : b↔ a}. Then∑
a∈A,b∈B

Pp(Eb ◦ Fb,a) ≤
∑

a∈A,b∈B
Pp(Eb)Pp(Fb,a) =

∑
b∈B

Pp(Eb) ·
∑
a∈A

Pp(Fb,a)

≤
∑
b∈B

Pp(Eb) · Ep #C(b) =
∑
b∈B

Pp(Eb) · χp = Ep #
(
C(id) ∩B

)
· χp.

Meanwhile, for each a ∈ A we claim that

∪b∈B(Eb ◦ Fb,a) = {ω : id↔ a}.
The inclusion “⊆” is clear. Now for “⊇”, let ω ∈ Ω be a configuration such
that id ↔ a. Take a shortest path P in Γ(ω) connecting id and a, which
does not revisit a vertex twice. Since B is a dS-barrier between id and A,
P visits a vertex b ∈ B. Then the subpaths of P between id and b, and
between b and a, are disjoint (finite) witnesses for Eb and Fb,a, respectively.
Hence, ω ∈ Eb ◦ Fb,a as desired.

In conclusion, we have

Ep #
(
C(id) ∩A

)
=
∑
a∈A

Pp{id↔ a}

≤
∑

a∈A,b∈B
Pp(Eb ◦ Fb,a) ≤ Ep #

(
C(id) ∩B

)
· χp. �

Having Lemma 2.11 in hand, it is desirable to construct a barrier B
between the origin and a halfspace whose “capacity” Ep #(C(id) ∩ B) is
uniformly small for all 0 ≤ p < pc. For example, B should not be the entire
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G; the susceptibility χp = Ep #C(id) tends to infinity as p↗ pc. Likewise, B
should not contain an arbitrarily large dS-metric ball. A geometric intuition
is that if B is a codimension 1 subset of the ambient set, then the portion
of the cluster in B is finite because the cluster tends to escape B before
growing large in it. The following notion captures this phenomenon.

Definition 2.12. Let G be a group with a finite generating set S. We say
that a set B ⊆ G is r-roughly branching if there exists a subset B′ ⊆ G such
that:

(1) B is contained in the r-neighborhood of B′ in the word metric dS.
(2) For every k ≥ 1, if g1, . . . , gk and h1, . . . , hk are distinct sequences

of elements of B′, then g1 · · · gk 6= h1 · · ·hk.

Lemma 2.13 ([Hut19, Lemma 5.5]). Let G be a group with a finite gen-
erating set S. Then for each r > 0 there exists M such that for every
r-roughly branching subset B ⊆ G and for every 0 ≤ p ≤ pc we have
Ep #

(
C(id) ∩B

)
≤M .

We sketch the proof for a 0-roughly branching set B; see [Hut19] for a
full proof. By the Harris-FKG inequality, τp(gh) ≥ τp(g) · τp(h) for each
g, h ∈ G. Hence, for g1, . . . , gk ∈ B, we have τp(g1 · · · gk) ≥ τp(g1) · · · τp(gk).
Meanwhile, the k-th convolution map from Bk to b: (g1, . . . , gk) 7→ g1 · · · gk
is injective by the assumption. This implies

χp ≥
∑
g∈Bk

τp(g) =
∑

g1,...,gk∈B
τp(g1 · · · gk) ≥

k∏
i=1

∑
gi∈B

τp(gi)

 .

For a given 0 ≤ p < pc, this is true regardless of k. Note that χp < +∞.
This forces that

∑
g∈B τp(g) ≤ 1 for each 0 ≤ p < pc. Since p 7→

∑
g∈B τp(g)

is a lower semicontinous function on [0, 1] (cf. [Hut16, Lemma 5]), the same
bound holds for p = pc as well.

We finally state the “smallness” of halfspaces in Hd in terms of nested
barriers.

Proposition 2.14 ([Hut19, Lemma 5.6]). Let X 3 x0 be a closed convex
set of Hd and suppose that G ≤ Isom(X) properly and coboundedly embeds
into X by the orbit map. Let S be a finite generating set of G. Then there
exist r,R > 0 such that for each halfspace H ⊆ Hd, there exists an r-roughly
branching subset

B = B1 tB2 t . . . tBbd(x0,H)/Rc ⊆ G

such that Bi is a dS-barrier between id and {g : gx0 ∈ H} for each i =
1, . . . , bd(x0, H)/Rc.

In the above, the capacity of B is uniformly bounded in p and H; hence,
there exists Bi such that Ep(#C(id) ∩ Bi) . 1/d(x0, H). By Lemma 2.11
we conclude
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Corollary 2.15 ([Hut19, Lemma 5.4]). Let X ⊆ Hd and G ≤ Isom(X) be
as in Proposition 2.14. Then there exists K > 0 such that for each halfspace
H ⊆ Hd we have

Ep
(
#C(id) ∩ {g ∈ G : gx0 ∈ H}

)
≤ K

d(x0, H)
χp

for each 0 ≤ p < pc.

Proposition 2.9 and Corollary 2.15 describe all we need for halfspaces.
Let us now state an abstract version:

Theorem 2.16 ([Hut19, Proof of Proposition 5.2]). Let Γ = Cay(G,S) be
the Cayley graph of a finitely generated group G. Suppose that there exists
r > 0, and for each D,E > 0 there exist

SD = t∞i=1SD;i ⊆ G, GD,E ⊆ G
and a collection HD of subsets of G such that

(1) SD is r′-roughly branching for some r′ = r′D,
(2) for each H ∈ HD there exists an r-roughly branching subset B =

B1t . . .tBD ⊆ G such that Bi is a dS-barrier between id and H for
i = 1, . . . , D;

(3) for each D,E > 0, ti≥ESD;i is a dS-barrier between id and GD,E.

Suppose that for each ε > 0 and D,E > 0, there exists a constant N =
N(ε,D,E) such that for every finite set A ⊆ G there exists A′ ⊆ A satisfying:

(1) #A′ ≥ (1− ε)#A;
(2) For each a ∈ A′ there exist H1,H2 ∈HD such that

#
(
A \ a · (H1 ∪H2 ∪ GD,E)

)
≤ N.

Then Equation 2.2 holds for Γ.

In Hutchcroft’s original formulation for Gromov hyperbolic graphs, the
set SD and GD,E are not needed. It is not hard to adapt Hutchcroft’s proof
to the current version; we include it for completeness.

Proof. By Lemma 2.13, for each D we have
∑

g∈SD τpc(g) < +∞. Further-

more, note that tEi=1SD;i exhausts SD as E increases. Hence, for each D > 0
and η > 0 there exists E = E(D, ε) > 0 such that

∑
g∈ti≥ESD;i

τpc(g) ≤ ε.

Then by Lemma 2.11, we have
∑

g∈GD,E τp(g) ≤ ε · χp for each 0 < p < pc.

Now, let M = M(r) for r as in Lemma 2.13. Then by Assumption (2)
and Lemma 2.11. we have

∑
g∈H τp(g) ≤ Mχp/D for each 0 < p < pc and

for each H ∈HD.
Let us now fix ε > 0. We take D > M/ε, and then E = E(D, ε). Now let

N = N(ε,D,E). Lastly, recall that limp↗pc χp = +∞; there exists p0 such
that χp ≥ N/ε for p0 < p < pc.

We now claim that∑
g,h∈A τp(g, h)

#A
≤ 5εχp (∀ finite A ⊆ G,∀p0 < p < pc).
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To observe this, let A ⊆ G be a finite set and let p0 < p < pc. Let A′ ⊆ A
be as in the proposition for ε,D,E. Then we have∑
g,h∈A

τp(g, h) ≤
∑

g∈A\A′,h∈G

τp(g, h) +
∑

g∈A′,h∈A\g·(H1(g)∪H2(g)∪GD,E)

τp(g, h)

+
∑

g∈A′,k∈H1(g)∪H2(g)∪GD,E

τp(id, k)

≤ ε(#A) · χp + (#A′) ·N + (#A′) ·
(
M

D
χp +

M

D
χp + εχp

)
≤ 5ε(#A)χp.

Since ε is arbitrary, we conclude that Equation 2.2 holds. �

Combining the aforementioned facts about word hyperbolic groups and
convex subsets of Hd, together with the Bonk-Schramm embedding theorem,
Hutchcroft showed that word hyperbolic groups satisfy Equation 2.1 and 2.2
in Theorem 2.5.

2.3. Intuition and examples. We now explain our strategy in detail.
Our primary example will be the free group F2 ' 〈a, b〉 with the generating

set S = {a, b, c}. Its Cayley graph Γ = Cay(F2, S) is a regular 6-valent
tree whose each edge is labeled with a or b. Now, if we quotient out all the
edges labeled with a, then the resulting graph Γ′ becomes a regular∞-valent
tree. The identity vertex id is now connected with countably infinitely many
vertices {aib±1 : i ∈ Z}. One can instead consider the Cayley graph with
respect to an infinite generating set S′ = S ∪{ai : i ∈ Z}; this Cayley graph
and Γ′ are quasi-isometric.

At first it seems confusing to consider this ∞-valent tree instead of the
original 6-valent tree. But this construction is natural for acylindrically
hyperbolic groups. Acylindricallly hyperbolic groups may have non-Gromov
hyperbolic Cayley graphs, but they act on a Gromov hyperbolic space that
comes from this construction.

Let us first discuss the strategy for Equation 2.1.
The classical halfspaces in Hd or Gromov hyperbolic spaces work for

Proposition 2.7. To be precise, given a δ-hyperbolic space X 3 x0 and
x, y ∈ X, we define

Hhalf (x, y) := {g ∈ G : dX(gx0, x) ≤ dX(gx0, y)} .

Then for every non-elementary isometry group G ≤ Isom(X), there exist
independent loxodromics {f1, f2, f3} ⊆ G and R > 0 such that, for every
pair of elements u ∈ G such that dX(x0, ux0) ≥ R, there exists i ∈ {1, 2, 3}
such that Hhalf (x0, ux0) and ufiu

−1Hhalf (x0, ux0) are disjoint. Hence, it
is straightforward to generalize Proposition 2.7 to non-elementary isometry
groups of Gromov hyperbolic spaces.

Meanwhile, it is harder to generalize Proposition 2.6 in terms ofHhalf (x, y)
for non-elementary actions on a Gromov hyperbolic space. To illustrate this,
consider G = F2 × Z, a group acting on the Cayley graph Γ = Cay(F2, S)
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by left multiplication of the first factor: (a, b) · x := ax. Let x0 = id ∈ Γ.
Now given D > 0, consider a set A ⊆ G whose > 99% is concentrated on
id ∈ Γ and the remaining < 1% covers {x ∈ Γ : dS(id, x) < D}. In other
words, we consider

A = {(id, k) : 0 ≤ k ≤ 5D+10} ∪ {(g, 0) : g ∈ F2, ‖g‖S ≤ D}.

Let us give a word metric onG, say, by the generating set S′ := {(a, 0), (b, 0), (0, 1)}.
Then for each g = (id, k) for some k, there is no h ∈ G such that dS′(g, h) ≤
D and HD(gx0, hx0) contains A. So > 99% of elements of A cannot satisfy
the condition in Proposition 2.6.

Roughly speaking, this is because of the distortion between the geometry
of G and Γ. It is possible to charge a single vertex u in Γ with arbitrarily
many elements of G. For each vx0 ∈ Γ with dS(vx0, ux0) ≤ D, it is also easy
to make Hhalf (ux0, vx0) fail the condition in Proposition 2.6; we just charge
vx0 with one element of G. This does not cost too much, as the number of
D-neighbors of ux0 in Γ is bounded.

This pathology is remedied when we impose the so-called weak proper
discontinuity (WPD). Let us go back to the example F3 acting on Γ′ 3 x0 =
id. It is possible that a single vertex id ∈ Γ′ can be charged by many elements
of G, namely, {ai : i ∈ Z}. But for these elements, {Γ′\Hhalf (aix0, a

ibDx0) :

i ∈ Z} are all disjoint, as x0 has valency ∞ and the edges
−−−−−−−−→
aix0 a

ibDx0 are
distinct. Hence, it costs a lot to charge Γ′ \ Hhalf (aix0, a

ibDx0) for each i:
it cannot be done with 1% of A.

Indeed, for F2 acting on Γ′, and more for generally WPD actions, Propo-
sition 2.6 does hold. We will prove this in Section 5.

Let us now discuss Equation 2.2. In Section 4 we will prove an analogue of
Proposition 2.9 for proper actions on a Gromov hyperbolic space. We sketch
the idea for F2 = 〈a, b, 〉 acting on the Cayley graph Γ = Cay(F3, {a, b}).
Let x0 = id ∈ Γ.

Suppose that A ⊆ F3 is the sphere {g ∈ F2 : ‖g‖S = R}. Then from the
viewpoint of each a ∈ A, most elements of A are in the direction of id. It is
hence sensible to pick

H1(g) = HD(g, id) := {u ∈ F2 : g−1u and g−1 · id share the initial D-long subword}

and remove it from A. Then we have #(A \H1(g)) ≤ #{u ∈ G : dS(u, g) ≤
2D} ≤ (2#S)2D for each a ∈ A. This bound is independent of R.

Let us now consider the ball A = {g ∈ F2 : ‖g‖S ≤ R}. The same bound
holds for elements in the outmost sphere. But the bound gets worse as we
go into deeper inner sphere. Nonetheless, it suffices to consider only the 10
outmost spheres {g : R− 10 ≤ ‖g‖S ≤ R}, as they account for > 99% of A.
In summary, we have

#(A \H1(g)) ≤ #{u ∈ G : dS(u, g) ≤ 2(D + L)} ≤ (2#S)2(D+L)

for g ∈ {u : R − L ≤ ‖u‖S ≤ R}, whose number is at least (1 − 5−L)#A.
This bound depends on the choice of D and L but not on R.
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From this example we can try the following. In an arbitrary finite set
A ⊆ F3, for each g ∈ A we take H1(g) = HD(g, id) and see if A \H1(g) has
uniformly bounded cardinality. If it does not, we regard g as an element
“deep inside” and remove it. This removal is not critical as long as there
are exponentially fewer “inner” elements than “outer” elements.

This strategy unfortunately does not work for an arbitrary finite set A ⊆
F3. As a counterexample, consider A = {a10i : i = 0, . . . , R}, a sequence
of points along a geodesic from id. Then the cardinality of A \ H5(g, id)
is bounded by N for only N many g’s at the end of A, which compose a
negligible portion of A. Geometrically, this subset has linear growth instead
of exponential growth; the outmost spheres are negligible compared to the
inner part. Indeed, for any N > 0 there exists R such that

#{a ∈ A : ∃halfspace H such that d(a,H) = 5 and #(A\H) ≤ N} ≤ 0.1#A

for A = {ai : i = 0, . . . , R}.
This is the reason we need to exclude two halfspaces for each g ∈ A

instead of one. In the example A = {a10i : i = 0, . . . , R}, a5R is considered
a “pre-inner” point, as A \ H5(a

5R, id) contains R/2-many elements of A.
But there is only one direct “child” of a5R when viewed from id, namely,
a5R+10. Having only one child is not desirable for the exponential growth.
Thus, we will regard a5R as not genuinely inner. Then how do we cope with
the largeness of A\H5(a

5R, id)? We simply erase H2(a) := H5(a
5R, a5R+10).

Then the number of elements of A \ (H5(a
5R, id) ∪ H5(a

5R, a5R+10) will be
bounded.

Let us refine this strategy. We fix a bound N not depending on the size
of A. Let us collect problematic points

A := {g ∈ A : #
(
A\(H1(g)∪H2(g))

)
≥ N for all halfspaces H1, H2 that are D-far from id}.

Then each g ∈ A is either an“outmost” element in A or might have some
“children” in A. In the former case, A \ HD(g, id) is supposed to be small,
and there should be only few “problematic” such elements. That means,
we wish that the number of elements of A without “children” in A will be
bounded.

In the latter case, if g has a lone child h ∈ A, then g is considered not
“deeply inner”, and A \ (HD(g, id) ∪ HD(g, h)) is morally small. Thus, we
wish that the number of “inner but not deeply inner” elements in A is also
bounded. If g ∈ A has more than two children in A, then we declare that g
is “deeply inner”. We give up such g, but this will not be a huge loss.

After this procedure, we are left with some non-deeply-inner points G =
{g1, g2, . . .} ⊆ A. For those elements g ∈ G, A \ (H1(g)∪H2(g)) has at least
N elements. Now, if A \ (H1(g) ∪ H2(g)) are disjoint for distinct g ∈ G,
then we can bound #G in terms of #A. Moreover, if deeply inner points are
much fewer than not deeply inner points, then we can bound the cardinality
of A in terms of A,
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This strategy indeed works for locally finite subsets of Gromov hyperbolic
spaces, which is the content of Proposition 2.9. There are some concerns.
What if different “inner” points share a direct child? The hyperbolicity pre-
vents this from happening. In a Gromov hyperbolic space, every “lineage” is
“linearly ordered”, and no bypass is allowed. What if different non-deeply-
inner points g1, g2 have non-disjoint A\ (H1(gi)∪H2(gi))? Again, hyperbol-
icity is at play. If these sets overlap, then g1 and g2 are aligned when viewed
from x0. This means that one of g1, g2 is the descendent of the other one.
With more care, it can be shown that one of g1, g2 is “deeply inner” and
should have been removed from G. These technical points will be studied in
depth in Section 4.

Let us now talk about “smallness” of halfspaces H in terms of the capac-
ity Ep[#C(id) ∩H]. In the real hyperbolic space Hd, a halfspace H that is
D-far from the origin x0 is barred by roughly branching disjoint union of
∼ D barriers. This intuitively makes sense because “codimension-1” sub-
manifolds disconnect Hd into two parts. There is a notion of codimension
1 subgroups for certain class of hyperbolic groups (such as cubical groups),
but we will employ more general and abstract machinery.

Consider F3 = 〈a, b〉 once again. In between id and H = H100(id, a
100) :=

{a100 · w, w does not start with a}, which are spaced horizontally, we can
place nine disjoint sets B′i := {a10iw, w does not start with a±}. Equiv-
alently, B′i is the collection of points p whose projection π[id,a100](p) onto

[id, a100] is precisely a10i. Then each of B′1, . . . , B
′
9 is indeed a dS-barrier be-

tween id andH. The issue is thatB′i’s are too large and are not “codimension-
1”. In fact, B′i’s contain an arbitrarily large dS-metric balls, and indeed
Ep[#C(id) ∩B′i] is not uniformly bounded in p ∈ (0, pc).

We can instead consider “vertical” barriers Bi := {a10ibk : k ∈ Z} that
are “thin” and are branching. Let us explain why B1 is indeed a barrier.
Suppose to the contrary that a dS-path (id = g0, g1, . . . , gN ∈ H) avoids
B1. In this path “the initial power of a appearing in gi” grows from id to
a100 along P . Hence, there is a moment i(1) where gi(1) = a10w for some w

not starting with a±1. Since P avoids B1, w contains some a. That means,
gi(1) = a10bka · v in its reduced form for some v.

We claim that the letter a after a10bk cannot be erased along the path,
i.e., gi starts with a10bka for every i ≥ i(1). If a is to be erased at some
step i, i ≥ i(1), the only possibility is gi = a10bka and gi+1 = a10bk ∈ B1, a
contradiction to the assumption. But if every gi starts with a10bka, including
at i = N , then gN cannot land inH = H100(id, a

100). This is a contradiction.
It might look like this strategy hinges on the fact that F2 is a (quasi-)tree

and is not applicable to, say, a surface group. In fact, this strategy can be
applied to WPD actions on a Gromov hyperbolic space. This is secretly
related to the fact that acylindrically hyperbolic groups act on a quasi-tree
thanks to Bestvina-Bromberg-Fujiwara’s construction [BBF15]. We explain
this in Section 6.
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Proposition 2.9 is about locally finite sets of Gromov hyperbolic spaces.
Thus, it can handle proper group actions on a Gromov hyperbolic space.
For non-proper actions, Proposition 2.9 does not give an effective bound for
element counting (as opposed to orbit counting). We hence need to exclude
elements that contributes to non-properness from A\ (H1∪H2). This is the
reason we introduce SD and GD,E in Theorem 2.16.

How do we define SD and GD,E? Recall that G contains a loxodromic
isometry f of X 3 x0, whose orbit {f ix0}i∈Z is quasi-isometrically embedded
in X. Hence, the powers of f are witnesses of “properness”. In contrast,
there can be elements g ∈ G such that [x0, gx0] are not fellow traveling with
a translate of [x0, f

ix0] for a long time. Such elements are manifestation of
non-properness, and it is best to remove them from consideration.

With this in mind, we informally define

SD :=

{
g ∈ G :

[x0, gx0] does not fellow travel with
a translate of Ax(f) for more than length D

}
.

Then SD becomes a roughly branching set (Proposition 7.10). This set
corresponds to the collection ND ⊆ F2 of words that do not have aD as
a subword. In the Cayley graph of F2, words in ND are reached from
id by moving in an “almost vertical” direction. This resembles “vertical
hyperplanes” in Cay(F2), and it is easy to escape these hyperplanes by
adjoining a long enough horizontal step a2D.

Next, we informally define

GD,E :=

g ∈ G :
[x0, gx0] does not fellow travel with
hAx(f) for more than length D

for some h ∈ BS(id, E)

 .

This is the collection of words that do not fellow travel with Ax(f) “in the
beginning”. In the example of F2, this corresponds to the halfspace H that
is E-far from id: in order to reach H, one has to move in the “vertical”
direction for length E at first, but is allowed to move freely afterwards.
Intuitively, GD,E is barriered by ND ∩ {g : ‖g‖S ≥ E/2}. We formally prove
this in Proposition 7.12.

3. Preliminaries II: Hyperbolic geometry

Given three real numbers A,B,C, we write A =C B if |A−B| < C.
A geodesic on a metric space (X, d) is an isometric embedding γ : I → X

of a closed connected subset I ⊆ R into X. We will frequently refer to the
image of γ as γ. Throughout, every metric space (X, d) is assumed to be
geodesic, i.e., every pair of points are connected by a geodesic segment. We
will however not assume that (X, d) is locally compact or complete.

3.1. Gromov hyperbolicity. Let (X, dX) be a geodesic metric space. Given
a set A ⊆ X, we define its R-neighborhood

NR(A) := {x ∈ X : ∃a ∈ A [dX(a, x) ≤ R]}
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for each R > 0. We define the Hausdorff distance between two sets

dX(A,B) := inf{R ≥ 0 : A ⊆ NR(B) ∧ B ⊆ NR(A)}.
We will say that two sets A,B ⊆ X are R-equivalent if they are within
Hausdorff distance R.

For x, y ∈ X, we denote by [x, y] an arbitrary geodesic between x and y.
Note that such a geodesic may not be unique.

We now recall the notion of Gromov hyperbolicity due to M. Gromov
[Gro87]. The version we present here is E. Rips’ one. Comprehensive expo-
sitions can be found in [CDP90] and [BH99].

Definition 3.1. Let (X, d) be a metric space. For a given δ > 0, we say
that (X, d) is δ-hyperbolic if every geodesic triangle is δ-thin, that means,

∀x, y, z ∈ X
[
[x, z] ⊆ Nδ([x, y]) ∪Nδ([y, z])

]
.

We say that (X, d) is Gromov hyperbolic if it is δ-hyperbolic for some δ > 0.

The following is immediate:

Lemma 3.2. Let x, y, x′, y′ be points on a δ-hyperbolic space X such that
dX(x, x′), dX(y, y′) < D. Then [x, y] and [x′, y′] are (2δ +D)-equivalent.

Model examples of Gromov hyperbolic spaces are simplicial/R-trees and
real hyperbolic space Hn. In these spaces, the following phenomenon hap-
pens: if you walk forward for some distance, and walk into another direction
without huge backtracking, and walk into yet another direction without huge
backtracking, and so on, then you will never come back to the original place.
In order to formulate the property rigorously, let us define:

Definition 3.3. Let (X, d) be a geodesic metric space. For x, y, z ∈ X, we
define the Gromov product of y and z based at x by

(y|z)x :=
1

2
[dX(x, y) + dX(x, z)− dX(y, z)].

For example, in the standard Cayley graph of F2 = 〈a, b〉, we have
(aaba|aab−1ab)id = 2 since aaba and aab−1ab share the first two letters.

We now formulate the local-to-global phenomenon mentioned above:

Lemma 3.4. Let x0, x1, . . . , xn be points on a δ-hyperbolic space where

(xi−1|xi+1)xi + (xi|xi+2)xi+1 ≤ dX(xi, xi+1)− 24δ (i = 1, . . . , n− 2).

Then there are points y1, . . . , yn−1 on [x0, xn], in the order

dX(x0, y1) ≤ dX(x0, y2) ≤ . . . ≤ dX(x0, yn−1),

such that

dX(xi, yi) =12δ (xi−1|xi+1)xi (i = 1, . . . , n− 1).

In particular, we have

dX(x0, xn) ≥
n∑
i=1

dX(xi−1, xi)− 2 ·
n−1∑
i=1

(
(xi−1|xi+1)xi + 12δ

)
.
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Another useful lemma is:

Lemma 3.5 ([Bon96, Lemma 1.3], [BH99, Prop III.H.1.17]). Let x, y, z be
points on a δ-hyperbolic space. Then the initial (y|z)x-long subsegments of
[x, y] and [x, z] are 4δ-fellow traveling in a synchronized manner.

That means, if γ : [0, dX(x, y)]→ X represents [x, y] and η : [0, dX(x, z)]→
X represents [x, z], then dX(γ(t), η(t)) < 4δ for 0 ≤ t ≤ (y|z)x.

From this property, it follows that:

Lemma 3.6 ([BH99, Prop III.H.1.22]). Let x, y, z, w be points on a δ-
hyperbolic space. Then we have

(x|y)w ≥ min
(
(x|z)w, (z|y)w

)
− 4δ.

In fact, Lemma 3.4 can be deduced from Lemma 3.5 and Lemma 3.6.
Indeed, an induction implies that (xi−1|xn+1)xi =4δ (xi−1|xi+1)xi for each
1 ≤ i < n. Another induction implies that (xi|xk)xj =8δ (xj−1|xj+1)xj for
each i ≤ j ≤ k. Yet another induction implies that (xi|xn)x0 increases in i,
and the points yi on [x0, xn] whose distance from x0 is (xi|xn)x0 realize the
desired property.

Let us now turn to isometries. Let (X, d) be a Gromov hyperbolic space
and let g be its isometry. We say that g is loxodromic if there exists τ > 0
such that dX(x0, g

nx0) ≥ τn for each n.
Prototypes of loxodromic isometries are the loxodromic isometries of Hn.

They act as a translation along an infinite geodesic. An isometry g of a
Gromov hyperbolic space X is called an axial loxodromic if there exists
τ > 0 and a geodesic γ : R→ X such that g(γ(t)) = γ(t+ τ) for each t ∈ R.
In this case, we call γ an axis of g and denote it by Ax(g). By rescaling the
metric dX globally, it is not hard to render g unital, i.e., τ = 1.

In general, given a group G acting on a Gromov hyperbolic space X and
a loxodromic isometry g ∈ G, it is not hard to put another metric on X that
is G-equivariantly quasi-isometric to the original one, so that g becomes a
unital axial loxodromic isometry. See e.g. [BF02, Proposition 6.(2)].

We now introduce the nearest point projection.

Definition 3.7. Let (X, d) be a metric space and let A ⊆ X be a locally
compact subset. We define the nearest point projection πA(·) : X → 2A as

πA(x) := {a ∈ A : dX(x, a) = min
y∈A

dX(x, y)}.

For B,C ⊆ X, we use the notation diamA(B) := diamX(πA(B)) and
dA(B,C) := diamX(πA(B ∪ C)).

Lemma 3.8. Let x, y, z be points on a δ-hyperbolic space X. Let p ∈ [x, y]
be such that dX(x, p) = (y|z)x. Then π[x,y](z) is contained in N8δ(p).

In Gromov hyperbolic spaces, geodesics exhibit the so-called contracting
property. The following is one formulation of the contracting property.
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Lemma 3.9 ([CDP90, Proposition 10.2.1]). Let (X, dX) be a δ-hyperbolic
space, let x, y ∈ X, let γ be a geodesic and let p ∈ πγ(x), q ∈ πγ(y). Then
we have

dX(p, q) ≤ max
(
12δ, 12δ + dX(x, y)− dX(x, p)− dX(q, y)

)
.

This lemma has the following corollary.

Corollary 3.10. Let (X, dX) be a δ-hyperbolic space, let x, y ∈ X and let γ
be a geodesic in X.

(1) (coarse Lipschitzness) We have diam(πγ(x)) ≤ 12δ and dγ(x, y) ≤
dX(x, y) + 12δ.

(2) (constriction) Let p ∈ πγ(x), q ∈ πγ(y). Suppose that dX(p, q) >
12δ. Then [p, q] is within Hausdorff distance 12δ from some subseg-
ment [x′, y′] of [x, y], where dX(x′, p), dX(y′, q) < 10δ.

(3) (no backtracking) Let z ∈ [x, y]. Then πγ(z) is contained in the
12δ-neighborhood of [πγ(x), πγ(y)].

(4) (equivalent geodesics) Let γ′ be a geodesic whose endpoints are pair-
wise D-near with the ones of γ. Then πγ(x) and πγ′(x) are (2D +
28δ)-equivalent.

(5) Let γ′ be a subgeodesic of γ and suppose that dγ′(x, y) > 12δ. Then
dγ(x, y) ≥ dγ′(x, y)− 64δ.

We include the proof in Appendix B for completeness.
We now review the notion of weak proper discontinuity introduced in

[BF02].

Definition 3.11. Let (X, dX) be a Gromov hyperbolic space and let G ≤
Isom(X). We say that the action of G on X is proper if

∀R > 0
[
#
{
g ∈ G : dX(x0, gx0) < R

}
< +∞

]
.

Let f ∈ G be a loxodromic isometry. We say that G has weakly properly
discontinuous (WPD) along f , or that f has the WPD property, if

∀R > 0 ∃L > 0
[
#
{
g ∈ G : dX(x0, gx0) < R and dX(fLx0, gf

Lx0) < R
}
< +∞

]
.

If f is axial in addition, we call it an axial WPD loxodromic.
If G has WPD action on a Gromov hyperbolic space and is not virtually

cyclic, then we call it an acylindrically hyperbolic group.

If G acts properly on a Gromov hyperbolic space, then every loxodromic
element has the WPD property automatically. We record a theorem by M.
Bestvina, K. Bromberg and K. Fujiwara.

Definition 3.12. Let G be a group and let f ∈ G. We define the elementary
closure of f by

EC(f) :=
{
g ∈ G : ∃N > 0[gfNg−1 = fN ] ∨ [gfNg−1 = f−N ]

}
.
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Theorem 3.13 ([BBF15, Theorem H]). Let G be an acylindrically hyper-
bolic group. Then G contains an element f and admits an isometric action
on a Gromov hyperbolic space X, and there exists a constant K > 0 such
that the following holds:

(1) f is a unital, axial WPD loxodromic isometry of X;
(2) for each g ∈ G, either

(a) (bounded projection) the nearest point projection of Ax(f) onto
gAx(f) has diameter ≤ K, or

(b) g ∈ EC(f) and gAx(f) = Ax(f).
Moreover, the cyclic subgroup 〈f〉 is a finite-index subgroup of EC(f).

Note that in Theorem 3.13, every finite generating set S of G contains
an element g ∈ G that falls into Case (2-a), as S generates a non-virtually
cyclic group.

The following is a well-known fact about acylindrically hyperbolic groups
and is a basic ingredient of the quasi-tree construction in [BBF15]. We
sketch the proof for reader’s convenience.

Lemma 3.14. Let X be a δ-hyperbolic space and let γ1, . . . , γn be geodesics
with mutually K0-bounded projections. Let z ∈ X be a point such that
dγi(z, γi+1) ≥ 5K0 + 100δ for each i = 1, . . . , n − 1. Then dγi(z, q) ≥
dγi(z, γi+1)− (2K0 + 112δ) for each i and for each q ∈ γn.

Before proving it, let us observe a simple fact:

Lemma 3.15. Let X be a geodesic metric space, let x, y, z ∈ X and let
w ∈ [x, y]. Then (w|z)y ≤ (x|z)y holds.

Let u ∈ NK([x, y]). Then (u|z)y ≤ (x|z)y +K holds.

Proof. The first statement follows from dX(x, y) = dX(x,w) + dX(w, y) and
dX(x, z) ≤ dX(x,w)+dX(w, z). The second statement follows from the first
one and the triangle inequality. �

Proof of Lemma 3.14. Let pi ∈ πγi(z) and qi ∈ πγi(γi+1) be the ones such
that dX(pi, qi) = dγi(z, γi+1); for i = n, we pick arbitrary qn ∈ γn.

Then for i = 1, . . . , n − 1, pi and qi are (5K0 + 100δ)-far. Further-
more, qi ∈ πγi(γi+1) and πγi(qi+1)) ∈ πγi(γi+1) are K0-close because of
the bounded projection assumption. Corollary 3.10(2) tells us that [z, qi+1]
passes through the 10δ-neighborhood of pi and (10δ +K0)-neighborhood of
qi, in order. This implies that (z|qi+1)qi < K0 + 10δ for i = 1, . . . , n− 1.

For the same reason, qi−1 is (K0 + 10δ)-close to [z, qi] for each i ≥ 2.
Lemma 3.15 tells us that

(qi−1|qi+1)qi ≤ (z|qi+1)qi + (K0 + 10δ) ≤ 2K0 + 20δ.

Moreover, qi−1 is also (K0 + 10δ)-close to [z, pi] for each i ≥ 2, and pi is
10δ-close to [z, qi] by Corollary 3.10(2). This implies that

(qi−1|qi)pi ≤ (z|qi)pi + (K0 + 10δ) ≤ K0 + 20δ.
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Since dX(pi, qi) ≥ 5K0 + 100δ, we conclude dX(qi−1, qi) ≥ 4K0 + 80δ for
i = 2, . . . , n− 1.

We can now apply Lemma 3.4 to the points

(z, q1, . . . , qn).

It follows that (z|qn)qi < 2K0 + 32δ. Meanwhile, since dX(pi, qi) > 10K0 +
130δ and dX(pi, [z, qi]) < 10δ, we have (pi|z)qi ≥ 10K0 + 120δ. Lemma 3.6
tells us that (pi|qn)qi ≤ 2K0 + 36δ. By Lemma 3.8, qi is (2K0 + 44δ)-close
to π[pi,qi](qn) and d[pi,qi](z, qn) ≥ dγi(z, γi+1) − (2K0 + 44δ). By Corollary
3.10(5), we have dγi(z, qn) ≥ dγi(z, γi+1)− (2K0 + 110δ) as desired. �

We now record another consequence of the WPD property.

Lemma 3.16 ([Sis16, Lemma 3.3], [Cho25, Lemma 3.2]). Let G be a non-
virtually cyclic group with a finite generating set S ⊆ G. Suppose that G
acts on a Gromov yperbolic space X 3 x0 with a WPD loxodromic element
f ∈ G. Then there exists D0 > 0, and for each k,M > 0 there exists
R = R(k,M) > 0, such that the following holds.

Let g, h ∈ G be such that ‖g‖S > R and ‖h‖S ≤M . Then π[x0,fkx0]({gx0, ghx0})
has diameter at most D0.

4. Hyperbolic magic lemma

The following is called a hyperbolic magic lemma [Hut19, Proposition 4.1].
Hutchcroft proved it under the assumption that X is the real hyperbolic
space Hn and A lies in a quasi-convex set.

A subset Y ⊆ X of a metric space is uniformly locally finite if

sup
y∈Y

#
(
NR(y) ∩ Y

)
< +∞ (∀R > 0).

The vertex set of a Cayley graph of a finitely generated group is uniformly
locally finite. More generally, if a group G acts properly on a metric space
X 3 x0, then the G-orbit G · x0 is uniformly locally finite.

Given x, y ∈ X and D > 0, we define

HD(x, y) := {z ∈ X : (z|y)x ≥ D}.

(Note that this set can well be empty). Sets of this sort are called halfspaces
rooted at x with radius parameter D.

Proposition 4.1. Let X be a δ-hyperbolic space and let Y be a uniformly
locally finite subset of X. Then for each ε,D > 0 there exists a constant
N = N(ε,D, Y ) such that for every finite set A ⊆ Y there exists a subset
A′ ⊆ A satisfying:

(1) #A′ ≥ (1− ε)#A;
(2) For each a ∈ A′ there exist halfspaces H1,H2 ∈ X rooted at a with

radius parameter D such that #
(
A \ (H1 ∪H2)

)
≤ N .
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γ(τ)

γ(σ)
xy

z

Figure 2. Definition of anti-halfspace AD(x, y).

Proof. For simplicity, we assume 1 ≤ δ ≤ 0.0001D. Because Y is locally
uniformly finite, we have

sup
y∈Y

#
(
N100D(y) ∩ Y

)
=: M < +∞.

We set N = 2M/ε. Note that N depends on ε,D, Y but not on the choice
of A ⊆ Y .

Now let A ⊆ Y be a finite set. Let A′ be the collection of the elements
of A that satisfy the condition (2) in the statement. Our goal is to show
#A′ ≥ (1− ε)#A.

For a technical reason we introduce a variation of the notion of halfspace.
Given x, y ∈ X and r > 0, let us define the anti-halfspace

AD(x, y) :=

{
z ∈ X \ N6D(x) :

∃ a geodesic γ : [0, τ ]→ X and 0 ≤ τ1 ≤ τ such that
γ(0) = y, dX(γ(τ1), x) < D + 100δ and dX(γ(τ), z) < D + 200δ

}
.

This is morally the complement of HD(x, y) but not quite exactly.
We record two elementary observations.

Observation 4.2. For every x, y ∈ X we have x /∈ AD(x, y). If dX(x, y) ≥
100D moreover, then y /∈ AD(x, y).

Observation 4.3. Let x, y ∈ X and let z ∈ AD(x, y). Then dX(y, z) ≥
dX(x, y) +D.

Let us now collect problematic elements, i.e.,

A1 := A\A′ =
{
a ∈ A :

#
(
A \ (H1 ∪H2)

)
≥ N for every halfspaces

H1,H2 rooted at a with distance parameter D

}
.

We now pick a maximally 100D-separated subset A2 of A1, i.e., we have

(1) dX(a, a′) ≥ 100D for each pair of distinct elements a, a′ ∈ A2;
(2) A2 is a maximal subset of A1 satisfying this property.
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Then
⋃
a∈A2

(N100D(a) ∩ Y ) covers entire A1 (if not, a missed element can
be added to A2 and break the maximality). Since N100D(a)∩Y has at most
M elements for each a ∈ A2, we have

#A2 ≥
1

M
·#A1.

The proof will be done once we show that #A2 ≤ ε
M#A. For this one

might wish to create disjoint complements of halfspaces rooted at each el-
ement of A2. However, the complement of halfspaces rooted at distinct
elements of A2 might intersect. Our next goal is to extract some portion of
A2 for which we can create disjoint complements of halfspaces.

Let us first prepare empty collections B = U = G = ∅. They are meant to
be collections of bad, undecided and good elements. Fix a basepoint x0 ∈ X.
Enumerate A2 by the distance from x0, i.e., let A2 = {a1, a2, . . . , a#A2} be
such that dX(x0, ai) ≤ dX(x0, ai+1) for each i. At each step i = 1, . . . ,#A2,
we will define a point bi ∈ X and put ai in either B or G; this decision is
final and shall not be modified further. We may put some other elements
of A2 in U , whose their classification will change later. We will keep the
balance #B ≤ #U + #G throughout. After the last step there will be no
element of U , so we will have #B ≤ #G.

We now describe the procedure. At step i, we first declare Ai := AD(ai, x0).

(1) If A2 ∩Ai has no element, then we declare that ai ∈ G and bi := x0.
(2) If not, pick bi ∈ A2 ∩ Ai that is the closest to x0. We then declare

A′i := AD(ai, bi).
(a) If A2 ∩ Ai ∩ A′i has no element, then we declare that ai ∈ G.
(b) If not, we pick ci ∈ A2 ∩ Ai ∩ A′i that is the closest to x0. We

then declare ai ∈ B and bi, ci ∈ U .

(If an element in U is declared good or bad, it is not undecided anymore;
we remove it from U .)

Till step i, G ∪ B comprises of elements from {a1, . . . , ai}; they do not
contain any of ai+1, ai+2, . . .. (∗) Let us observe what happens at step i.

In case (1), G gains one more element that might be from U or not. B does
not change. Overall, #B stays the same and #U + #G does not decrease.
Similar situation happens in Case (2-a).

In case (2-b), B gains one element ai, which might be from U . In exchange,
U gains elements bi and ci. Observation 4.3 guarantees that dX(x0, bi), dX(x0, ci) ≥
dX(x0, ai) +D. Since A2 was labelled with respect to the distance from x0,
we conclude that bi, ci ∈ {ai+1, ai+2, . . .}; in other words, neither bi nor ci
come from G ∪B. We thus confirm that elements are never re-classified once
they are put in G ∪ B.

Furthermore, note that bi ∈ AD(ai, x0)∩A2 and ci ∈ AD(ai, bi)∩A2. By
Observation 4.2, the former membership implies that bi 6= ai and dX(bi, ai) ≥
100D (as A2 is 100D-separated), and the latter membership implies that
ci /∈ {ai, bi}. In particular, bi, ci are distinct. If bi, ci are not from U at step
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i− 1 and are genuinely new additions to U , then we can conclude that #U
increases at least by 1 in Case (2-b). It remains to show

Claim 4.4. For i < j such that ai, aj ∈ B, we have {bi, ci} ∩ {bj , cj} = ∅.

Proof of Claim 4.4. Suppose first to the contrary that bi ∈ {bj , cj}. Then
by the construction of bi, bj and cj , we have

bi ∈ AD(ai, x0) ∩ AD(aj , x0).

Let γ : [0, τ ]→ X be a geodesic starting at x0 and 0 ≤ τ1 ≤ τ be such that

dX
(
γ(τ1), ai

)
< D + 100δ, dX

(
γ(τ), bi

)
< D + 200δ.

Let γ′ : [0, σ]→ X be a geodesic starting at x0 and 0 ≤ σ1 ≤ σ be such that

dX
(
γ′(σ1), aj

)
< D + 100δ, dX

(
γ′(σ), bi

)
< D + 200δ.

Let Lmin :=
(
γ(τ)

∣∣γ′(σ)
)
x0

. Lemma 3.5 tells us that dX(γ(t), γ′(t)) < 4δ

for 0 ≤ t ≤ Lmin. Note that

τ − Lmin =
(
x0
∣∣γ′(σ)

)
γ(τ)
≤ dX

(
γ(τ), γ′(σ)

)
≤ 2D + 400δ.

We conclude that Lmin ≥ τ − 3D. Similarly Lmin ≥ σ − 3D.
Meanwhile, recall that aj and bi ∈ {bj , cj} are distinct elements of a 100D-

separated set A2. It follows that dX(aj , bi) > 100D and σ − σ1 ≥ 97D. In
other words, we have σ1 ≤ σ − 97D ≤ Lmin − 94D ≤ τ − 94D.

We now have

(4.1) dX
(
γ(σ1), aj

)
≤ dX

(
γ(σ1), γ

′(σ1)
)

+ dX
(
γ′(σ1), aj

)
≤ D + 120δ.

This implies that

100D ≤ dX(ai, aj) ≤ dX
(
ai, γ(τ1)

)
+dX

(
γ(τ1), γ(σ1)

)
+dX

(
γ(σ1), aj

)
≤ 3D+|τ1−σ1|,

i.e., τ1 ≥ σ1 + 97D or τ1 ≤ σ1 − 97D. In the former case, we have

dX(x0, ai) ≥ τ1 − dX
(
γ(τ1), ai

)
≥ τ1 − (D + 100δ) ≥ σ1 + 95D

≥ dX
(
x0, γ

′(σ1)
)

+ dX
(
γ′(σ1), aj

)
+ 90D ≥ dX(x0, aj) + 90D,

contradicting the ordering of {a1, a2, . . .}. Hence, the latter case holds.
We now have timing 0 ≤ τ1 ≤ σ1 ≤ Lmin ≤ τ for the geodesic γ. Recall

also Inequality 4.1. We conclude aj ∈ A2 ∩ AD(ai, x0). Moreover,

dX(x0, aj) ≤ dX(x0, γ
′(σ′1)) + dX(γ′(σ′1), aj)

≤ σ1 +D + 100δ ≤ σ − 95D

≤ dX(x0, γ
′(σ))− dX(γ′(σ), bi)− 90D ≤ dX(x0, bi)− 90D.

This contradicts the minimality of bi with respect to the distance from x0.
Hence, we have bi /∈ {bj , cj}.

Now suppose to the contrary that ci ∈ {bj , cj}. This implies that

ci ∈ AD(ai, bi) ∩ AD(ai, x0) ∩ AD(aj , x0).
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We pick a geodesic γ : [0, τ ]→ X starting at x0 and 0 ≤ τ1 ≤ τ such that

dX(γ(τ1), ai) < D + 1000δ, dX(γ(τ), ci) < D + 200δ.

The previous argument tells us the following: since ci ∈ AD(ai, x0)∩AD(aj , x0),
there exists τ1 + 97D ≤ σ1 ≤ τ − 90D such that dX(γ(σ1), aj) ≤ D + 120δ.
In particular, aj ∈ AD(ai, x0). Moreover, aj is closer than ci to x0.

Now consider a geodesic η : [0, L′] → X starting at bi and 0 ≤ τ ′1 ≤ τ ′

such that

dX(η(τ ′1), ai) < D + 100δ, dX(η(τ ′), ci) < D + 200δ.

We first consider the geodesic triangle connecting γ(τ1), γ(τ) and η(τ ′1).
By the δ-slimness of the triangle, γ(σ1) ∈ γ|[τ1,τ ] is δ-close to either [γ(τ1), η(τ ′1)]
or [η(τ ′1), γ(τ)]. Meanwhile, the former one is contained in N3D(γ(τ1)),
whereas γ(σ1) is at least 97D-far from γ(τ1). Hence, γ(σ1) is δ-close to
some point p ∈ [η(τ ′1), γ(τ)].

Next, we observe the geodesic triangle connecting η(τ ′1), η(τ ′) and γ(τ).
This time, p is δ-close to either [η(τ ′1), η(τ ′)] or [η(τ ′), γ(τ)]. The latter one
is contained in N1.5D(ci) and hence in N3D(γ(τ)). Meanwhile, γ(σ1) is 90D-
far from γ(τ), so p is 89D-far from γ(τ). Hence, p cannot be δ-close to
[η(τ ′), γ(τ)], and is rather δ-close to [η(τ ′1), η(τ ′)].

In conclusion, γ(σ1) is 2δ-close to some point q ∈ η|[τ ′1,τ ′]. This q is

(D + 122δ)-close to aj . It follows that aj ∈ AD(ai, bi).
In conclusion, aj ∈ AD(ai, bi) ∩ AD(ai, x0) and is closer than ci to x0.

This contradicts the minimality of ci. �

Thanks to the claim, we conclude that #B ≤ #U + #G at each step.
Recall that ai ∈ A2 is declared good or bad at step i and is not affected
thereafter. Hence, after the last step, there is no element of U left. This
means that #B ≤ #G, and G takes up at least half of A2.

Now, with the final G in hand, for each ai ∈ G we define

Ki := X \
(
HD(ai, x0) ∪HD(ai, bi)

)
.

Since ai ∈ G ⊆ A2, we have #(Ki ∩A) ≥ N . The remaining claim is:

Claim 4.5. For every pair of distinct elements ai, aj ∈ G, Ki and Kj do
not intersect.

To check this claim, suppose to the contrary that Ki and Kj has a com-
mon element z for some i < j such that ai, aj ∈ G. This means that
(x0|z)ai , (x0|z)aj < D. Now let γ : [0, L] → X be the geodesic con-
necting x0 to z. Lemma 3.4 guarantees timings τ, τ ′ ∈ [0, L] such that
dX(γ(τ), ai), dX(γ(τ ′), aj) < D + 12δ.

Recall that ai and aj are 100D-apart. This implies that |τ − τ ′| > 97D.
If τ ′ ≤ τ − 97D, then we have

dX(x0, aj) < dX(x0, ai)− 97D + 2(D + 12δ) ≤ dX(x0, ai)− 90D,
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which contradicts our labelling convention of elements of A2. Hence, τ ≤
τ ′ − 97D holds. In particular, aj ∈ AD(ai, x0).

Now note that (x0|z)aj < D and that

(x0|ai)aj ≥
(
γ(0)

∣∣γ(τ)
)
γ(τ ′)
−dX(γ(τ), ai)−dX(γ(τ ′), aj) ≥ 97D−(2D+24δ) ≥ 90D.

Gromov’s 4-point condition (Lemma 3.6) tells us that (ai|z)aj ≤ D + 4δ.
Meanwhile, (bi|z)ai < D because z /∈ HD(ai, bi). This time, (z|aj)ai is

similar to (z|γ(τ ′))γ(τ) ≥ 97D; we have (z|aj)ai ≥ 90D. Another application
of Gromov’s 4-point condition leads to (bi|aj)ai < D + 4δ.

Now, Lemma 3.4 applies to the sequence (bi, ai, aj , z) as dX(ai, aj) ≥
90D ≥ 2(D+4δ). We obtain a geodesic η from bi to z that passes through the
(D+16δ)-neighborhoods of ai and aj in order. We conclude aj ∈ AD(ai, bi).

In summary, aj ∈ A2 ∩ AD(ai, x0) ∩ AD(ai, bi). This contradicts the
goodness of ai. Hence, z cannot exist, and Ki and Kj are disjoint.

With Claim 4.5 in hand, we have

#A ≥
∑
i:ai∈G

#(Ki ∩A) ≥ N ·#G ≥ N · #A2

2
≥ N · #A1

2M
≥ 1

ε
(#A−#A′).

This ends the proof. �

Now suppose that a group G is acting properly on X 3 x0. Then the
stabilizer of x0 is finite, and the G-orbit of x0 is uniformly locally finite. By
Proposition 4.1, we conclude that:

Proposition 4.6. Let X be a δ-hyperbolic space with a basepoint x0 and let
G be a group acting properly on X. Then for each ε,D > 0 there exists a
constant N = N(ε,D, Y ) such that for every finite set A ⊆ G there exists a
subset A′ ⊆ A satisfying:

(1) #A′ ≥ (1− ε)#A;
(2) For each a ∈ A′ there exist halfspaces H1,H2 ⊆ X rooted at ax0 with

radius parameter D such that #
(
{g ∈ A : gx0 /∈ (H1 ∪H2)}

)
≤ N .

5. Supporting hyperplane lemma and the critical exponent γ

With an additional assumption that G is non-elementary, the hyperbolic
magic lemma implies the following supporting hyperplane lemma. Still, we
will prove it for general acylindrical actions.

We will work with the following form of halfspaces: given x, y ∈ X, let

Hhalf (x, y) := {z ∈ X : z is closer to x than y}.

Proposition 5.1. Let X be a δ-hyperbolic space with a basepoint x0 and
let G be a non-virtually cyclic group acting on X with a WPD loxodromic
element f . Let S be a finite generating set. Then there exists D0 such that,
for each ε > 0 and D > D0 there exists a constant N = N(ε,D) such that
for every finite set A ⊆ G there exists a subset A′ ⊆ A satisfying:

(1) #A′ ≥ (1− ε)#A;
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(2) For each a ∈ A′ there exist b ∈ G such that dS(a, b) ≤ N and

{gx0 : g ∈ A} ⊆ Hhalf (bx0, b · fDx0)

and such that Hhalf (bx0, bf
Dx0) and bfDwf−Db−1·Hhalf (bx0, bf

Dx0)
are disjoint.

This will follow from a weaker statement:

Proposition 5.2. Let X be a δ-hyperbolic space and let G be a non-virtually
cyclic group acting on X with a unital, axial WPD loxodromic element f .
Let x0 ∈ Ax(f). Let S be a finite generating set. Then there exists D0 such
that, for each ε > 0 and D > D0 there exists a constant N = N(ε,D) such
that for every finite set A ⊆ G there exists a subset A′ ⊆ A satisfying:

(1) #A′ ≥ (1− ε)#A;
(2) For each a ∈ A′ there exist b ∈ G such that dS(a, b) ≤ N and

#
(
{gx0 : g ∈ A} \ Hhalf (bx0, bf

Dx0)
)
≤ N.

Proof. Let K be as in Theorem 3.13 and let K0 ≥ K + 100δ. By enlarging
K0 if necessary, we may assume that dX(x0, sx0) ≤ K0 for each s ∈ S.

Note that {g ∈ G : g2 ∈ EC(f)} contains EC(f) as an index-2 subgroup,
which is virtually cyclic. Since G is not virtually cyclic, we can take w ∈ S \
{g ∈ G : g2 ∈ EC(f)}. Then Theorem 3.13 guarantees that diamγ(γ′) ≤ K
for distinct axes γ, γ′ ∈ {Ax(f), w−1Ax(f), wAx(f)}. By Corollary 3.10(5),
diamκ(κ′) ≤ K0 for any subgeodesics κ, κ′ of γ, γ′ as well.

We then have:

Observation 5.3. For k, l ∈ Z and distinct m,n ∈ {1, 0,−1}, we have(
wmfkx0

∣∣wnf lx0)x0 ≤ 6K0 + 8δ.

To see this, note that wm[x0, f
kx0] hasK0-small projection onto wn[x0, f

lx0],
which is 2dX(wmx0, w

nx0)-close to wnx0. It follows that the projection of
wmfkx0 onto wn[x0, f

lx0] is (K0 + 2K0|m− n|)-close to wnx0, This implies(
wmfkx0

∣∣wnf lx0)wnx0 ≤ 5K0 + 8δ.

Now the desired inequality follows from dX(x0, w
nx0) ≤ K0.

It follows that:

Observation 5.4. There exists K1 > 0 such that for each g ∈ G either

(1) (gx0|f ix0)x0 < K1 for every i ∈ Z or
(2) (gx0|wf ix0)x0 < K1 for every i ∈ Z.

We define W : G → {id, w} using the above observation. Namely, for
each g ∈ G we pick W (g) ∈ {id, w} such that (g−1x0|W (g)f ix0)x0 < K1 for
each i ∈ Z, i.e., (x0|gW (g)f ix0)gx0 < K1. Let D0 = 104(K1 +K0 + δ + 1).

We now begin the proof. Let D > D0. Recall the definition of the
elementary closure EC(f) of f . Since EC(f) is a finite extension of 〈f〉 and
since {f ix0}i∈Z is locally finite, the set{

g ∈ EC(f) : dX(x0, gx0) ≤ 2D + 4δ
}
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is finite. Hence, they are contained in BS(R′) ⊆ G for some R′ > 0. Now
let R := R′ + 3 +D · ‖f‖S .

Given g ∈ G we define the anti-halfspace

A±(g) :=

h ∈ G :
∃0 ≤ τ1 ≤ τ , ∃ geodesic γ : [0, τ ]→ X starting at x0 such that

dX
(
γ(τ1), gW (g)fDw±1fDx0

)
< 0.02D,

dX
(
γ(τ), hW (h)fDx0

)
< 0.02D.

 .

Observation 5.5. For each g ∈ G, each element h ∈ A±(g) satisfies that
dX(x0, hx0) > dX(x0, gx0)+0.5D. Moreover, A+(g) and A−(g) are disjoint.

Proof of Observation 5.5. Suppose first that h ∈ A+(g). Let 0 ≤ τ1 ≤ τ and
let γ : [0, τ ] → X be the geodesic realizing the membership of h in A+(g).
Now for the sequence

(y0, y1, y2, y3, y4) :=
(
x0, gW (g)x0, gW (g)fDx0, gW (g)fDwfDx0, γ(τ1)

)
,

we observe that

(1) (y0|y2)y1 ≤ 0.01D, (y1|y3)y2 ≤ 0.01D, (y2|y4)y3 ≤ 0.02D.
(2) dX(y1, y2), dX(y2, y3) ≥ 0.95D.

The first item follows from the fact that (y0|y2)gx0 ≤ K1, dX(y1, gx0) < K0,
(y1|y3)y2 ≤ 6K0 + 8δ, dX(y3, y4) ≤ 0.02D. The second item is due to the
fact dX(x0, f

Dx0) = D and dX(x0, sx0) ≤ K0.
By Lemma 3.4, there exist 0 ≤ t1 ≤ t2 ≤ t3 ≤ τ1 such that

(5.1) dX
(
γ(t1), y1

)
, dX

(
γ(t2), y2

)
≤ 0.011D, dX

(
γ(t3), y3

)
≤ 0.021D.

This implies that

τ1 = dX(x0, γ(τ1)) = dX(x0, γ(t1)) + dX(γ(t1), γ(t2)) + dX(γ(t2), γ(t3)) + dX(γ(t3), γ(τ))

≥ dX(x0, y1) + dX(y1, y2) + dX(y2, y3)− 2(0.011D + 0.011D + 0.021D)

≥
(
dX(x0, gx0)− dX(gx0, gW (g)x0)

)
+ 1.9D − 0.09D ≥ dX(x0, gx0) + 1.8D.

Meanwhile, note that

τ1 ≤ τ ≤ dX(x0, hW (h)fDx0) + 0.02D

≤ dX(x0, hx0) + dX(hx0, hW (h)fDx0) + 0.02D

≤ dX(x0, hx0) + dX(x0, f
Dx0) + 0.021D = dX(x0, hx0) + 1.021D.

Comparing these two inequalities lead to dX(x0, gx0) + 0.5D < dX(x0, hx0).
Note that

(
γ(t2)

∣∣ γ(τ)
)
γ(τ1)

= 0 as t2 ≤ τ1 ≤ τ . Since y2, y3 and

hW (h)fDx0 are 0.02D-close to γ(t2), γ(τ) and γ(τ ′), respectively, we have

(5.2)
(
gW (g)fDx0

∣∣hW (h)fDx0
)
gW (g)fDwfDx0

< 0.06D.

Now, let us suppose that h ∈ A−(g) in addition and deduce contradiction.
Just as we had Inequality 5.2, we have

(5.3) (gW (g)fDx0|hW (h)fDx0)gW (g)fDw−1fDx0 ≤ 0.06D.



30 INHYEOK CHOI AND DONGGYUN SEO

Finally, Observation 5.3 tells us that

(gW (g)fDwfDx0|gW (g)fDw−1fDx0)gW (g)fDx0 ≤ 0.01D.

Furthermore, we know that dX(gW (g)fDx0, gW (g)fDw±1fDx0) ≥ 0.95D.
By Lemma 3.4, we have dX(hW (h)fDx0, hW (h)fDx0) ≥ 0.95D + 0.95D −
2 · (0.06D + 0.01D + 0.06D + 100δ) ≥ 1.8D, a contradiction. �

We then observe:

Observation 5.6. Suppose that A+(g) and A+(h) has nonempty intersec-
tion, and suppose that dS(g, h) > R. Then either g ∈ A+(h) or h ∈ A+(g).

Proof of Observation 5.6. Let us pick an element a ∈ A+(g) ∩ A+(h).
Without loss of generality, we suppose that dX(x0, gx0) ≥ dX(x0, hx0).

Let γ (γ′, resp.) be the geodesic and let τ1 ≤ τ (σ1, σ, resp.) be the timing
that realize the membership of a in A+(g) (A+(h), resp.). Then τ and σ
differ by at most 0.04D, as

τ =0.02D dX
(
x0, aW (a)fDx0

)
=0.02D σ.

We now let Lmin :=
(
γ(τ)

∣∣ γ′(σ)
)
x0

, which satisfies

Lmin := d
(
x0, γ(τ)

)
−
(
x0
∣∣ γ′(σ)

)
γ(τ)
≥ τ − 0.04D.

Similarly, Lmin is greater than σ − 0.04D. By Lemma 3.5, we have

dX(γ(t), γ′(t)) < 4δ (0 ≤ t ≤ Lmin).

We observed earlier that Lemma 3.4 applies to the sequence(
x0, gW (g)x0, gW (g)fDx0, gW (g)fDwfDx0, γ(τ1)

)
.

In particular, there exist 0 ≤ t1 ≤ t2 ≤ τ1 such that

dX
(
gW (g)x0, γ(t1)

)
, dX

(
gW (g)fDx0, γ(t2)

)
≤ 0.011D.

Note that

|t1 − dX(x0, gx0)| ≤ 0.011D + dX(x0,W (g)x0) ≤ 0.012D.

By Lemma 3.2, gW (g)[x0, f
Dx0] and γ([t1, t2]) are 0.012D-equivalent.

This forces t2−t1 =0.022D dX(x0, f
Dx0) = D. Similarly, gW (g)fDw[x0, f

Dx0]
and γ([t2, τ1]) are 0.021D-equivalent and τ1 − t2 =0.032D D.

Similarly, there exist 0 ≤ s1 ≤ s2 ≤ σ1 for γ′ such that

dX
(
hW (h)x0, γ(s1)

)
dX
(
hW (h)fDx0, γ

′(s2)
)
≤ 0.01D

Note here that t2 or s2 are much smaller than τ1 or σ1, respectively, so they
are smaller than Lmin. In particular, dX(γ(t2), γ

′(t2)) < 4δ holds. Moreover,
s1 is 0.012D-close to dX(x0, hx0). Since we assumed that hx0 is closer than
gx0 to x0, we obtain

t1 ≥ s1 − 0.024D.
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Observe that the geodesic γ′ and the two timing σ1, t2 satisfy

dX
(
γ′(σ1), hW (h)fDwfDx0

)
< 0.02D,

dX
(
γ′(t2), gW (g)fDx0

)
≤ dX(γ′(t2), γ(t2)) + dX

(
γ(t2), gW (g)fDx0

)
≤ 4δ + 0.011D < 0.02D.

In the remaining, we will show that σ1 ≤ t2. This will guarantee g ∈ A+(h)
and end the proof.

Suppose to the contrary that σ1 > t2. Then we have[
t1 + 0.024D, t2

]
⊆ [s1, σ1] = [s1, s2] ∪ [s2, σ1].

In particular, one of [s1, s2] and [s2, σ1] should overlap with [t1 + 0.024D, t2]
for length at least 1

2(t2 − t1 − 0.024D) ≥ 0.46D.

(1) I := [t1, t2]∩[s1, s2] is longer than 0.46D. Recall that gW (g)[x0, f
Dx0]

and γ([t1, t2]) are 0.012D-equivalent. Hence, there exist p1, q1 ∈
gW (g)[x0, f

Dx0] that are 0.012D-close to γ(min I) and γ(max I −
0.05D), respectively. We can also take p2, q2 ∈ hW (h)[x0, f

Dx0] that
are 0.012D-close to γ′(min I) and γ′(max I − 0.05D), respectively.

Since min I ≤ max I − 0.05D ≤ τ − 0.05D ≤ Lmin, γ and γ′ are
4δ-fellow traveling at t = min I,max I − 0.05D. We thus have

dX(p1, p2), dX(q1, q2) ≤ 0.025D, dX(p2, q2) ≥ |I|−0.05D−2·0.012D ≥ 0.4D.

This means that the projection of {p1, q1} ⊆ gW (g)[x0, f
Dx0] onto

hW (h)[x0, f
Dx0] is larger than 0.2D. By Corollary 3.10(5), we have

dhW (h)Ax(f)(gW (g)Ax(f)) ≥ 0.1D ≥ K0. Theorem 3.13 implies that

W (g)−1 · g−1hW (h) ∈ EC(f). Moreover, note that

dX(gW (g)x0, hW (h)x0) ≤ dX(gW (g)x0, p1) + dX(p1, p2) + dX(p2, hW (h)x0)

≤ dX(x0, f
Dx0) + 4δ + dX(x0, f

Dx0).

In summary, we have

W (g)−1 · g−1hW (h) ∈ EC(f) ∩ {u ∈ G : dX(x0, ux0) ≤ 2D + 4δ}.

In other words, W (g)−1 · g−1hW (h) ∈ BS(R′) and g−1h ∈ BS(R).
This is a contradiction.

(2) I := [t1, t2] ∩ [s2, σ1] is longer than 0.46D. In this case, we can
similarly take points p1, q1 ∈ gW (g)[x0, f

Dx0] that are 0.012D-close
to γ(min I) and γ(max I − 0.05D), respectively. We can also pick
p2, q2 on hW (h)fDw[x0, f

Dx0] that are 0.021D-close to γ′(min I)
and γ′(max I − 0.05D), respectively. Again, dX(γ(t), γ′(t)) ≤ 4δ for
t = min I,max I − 0.05D. Then we have

dX(p1, p2), dX(q1, q2) ≤ 0.034D, dX(p2, q2) ≥ |I|−0.05D−2·0.021D ≥ 0.36D.

Then the projection of {p1, q1} ⊆ gW (g)[x0, f
Dx0] onto hW (h)fDw[x0, f

Dx0]
is larger than 0.2D. By Corollary 3.10(2), gW (g)Ax(f) has projec-
tion ≥ 0.1D onto hW (h)fDwAx(f). Theorem 3.13 implies that
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W (g)−1 · g−1hW (h)fDw ∈ EC(f). Moreover, note that

dX(gW (g)x0, hW (h)fDwx0) ≤ dX(gW (g)x0, p1) + dX(p1, p2) + dX(p2, hW (h)fDwx0)

≤ dX(x0, f
Dx0) + 4δ + dX(x0, f

Dx0).

In summary, we have

W (g)−1 · g−1hW (h)fDw ∈ EC(f) ∩ {u ∈ G : dX(x0, ux0) ≤ 2D + 4δ}.
In other words, W (g)−1 · g−1hW (h)fDw ∈ BS(R′) and g−1h ∈
BS(R). This is a contradiction.

Hence, neither situation can happen and we conclude g ∈ A+(h). �

For the same reason, we have

Observation 5.7. Let ε, ε′ ∈ {+,−}. Suppose that Aε(g) and Aε′(h) has
nonempty intersection, and suppose that dS(g, h) > R. Then either g ∈
Aε′(h) or h ∈ Aε(g).

We finally need:

Observation 5.8. For each g ∈ G, we have

G \ A±(g) ⊆ Hhalf
(
gW (g)fDw±1f2Dx0, gW (g)fDw±1f3Dx0

)
.

Proof of Observation 5.8. For convenience, let us write g := gW (g)fDw±1.
Let us pick u ∈ G \ Hhalf (gf2Dx0, gf

3Dx0). Let k, l ∈ Z be such that

πgAx(f)(ux0) ∩ [gfk, gfk+1] 6= ∅, πgAx(f)(uW (g)fDx0) ∩ [gf l, gf l+1] 6= ∅.
Corollary 3.10(2) tells us that

dX(gf ix0, ux0) =30δ+1 dX(gf ix0, gf
kx0)+dX(gfkx0, ux0) = |i−k|+dX(gfkx0, ux0). (∀i ∈ Z)

Since ux0 is not closer to gf2Dx0 than to gf3Dx0, we conclude that k ≥
2.45D. Meanwhile, note that dX(ux0, uW (u)fDx0) ≤ 1.01D. By Corollary
3.10(1), l ≥ 1.42D. This means that

(5.4)
(
gfDx0

∣∣uW (u)fDx0
)
gf2Dx0

≤ 0.6D.

Now for

(y0, y1, y2, y3, y4) :=
(
x0, gW (g)x0, gW (g)fDx0, gf

Dx0, gf
2Dx0)

we have (yi−1|yi+1)yi ≤ 0.01D for i = 1, 2, 3 and dX(yi−1, yi) ≥ 0.95D for
i = 2, 3, 4. Combining this with Inequality 5.4, we can apply Lemma 3.4
and conclude that [x0, uW (u)fDx0] is 0.011D-close to gW (g)fDw±1fDx0.
Hence, x ∈ A±(g). �

This time, we will define

A1 := {a ∈ A : #
(
A\Hhalf (vx0, vf

Dx0)
)
≥ N for v = aW (a)fDwf2D, aW (a)fDw−1f2D}.

We now pick a subset A2 of A1 that is maximally R-separated in the word
metric dS , i.e., we have

(1) dS(a, a′) ≥ R for each pair of distinct elements a, a′ ∈ A2;
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(2) A2 is a maximal subset of A1 satisfying this property.

Then
⋃
a∈A2

(a ·BS(R) ∩A) covers entire A1. We conclude

#A2 ≥
1

#BS(R)
·#A1 ≤

1

(2#S)R
#A1.

As before, we prepare empty collections B = U = G = ∅. Enumerate
A2 by the distance from x0, i.e., let A2 = {a1, a2, . . . , a#A2} be such that
dX(x0, ai) ≤ dX(x0, ai+1) for each i. At each step i = 1, . . . ,#A2, we will
put ai in either B or G; this decision is final and shall not be modified further.
We may put some other elements of A2 in U , whose their classification will
change later. When ai is declared good, then we will also define its sign
σ(ai) ∈ {+1,−1}. This way, we will obtain a function σ : G → {+1,−1} in
the end.

We will keep the balance #B ≤ #U + #G throughout. Finally, after the
last step there will be no U-element. At the end we will have #B ≤ #G.

We now describe the procedure. At step i,

(1) ifA2∩A+(ai) has no element, then we declare ai ∈ G and σ(ai) = +1;
(2) if not (1) and if A2 ∩A−(ai) has no element, then we declare ai ∈ G

and σ(ai) = −1;
(3) if not (1) and (2), we pick bi ∈ A2 ∩ A+(ai) and ci ∈ A2 ∩ A−(ai)

whose orbit points are the closest to x0. We declare ai ∈ B and
bi, ci ∈ U .

Till step i, G ∪ B comprises of elements from {a1, . . . , ai}; they do not
contain any of ai+1, ai+2, . . .. (∗) We now describe what happens at step i.

In case (1) or (2), G gains one more element that might be from U or
not. B does not change. Overall, #B stays the same and #U +#G does not
decrease. Similar situation happens in Case (2-a).

In case (2-b), B gains one element ai, which might be from U . In ex-
change, U gains elements bi and ci. Here Observation 5.5 guarantees that
dX(x0, bix0), dX(x0, cix0) > dX(x0, aix0) and that bi and ci are distinct.
Since A2 was labelled with respect to the distance from x0, we conclude
that bi, ci ∈ {ai+1, ai+2, . . .}; in other words, neither bi nor ci come from
G ∪ B. Hence, we conclude that elements in G ∪ B are never re-classified.

As before, we need to show that for each i < j such that ai, aj ∈ B,
{bi, ci} and {bj , cj} are disjoint. Suppose to the contrary that bi = bj . Then
Observation 5.6 tells us that either (1) ai ∈ A+(aj) or (2) aj ∈ A+(ai). In
the latter case, we have dX(x0, ai) > dX(x0, ai), contradicting the labelling
scheme. In the former case, we have

dX(x0, aix0) < dX(x0, ajx0) < dX(x0, bix0)

by Observation 5.5. This violates the minimality of bi. Hence, bi = bj cannot
happen. Likewise, using Observation 5.7 we can exclude the cases bi = cj ,
ci = bj and ci = cj . Thus, {bi, ci} and {bj , cj} are disjoint.

By the same logic as in the previous proof, we have #G ≥ #B in the end.
Moreover, for distinct a, b ∈ G, Aσ(a)(a) and Aσ(b)(b) are disjoint; if not,
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Observation 5.7 implies either b ∈ Aσ(a)(a) or a ∈ Aσ(b)(b), contradicting
the goodness of a and b.

Since X \Hhalf (aW (a)fDwσ(a)f2Dx0, aW (a)f3Dwσ(a)f2Dx0) ⊆ Aσ(a)(a)
has at least N elements for a ∈ G ⊆ A1, we conclude

#A ≥ N ·#G ≥ N · #A2

2
≥ N

(2#S)R
#A1 ≥

1

ε
#A1.

This ends the proof. �

We now need:

Lemma 5.9. Let X be a δ-hyperbolic space with a basepoint x0 and let G
be non-virtually cyclic group acting on X with an axial WPD loxodromic
element f . Let x0 ∈ Ax(f). Then there exists D0 such that the following
holds for each D > D0.

Let A ⊆ X be a finite set in X \ Hhalf (x0, f
Dx0) and let N = #A. Then

there exists a1, . . . , aN ∈ {fD, wfD} such that

(1) H := Hhalf (fDa1 · · · aNx0, fDa1 · · · aNfDx0) contains A, and

(2) H and fDa1 · · · aN · fD · w · f−D · a−1N · · · a
−1
1 f−DH are disjoint.

Proof. Let K0,K1, D0 be as in the proof of Proposition 5.2. Suppose D >
D0. We claim that the 2N halfspaces
(5.5){

X \ Hhalf (fDa1 · · · aNx0, faD1 · · · aNfDx0) : a1, . . . , aN ∈ {fD, wfD}
}

are mutually disjoint subsets of X \ Hhalf (x0, f
Dx0).

To see the disjointness, let z /∈ Hhalf (fDa1 · · · aNx0, faD1 · · · aNfDx0) and

z′ /∈ Hhalf (fDb1 · · · bNx0, fbD1 · · · bNfDx0) for some (a1, . . . , aN ) 6= (b1, . . . , bN ) ∈
{fD, wfD}N . Let m be the minimal one such that am 6= bm.

Let zi := fDa1 · · · aix0 and z′i := fDb1 · · · bix0 for i ≥ m− 1. We observe
that Lemma 3.4 applies to

(z, zN , zN−1, . . . , zm, zm−1 := z′m−1, z
′
m, . . . , z

′
N , z

′).

Indeed, we check that

(zi|zi−2)zi−1 , (z
′
i|z′i−2)z′i−1

≤ 6K0 + 8δ ≤ 0.01D (i = m+ 1, . . . , N),

(z|zN−1)zN , (z
′|z′N−1)z′N ≤

1

2
dX(x0, f

Dx0) ≤ 0.5D,

(zm|z′m)zm−1 ≤ 0.01D,

dX(zi, zi−1), dX(z′i, z
′
i−1) ≥ 0.99D (i = m, . . . , N).

Consequently, we have dX(z, z′) ≥ 2 · 0.9D and z 6= z′.
For the same reason, for each a1, . . . , aN ∈ {fD, wfD}, Hhalf (x0, f

Dx0)

and X \ Hhalf (fDa1 · · · aNx0, fDa1 · · · aNfDx0) are disjoint. This implies

that the latter is contained in X \ Hhalf (x0, f
Dx0). Hence, the sets in

Display 5.5 are indeed 2N disjoint subsets of X \ Hhalf (x0, f
Dx0. One of
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them should avoid A by the pigeonhole principle. Item (1) of the conclusion
now follows.

Moreover, a similar logic shows thatX\Hhalf (x0, f
−Dx0) andX\Hhalf (wx0, wf

−Dx0)
are disjoint, as Ax(f) and wAx(f) have K0-bounded projections onto each
other. This leads to Item (2) of the conclusion. �

Proposition 5.1 now follows from Proposition 5.2 and Lemma 5.9. There-
fore acylindrically hyperbolic groups satisfy the assumption of Theorem 2.8.

6. Branching set

Recall the notions of barriers and roughly branching sets (Definition 2.10,
2.12). Recall that HR(x0, y) := {z ∈ X : (z|y)x0 > R}. Our aim is to show:

Proposition 6.1. Let X be a δ-hyperbolic space and let G ≤ Isom(X) be
a non-virtually cyclic group with a unital, axial WPD element f ∈ G. Let
x0 ∈ Ax(f). Let S be a finite generating set of G. Then there exists r > 0
such that the following holds.

Let R > 0 and y ∈ X. Then there exists an r-branching subset B =
B1 t . . . t BR/r ⊆ G such that, for every g ∈ G such that gx0 ∈ HR(x0, y),
every dS-path connecting id to g passes through each of B1, . . . , BR/r.

Proof. Let K0 = K > 1000δ be as in Theorem 3.13 for G and f . Recall that
EC(f) is a virtually cyclic subgroup of G. Now let

A := {gAx(f) : g ∈ G}.

Note that diamγ(γ′) ≤ K0 for distinct axes γ, γ′ ∈ A ,
By enlarging K0, we can guarantee that dX(x0, sx0) < K0 for each s ∈ S.

Since G is not virtually cyclic, we can take w ∈ S \ {g ∈ G : g2 ∈ EC(f)}.
Then we have dX(x0, wx0) ≤ K0. By enlarging K0 once again, we can
guarantee the following:

Observation 6.2. for every x1, x2 ∈ X either

(1) (xj | p)x0 < K0 for each j ∈ {1, 2} and p ∈ Ax(f);
(2) (xj |wp)x0 < K0 for each j ∈ {1, 2} and p ∈ Ax(f), or
(3) (xj |w−1p)x0 < K0 for each j ∈ {1, 2} and p ∈ Ax(f).

We now describe the roughly branching barrier. Let

Ii :=
[
100K0i−25K0, 100K0i+25K0

]
, Ji :=

[
100K0i−K0, 100K0i+K0

]
,

Bi :=

{
g ∈ G :

(
gx0

∣∣ y)x0 ∈ Ii,
∀γ ∈ A

[
dγ(x0, y) ≥ 5K0 ∨ dγ(x0, gx0) ≤ 100K0

] } .
We claim that:

Claim 6.3. Let P = (g1, g2, . . . , gN ) be a dS-path such that (g1x0|y)x0 ∈ I0
and (gNx0|y)x0 ∈ I2. Then there exists i such that gi ∈ B1.
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Proof of Claim 6.3. For this proof, let

A ′ := {γ ∈ A : dγ(x0, y) < 5K0}.

Suppose to the contrary that P does not pass through B1. Recall that for
each z, z′ ∈ X, (z|y)x0 and (z′|y)x0 differ by at most dX(z, z′). Hence, along
the dS-path (g1, g2, . . . , gN ), the quantity (gix0|y)x0 changes by at most K0

at each step i. Since (gix0|y)x0 changes from less than 20K0 to more than
180K0, there exists a step i(1) for which (gi(1)x0|y)x0 lies in J1.

Since we supposed that P does not pass through B1, x0 and gi(1)x0 are
100K0-separated along some γ ∈ A ′. In particular,

C0 :=
{
γ ∈ A ′ : dγ(x0, gi(1)x0) ≥ 80K0

}
is non-empty. We pick γ0 ∈ C0 that is the closest to x0.

At this moment, we observe:

Observation 6.4. Let γ1, γ2, . . . , γn ∈ A ′ and z ∈ X be such that:

(1) dγi−1(x0, γi) ≥ 50K0 for 1 ≤ i ≤ n;
(2) dγn(x0, z) ≥ 50K0.

Then (z|y)x0 and (gi(1)x0|y)x0 are 22K0-close. In particular, (z|y)x0 lies in
I1 and not in I2.

To see this, suppose that γ1, . . . , γn ∈ A ′ and z ∈ X satisfy the as-
sumption. Then dγ0(x0, z) ≥ 46K0 by Lemma 3.14. Let p ∈ πγ0(x0)
and q ∈ πγ0(z). Then [x0, z] is 0.01K0-close to p. Meanwhile, recall that
dγ0(x0, y) < 5K0, which implies dγ0(y, z) ≥ 40K0. By Corollary 3.10(2),
[y, z] is 0.01K0-close to πγ0(y), which is 5K0-close to p. In conclusion, [x0, z]
and [y, z] are 0.01K0-close and 5.01K0-close to p, respectively. Hence, (z|y)x0
and (p|y)x0 differ by at most 10.1K0.

Now recall that dγ0(x0, gi(1)x0) ≥ 100K0. For the same reason, (gi(1)x0|y)x0
and (p|y)x0 differ by at most 10.1K0. Observation 6.4 now follows.

Let us now go back to the proof of the claim. If dγ0(x0, gjx0) ≥ 80K0

for all j ≥ i(1), then Observation 6.4 tells us that the (gNx0|y)x0 lies in I1
and not in I2, a contradiction. Hence, we can pick the earliest i(2) > i(1)
such that dγ0(x0, gi(2)x0) ≤ 80K0. By the coarse Lipschitzness of πγ0(·),
we have dγ0(x0, gi(2)x0) ≥ 78K0, and Observation 6.4 still tells us that

(gi(2)x0|y)x0
)
∈ I1. Since gi(2) ∈ P is assumed not to be in B1, the col-

lection

C1 := {γ ∈ A ′ : dγ(x0, gi(2)x0) > 100K0}
is nonempty. We pick γ1 ∈ C1 that is the closest to x0. Clearly γ1 6= γ0.

Note that [x0, gi(2)x0] has large projections onto both γ0 and γ1. Let η0
and η1 be subsegments of [x0, gi(2)x0] that are 12δ-equivalent to the two
projections, respectively. Then η0 is at least 77K0-long and η1 is at least
99K0-long. Moreover, recall that diamγ0(γ1) < K0 as distinct axes in A
have K0-bounded projection. This implies that η0 and η1 overlap for length
less than 2K0.



PERCOLATION IN ACYLINDRICALLY HYPERBOLIC GROUPS 37

Suppose to the contrary that dX(x0, γ1) < dX(x0, γ0). This implies that
η1 appears earlier than η0 along [x0, gi(2)x0]. Since they do not overlap much
and since η0 is long enough, we can take p ∈ η0 such that

dX(gi(2)x0, p) ≤ dX(gi(2)x0, η1)− 75K0

≤ dX
(
gi(2)x0, πγ1([x0, gi(2)x0])

)
− 74K0 = dX(gi(2)x0, γ1)− 74K0.

By Lemma 3.9 we have dγ1(p, gi(2)x0) ≤ 12δ. Since p is 12δ-close to γ0 and
since γ0 has bounded projection onto γ1 (as they are distinct!), we conclude
that dγ1(γ0, gi(2)x0) ≤ 3K0. As a result, we have

dγ1(x0, γ0) ≥ 97K0.

Let us observe C0 for the moment. Since dγ0(x, gi(1)x0) ≥ 100K0, there
exists a point p ∈ [x, gi(1)x0] that is 12δ-close to some q ∈ γ0. Since
dγ1(x0, γ0) ≥ 97K0 and diamγ1(γ0) ≤ K0, we have dγ1(x0, q) ≥ 96K0 and
dγ1(x0, p) ≥ 95K0. In particular, dγ1([x0, gi(1)x0]) ≥ 95K0, which implies
dγ1(x0, gi(1)x0) ≥ 94K0 by Corollary 3.10(3). Thus, γ1 belongs to C0. Since
dX(x0, γ1) < dX(x0, γ0), this contradicts the minimality of γ0.

We therefore conclude that dX(x0, γ0) ≤ dX(x0, γ1), and η0 appears ear-
lier than η1. Then dη0(η1, gi2x0) ≤ 2K0 and dγ0(gi(2)x0, γ1) ≤ 3K0. Hence,
dγ0(x0, γ1) ≥ 87K0.

We keep this manner. If dγ1(x0, gjx0) ≥ 80K0 for all j > i(2), then
(gNx0|y)x0 lies in I1 and not in I2 by Observation 6.4, a contradiction.
Hence, there is the first moment i(3) > i(2) at which dγ1(x0, gjx0) ≤ 80K0.
Then dγ1(x0, gjx0) =2K0 80K0 and Observation 6.4 again tells us that
(gi(3)x0, y)x0 ∈ I1. Since gi3 ∈ P /∈ B1, the collection

C2 := {γ ∈ A ′ : dγ(x0, gi(3)x0) > 100K0}

is nonempty. We pick γ2 ∈ C2 that is the closest to x0. If γ2 is closer than
γ1 to x0, then we can argue the same as before that γ2 ∈ C1, violating the
minimality of γ1. It follows that γ1 is closer to γ2, and dγ1(x0, γ2) ≥ 90K0.

If this process does not halt, we obtain infinite sequence of step numbers
i(1) < i(2) < . . . for the finite path P , a contradiction. Hence, the process
must halt and the path P should intersect B1. �

Similarly, for g ∈ G such that gx0 ∈ HR(x0, y), every dS-path from id to
g must pass through each of B1, B2, . . . , BR/100K0

.
It remains to show that ti≥1Bi is roughly branching. Since EC(f) is a

finite extension of a quasi-isometrically embedded subgroup 〈f〉, the set

EC(f) ∩ {g ∈ G : dX(x0, gx0) < 200K0}

is finite. Hence, it is contained in {g : ‖g‖S ≤ R′} for some R′. We claim
that ti≥1Bi is (R′ + 4 + 200K0‖f‖S)-roughly branching.

Let us take a subset B′ of ti≥1Bi that is maximally (R′+2)-separated (in
terms of the word metric dS). We will construct a map F : B′ → F (B′) ⊆ G.
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Given a ∈ B′, Observation 6.2 guarantees W (a) ∈ {w−1, id, w} such that(
x0
∣∣aW (a)p

)
ax0

< K0,
(
y
∣∣ aW (a)p

)
ax0

< K0

(
∀p ∈ Ax(f)

)
.

Furthermore, there exists W ∈ {w−1, id, w} such that(
y
∣∣W −1p

)
x0
< K0.

(
∀p ∈ Ax(f)

)
Then we define

F (a) := aW (a)f200K0W .

We now claim that:

Claim 6.5. If a1, a2, . . . , ak, b1, . . . , bk ∈ B′ are such that

F (a1)F (a2) · · ·F (ak) = F (b1)F (b2) · · ·F (bk),

then a1 = b1.

Proof of Claim 6.5. Let U = F (a1) · · ·F (ak). Note that(
[x0, a1x0], a1[x0,W (a1)f

200K0W x0], F (a1)[x0, a2x0], F (a1)a2[x0,W (a2)f
200K0W x0], . . .

)
is a sequence of consecutive geodesics, each longer than 50K0. (Recall that
(aix0|y)x0 ∈ I1 ∪ I2 ∪ . . . is at least 75K0.) Next, between each pair of
consecutive geodesics the Gromov product is bounded by 2.1K0. This is
because

• (x0|F (ai)W −1x0)aix0 < K0 and dX(F (ai)W −1x0, F (ai)x0) < K0.
•
(
aiW (ai)x0

∣∣F (ai)y
)
F (ai)x0

=
(
W −1f−200K0x0

∣∣ y)
x0
< K0 and (y|ai+1x0)x0 ≥

75K0, which imply
(
aiW (ai)x0

∣∣F (ai)ai+1x0
)
F (ai)x0

< K0 + 4δ.

Moreover, dX(aiW (ai)x0, aix0) < K0.

By the stability lemma, there exist points p1, q1, . . . , pk, qk on [x0, Ux0], in or-
der from closest to farthest from x0, such that dX(p1, a1x0), dX(q1, F (a1)x0), . . .
are all smaller than 2.2K0. Similarly, there exist points p′1, q

′
1, . . . , p

′
k, q
′
k on

[x0, Ux0], in order, such that dX(p′1, b1x0), dX(q′1, F (b1)x0), . . . ≤ 2.2K0.
Suppose to the contrary that dX(x0, p1) > dX(x0, p

′
1) + 130K0. Note that

dX
(
p′1, b1W (b1)x0

)
≤ dX(p′1, b1x0) + dX

(
x0,W (b1)x0

)
≤ 3.2K0,

and similarly q′1 and b1W (b1) · f200K0x0 are 3.2K0-close. By Lemma 3.2,
[p′1, q

′
1] is 3.3K0-equivalent to b1W (b1)[x0, f

200K0x0].
Let q be q′1 or p1, whichever coming earlier along [x0, Ux0]. Then,

• p′1 and q are both closer to x0 than p1 is. Hence, p′1, q ∈ [x0, p1].
• q ∈ [p′1, q

′
1] is 3.3K0-close to b1W (b1)Ax(f), as well as p′1. Meanwhile,

we have dX(p′1, q
′
1) =6.6K0 dX(x0, f

200K0) = 200K0 and dX(p′1, p1) >
130K0. Hence, p′1 and q are 130K0-distant points on [x0, p1] that are
3.3K0-close to b1W (b1)Ax(f).

Now observe that [x0, a1x0] and [x0, p1] are 2.3K0-equivalent, as a1x0
and p1 are 2.2K0-close. Hence, b1W (b1)Ax(f) is 5.6K0-close to points on
[x0, a1x0] that are at least 127K0-distant. This implies that diamb1W (b1)Ax(f)([x0, a1x0]) >
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115K0. Corollary 3.10(5) then tells us that db1W (b1)Ax(f)(x0, a1x0) > 114K0.
Recall our definition of Bi’s. We are led to db1W (b1)Ax(f)(x0, y) ≥ 5K0.

Meanwhile, our definition of W (b1) tells us that (x0|p)b1W (b1)x0 < 2K0

for every p ∈ b1W (b1)Ax(f). Lemma 3.8 implies that the projection of
x0 onto b1W (b1)Ax(f) is (2K0 + 8δ)-close to b1W (b1)x0. Similarly, be-
cause (y|p)b1W (b1)x0 < 2K0 for every p ∈ b1W (b1)Ax(f), the projection
πb1W (b1)Ax(f)(y) should be (2K0 + 8δ)-close to b1W (b1)x0. In conclusion,
db1W (b1)Ax(f)(x0, y) < 4.5K0. This is a contradiction.

A similar contradiction happens if dX(x0, p
′
1) > dX(x0, p1) + 130K0.

Hence, p1 and p′1 are 130K0-close. Since q1 (q′1, resp.) appears later than p1
(p′1. resp.) by at least 195K0, we conclude that [p1, q1] and [p′1, q

′
1] overlap

for length at least 65K0.
Recall that [p1, q1] ([p′1, q

′
1], resp.) and a1W (a1)[x0, f

200K0x0] (b1W (b1)[x0, f
200K0x0],

resp.) are 3.3K0-equivalent. By Corollary 3.10(1), (4), (5), we conclude

diama1W (a1)Ax(f)

(
b1W (b1)Ax(f)

)
≥ 20K0.

This implies that W (a1)
−1a−11 b1W (b1) lies in EC(f). Meanwhile, note that

dX(a1W (a1)x0, b1W (b1)x0) ≤ 140K0. Hence, W (a1)
−1a−11 b1W (b1) lies in

BS(R′), and dS(a1, b1) ≤ R′ + 2. Since a1, b1 are chosen from an (R′ + 2)-
separated set B′, this forces a1 = b1. �

Now an inductive argument leads to:

Claim 6.6. If a1, a2, . . . , ak, b1, . . . , bk ∈ B′ are such that

F (a1)F (a2) · · ·F (ak) = F (b1)F (b2) · · ·F (bk),

then ai = bi for each i = 1, . . . , k.

It remains to check that tiBi is contained in a bounded neighborhood
of F (B′). Given any a ∈ tiBi, it is (R′ + 2)-close to some a′ ∈ B′, as
B′ is a maximal (R′ + 2)-separated subset of B. Now, F (a′) and a′ are
(2 + 200K0‖f‖S)-close. In summary, a is (R + 4 + 200K0‖f‖S)-close to
F (B′) as desired. �

Combining Proposition 4.6 and Proposition 6.1, we conclude that rela-
tively hyperbolic groups satisfy the assumption of Theorem 2.16 with

HD :=
{
{g ∈ G : gx0 ∈ H100K0D(x0, y)} : y ∈ X

}
and GD,E := ∅ for each D,E. Therefore, Cayley graphs of relatively hy-
perbolic groups satisfy the assumption of Theorem 2.5, and pc < pu and
∆pc < +∞ hold for such graphs.

7. Barriers in acylindrically hyperbolic group

Let G be an acylindrical hyperbolic group with a finite generating set S.
Then G acts on a suitable δ-hyperbolic space (X, dX) with a unital, axial
WPD loxodromic element f ∈ G. Let x0 ∈ Ax(f). We fix these choices
throughout the section.
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γ(τ1) γ(τ2) γ(τ3) γ(τ)
gx0

x0
hx0 hf200Dx0

ux0

Figure 3. Schematics for A+
D,E,f (g).

The following is immediate from the δ-hyperbolicity.

Fact 7.1. Let i < j < k < l be integers, let x ∈ Nj−i−2δ(f ix0) and let

y ∈ Nl−k−2δ(f lx0). Then there exists a subsegment [x′, y′] of [x, y] such that
x′ ∈ N2δ(f

jx0) and y′ ∈ N2δ(f
kx0).

For D,E ≥ 0 and u ∈ G, we consider two versions of anti-halfspaces:

A±D,E,f (g) :=

u ∈ G :
∃ geodesic γ : [0, τ ]→ X, ∃0 ≤ τ1 ≤ τ2 ≤ τ3 ≤ τ , ∃h ∈ G

such that ‖h‖S ≤ E, γ(0) = gx0, γ(τ1) ∈ N1.1D(x0),
γ(τ2) ∈ N20δ(hx0), γ(τ3) ∈ N20δ(hf

±200Dx0), γ(τ) ∈ N5D(ux0)

 ,

AD,E,f (g) := A+
D,E,f (g) ∪ A−D,E,f (g),

B±D,E,f (g) :=

u ∈ G :
∃ geodesic γ : [0, τ ]→ X, ∃0 ≤ τ1 ≤ τ2 ≤ τ3 ≤ τ , ∃h ∈ G

such that ‖h‖S ≤ 2E, γ(0) = gx0, γ(τ1) ∈ N3D(x0),
γ(τ2) ∈ N20δ(hx0), γ(τ3) ∈ N20δ(hf

±180Dx0), γ(τ) ∈ N5D(ux0)

 ,

BD,E,f (y) := B+
D,E,f (g) ∪B−D,E,f (g).

Some observations are in order.

Observation 7.2. Let D ≥ 1000(δ + 1) and E > 10D‖f‖S. Then for each
g ∈ G we have

A±D,E,f (g) ⊆ B±D,E,f (g). (∀g ∈ G)

Proof. Let u ∈ A±D,E,f (g). Let γ : [0, τ ] → X, 0 ≤ τ1 ≤ τ2 ≤ τ3 ≤ τ and

h ∈ G be the ingredients for the membership. In particular, γ(τ2) is 20δ-
close to hx0 and γ(τ3) is 20δ-close to hf±200Dx0. By Fact 7.1, there exist
τ2 ≤ τ ′2 ≤ τ ′3 ≤ τ3 such that

dX
(
hf±10Dx0, γ(τ ′2)

)
≤ 2δ, dX

(
hf±190Dx0, γ(τ ′3)

)
≤ 2δ.

Furthermore, ‖hf±10D‖S ≤ ‖h‖S + 10D‖f‖S ≤ 2E holds. It is now clear
that u ∈ B±D,E,f (g). �

In the definition of B±D,E,f (g) we have dX(γ(τ2), γ(τ3)) ≥ 180D − 2 · 20δ,

whereas d(x0, γ(τ1)), dX(ux0, γ(τ)) ≤ 5D. This leads to:

Observation 7.3. Let D ≥ 1000(δ + 1) and let u ∈ BD,E,f (g). Then
dX(x0, ux0) and dX(gx0, ux0) are at least 100D. In particular, id, g /∈
BD,E,f (g). Moreover, we have dX(gx0, ux0) ≥ dX(gx0, x0) + 100D.
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Recall that EC(f) is a finite extension of a cyclic subgroup 〈f〉, which is
quasi-isometrically embedded in X. Hence, the set

EC(f) ∩ {g : dX(x0, gx0) ≤ 500D + 2E + 20δ}

is finite. The following observation tells us that “lineage is linear”.

Observation 7.4. For each large enough D > 0 and for each E > 0 there
exists R > 0 such that the following holds.

Let u, v ∈ G and suppose that there exists w ∈ uAD,E,f (u−1)∩vBD,E,f (v−1).
Then one of the following holds.

(1) v ∈ uAD,E,f (u−1) and dX(wx0, vx0) < dX(wx0, ux0);
(2) u ∈ vBD,E,f (v−1) and dX(wx0, ux0) < dX(wx0, vx0), or
(3) dS(u, v) ≥ R.

Proof. Let K0 = K be the constant as in Theorem 3.13. Furthermore, let
D0 = D0 be as in Lemma 3.16. We assume that D > 1000(δ +K0 +D0).

Furthermore, let R′ = R(200D, 300D‖f‖S +E) be as in Lemma 3.16, and
let R = R′ + E.

By the assumption, there exist a geodesic γ : [0, τ ] → X, 0 ≤ τ1 ≤ τ2 ≤
τ3 ≤ τ , a sign ε ∈ {+1,−1} and an element h ∈ G with ‖h‖S ≤ E such that

γ(0) = x0, dX
(
γ(τ1), ux0

)
< 1.1D, dX

(
γ(τ2), uhx0

)
< 20δ,

dX
(
γ(τ3), uhf

200εDx0
)
< 20δ, dX

(
γ(τ), wx0

)
< 5D.

Similarly, there exist a geodesic γ′ : [0, σ] → X, 0 ≤ σ1 ≤ σ2 ≤ σ3 ≤ σ,
ε′ ∈ {+1,−1} and h′ ∈ G with ‖h′‖S ≤ 2E such that

γ′(0) = x0, dX
(
γ′(σ1), vx0

)
< 3D, dX

(
γ′(σ2), vh

′x0
)
< 20δ,

dX
(
γ′(σ3), vh

′f180ε
′Dx0

)
< 20δ, dX

(
γ′(σ), wx0

)
< 5D.

We define Lmin := (γ(τ)|γ′(σ))x0 . Then we have

Lmin = τ − (x0|γ′(σ))γ(τ) ≥ τ − dX(γ(τ), γ′(σ)) ≥ τ − 10D.

Similarly, Lmin ≥ τ − 10D. Similarly Lmin ≥ σ− 10D. By Lemma 3.5, γ(t)
and γ′(t) are 4δ-close for 0 ≤ t ≤ Lmin.

We claim that if τ2 ≤ σ2 then either (1) or (3) holds, and if τ2 ≥ σ2 then
either (2) or (3) holds. Since the latter case follows from a similar argument,
we only explain the former one.

If τ3 ≤ σ1 + 1.5D in addition, then we have

dX
(
γ(σ1 + 1.5D), vx0

)
≤ dX

(
γ(σ1 + 1.5D), γ(σ1)

)
+ dX(γ(σ1), γ

′(σ1)) + dX
(
γ′(σ1), vx0

)
≤ 1.5D + 4δ + 3D < 4.6D.

Here, we can feed the parameter σ1 +1.5D in γ(·) because σ1 ≤ σ1 +1.5D ≤
σ − 150D ≤ Lmin ≤ τ . Since we have the geodesic γ with timing τ1 ≤ τ2 ≤
τ3 ≤ σ1 + 1.5D, we conclude that vx0 ∈ uAD,E,f (u−1). Furthermore, since
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τ3 ≥ τ2 + 199D we have

dX(wx0, vx0) =5D τ − (σ1 + 1.5D) ≤ τ − τ3
≤ τ − τ2 + 199D ≤ τ − τ1 + 199D =D dX(wx0, ux0) + 199D.

If τ3 ≥ σ1 + 1.5D, then we claim that the intersection I of [σ1, σ3] and
[τ2, τ3] is large. Indeed, there are three cases:

• First note that [σ1, σ3] and [τ2, τ3] are both 100D-long. Hence, if one
includes the other one, the intersection I must be 100D-long.
• If σ1 ≤ τ2 and σ3 ≤ τ3, then I is 100D-long as

σ3 ≥ σ2 + 100D ≥ τ2 + 100D.

• If σ1 ≥ τ2 and σ3 ≥ τ3, then I is at least 1.5D-long by the assumption
σ1 ≤ τ3 − 1.5D.

All in all, we have diam(I) ≥ 1.5D. In other words, the projections of γ(σ1)
and γ(σ3) onto γ([τ2, τ3]) is at least 1.5D-distant. Note that uh[x0, f

200εDx0]
and γ([τ2, τ3]) are 22δ-equivalent by Lemma 3.2. Hence, Corollary 3.10(4)
tells us that duh[x0,f200εDx0](γ(σ1), γ(σ3)) ≥ 1.4D. Moreover, note that

dX(γ(σ1), vx0) ≤ dX(γ(σ1), γ
′(σ1)) + dX(γ′(σ1), vx0) ≤ 4δ + 1.1D.

Similarly, γ(σ3) and vh′f180ε
′Dx0 are 24δ-close. By Corollary 3.10(1) we

conclude
duh[x0,f200εDx0](vx0, vh

′f180ε
′Dx0) > 0.1D > K0.

Note that ‖h′f180ε′D‖S ≤ E+180D‖f‖S . Our choice of constant R′ based on
Lemma 3.16 guarantees dS(uh, v) ≤ R′. Hence, dS(u, v) ≤ R′ +E = R. �

We now need

Observation 7.5. Let D be large enough and let E > 10‖f‖SD. Let
u, v, w ∈ G such that w ∈ A±D,E,f (u) and (vx0|wx0)x0 < 2D. Then w ∈
B±D,E,f (v).

Proof. Let γ : [0, τ ]→ X be a geodesic starting at ux0 and let h ∈ G be the
ones that realize the membership w ∈ A±D,E,f (u). In particular, there are

timing τ1 ≤ τ2 ≤ τ3 ≤ τ such that

dX(γ(τ1), x0) < 1.1D, dX(γ(τ2), hx0) < 20δ,

dX
(
γ(τ3), hf

±200Dx0
)
< 20δ, dX(γ(τ), wx0) < 5D.

Let us draw a geodesic η : [0, L′] → X that connects vx0 to wx0. Since
we are assuming (vx0|wx0)x0 < 2D, there exists τ∗1 such that η(τ∗1 ) and x0
are (2D + 20δ)-close. Now η([τ∗1 , L

′]) and γ([τ1, τ3]) are 5.1D-equivalent by
Lemma 3.2. Namely, there exist τ∗1 ≤ t2 ≤ t3 ≤ L′ such that η(t2) and η(t3)
are 5.5D-close to hx0 and hf200εDx0, respectively.

Now Fact 7.1 gives timing t2 ≤ τ∗2 ≤ τ∗3 ≤ t3 such that η(τ∗2 ) and η(τ∗3 ) are
2δ-close to hf10εDx0 and hf190εDx0, respectively. The geodesic η together
with τ∗1 ≤ τ∗2 ≤ τ∗3 ≤ L show that v ∈ uBD,E,f (g), as ‖hf10εD‖S ≤ E +
10‖f‖SD ≤ 2E. �
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Now for each u ∈ G we define

HD,E,f (u) :=
{
g ∈ G :

(
gx0
∣∣ux0)x0 > D or 6 ∃h ∈ G

[
[‖h‖S ≤ E] ∧ [dhAx(f)(x0, gx0) ≥ 250D]

]}
.

We call it an f -halfspace radius parameters (D,E). This is related to anti-
halfspaces AD,E,f because:

Lemma 7.6. For each D > 1000(δ+ 1) and E ≥ 0 there exists F > E such
that [

g /∈ HD,E,f (u)
]
⇒
[
g ∈ AD,F,f (u)

]
(∀g, u ∈ G).

Proof. Let K0 := maxs∈S dX(x0, sx0) + ‖f‖S . We claim that F := E +
(2K0E + 2D + 1)K0 works. To see this, let g /∈ HD,E,f (u). Then there
exists h ∈ G such that ‖h‖S ≤ E and dhAx(f)(x0, gx0) ≥ 250D. Now let
γ : [0, L] → X be the geodesic connecting ux0 to gx0. Since (gx0|ux0)x0 ≤
D, there exists τ1 ∈ [0, L] such that γ(τ1) is 1.1D-close to x0. Then by the
coarse Lipschitzness of πhAx(f)(·), we have

(7.1) dhAx(f)
(
γ(τ1), γ(L)

)
> dhAx(f)(x0, gx0)− (1.1D + 12δ) > 248D.

Let i, j ∈ Z be such that πhAx(f)(γ(τ1)) intersects [hf ix0, hf
i+1x0] and

πhAx(f)(γ(L)) intersects [hf jx0, hf
j+1x0]. Then either j > i + 247D or

j < i − 247D due to Inequality 7.1. We will focus on the former case; the
latter case can be handled in a similar way. In this case, Corollary 3.10 tells
us that there exist τ1 ≤ τ2 ≤ τ3 ≤ L such that γ(τ2) is 12δ-close to hf i+1x0
and γ(τ3) is 12δ-close to hf i+200D+1x0.

Recall that dX(γ(τ1), hAx(f)) ≤ dX(γ(τ1), x0) + dX(x0, hx0). Using this,
we observe that

dX(hx0, hf
i+1x0) ≤ dX(hx0, πhAx(f)(γ(τ1)) + 1

≤ dX
(
hx0, γ(τ1)

)
+ dX

(
γ(τ1), hAx(f)

)
≤ 2dX(x0, hx0) + 2D + 1 ≤ 2K0E + 2D + 1.

This means |i+ 1| < 2K0E+ 2D+ 1 and ‖hf i+1‖S ≤ ‖h‖S + (2K0E+ 2D+
1)‖f‖S ≤ F .

All in all, our choice of timing τ1 ≤ τ2 ≤ τ3 ≤ L, together with hf i+1 ∈ G
with ‖hf i+1‖S ≤ F , guarantees that gx0 ∈ AD,F,f (u) as desired. �

We can now state:

Proposition 7.7. Let X be a δ-hyperbolic space and let G be a non-virtually
cyclic group acting on X with an axial, unital WPD loxodromic element f .
Let S be a finite generating set of G. Let x0 ∈ Ax(f).

Then for each ε > 0 and for each large D > 0 and E,E′ ≥ 0 there exists
a constant N = N(ε,D,E,E′) such that for every finite set A ⊆ G there
exists a subset A′ ⊆ A satisfying:

(1) #A′ ≥ (1− ε)#A;
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(2) For each a ∈ A′ there exist f -halfspaces H1,H2 ⊆ G with radius
parameters (D,E) such that

#
(
A \ a ·

(
H1 ∪H2 \ {g ∈ G : ‖g‖S ≤ E′}

))
≤ N.

Proof. Note that {g ∈ G : ‖g‖S ≤ E′} have elements at most (2#S)E
′
.

Hence, the statement for general E′ will follow once we prove it for E′ = 0.
For this reason we set E′ = 0. Let D be large enough that Observation 7.3,
7.4 and 7.5 apply, and let E ≥ 10‖f‖SD.

Let F = F (D,E) be as in Lemma 7.6 and let R0 = R be as in Observation
7.4 for (D,F ). We claim that

N = N(ε,D,E) :=
2 · (2#S)R

ε

works.
Let us begin the proof by collecting problematic elements, i.e.,

A1 := A\A′ =
{
a ∈ A :

#
(
A \ a(H1 ∪H2)

)
≥ N for every f -halfspaces

H1,H2 with radius parameters (D,E)

}
.

Let A2 be a maximally R-separated subset A2 of A1, i.e., we have

(1) dS(a, a′) ≥ R for each pair of distinct elements a, a′ ∈ A2;
(2) A2 is a maximal subset of A1 satisfying this property.

Then
⋃
a∈A2

a · {g ∈ G : ‖g‖S ≤ R} covers entire A1. Hence, we have

#A2 ≥
1

(2#S)R
·#A1.

As before, we first prepare empty collections B = U = G = ∅. Enumerate
A2 by the distance from x0, i.e., let A2 = {a1, a2, . . . , a#A2} be such that
dX(x0, ai) ≤ dX(x0, ai+1) for each i.

We now describe a procedure that takes place throughout #A2 steps. At
step i, we first declare Ai := aiAD,F,f (a−1i ).

(1) If A2 ∩Ai has no element, then we declare that ai ∈ G and bi := id.
(2) If not, pick bi ∈ A2 ∩ Ai whose orbit point bix0 is the closest to x0.

We then declare A′i := aiAD,F,f (a−1i bi).
(a) If A2 ∩ Ai ∩ A′i has no element, then we declare that ai ∈ G.
(b) If not, we pick ci ∈ A2 ∩ Ai ∩ A′i whose orbit point cix0 is the

closest to x0. We then declare ai ∈ B and bi, ci ∈ U .

(If an element in U is declared good or bad, it is not undecided anymore;
we remove it from U .)

Till step i, G ∪ B comprises of elements from {a1, . . . , ai}; they do not
contain any of ai+1, ai+2, . . .. (∗) Let us now observe what happens at step
i.

In case (1), G gains one more element that might be from U or not. B does
not change. Overall, #B stays the same and #U + #G does not decrease.
Similar situation happens in Case (2-a).
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In case (2-b), B gains one element ai, which might be from U . In ex-
change, U gains elements bi and ci. Here Observation 7.3 guarantees that
dX(x0, bix0), dX(x0, cix0) > dX(x0, aix0). Since A2 was labelled with re-
spect to the distance from x0, we conclude that bi, ci ∈ {ai+1, ai+2, . . .};
in other words, neither bi nor ci come from G ∪ B. We thus confirm that
elements are never re-classified once they are put in G ∪ B.

Furthermore, Observation 7.3 guarantees that dX(bix0, cix0) > 100D.
Hence bi and ci are distinct elements. If bi, ci are genuinely new addition to
U and are not re-used from U at step i− 1, then we can conclude that #U
increases at least by 1 in Case (2-b). It remains to show

Claim 7.8. For i < j such that ai, aj ∈ B, we have {bi, ci} ∩ {bj , cj} = ∅.

Proof of Claim 7.8. Suppose to the contrary that bi ∈ {bj , cj}. That means

bi ∈ aiAD,F,f (a−1i ) ∩ ajAD,F,f (a−1j ).

Here, recall that dX(x0, aix0) ≤ dX(x0, ajx0) and dS(ai, aj) > R. Obser-

vation 7.4 tells us that aj ∈ aiAD,F,f (a−1i ). (In Observation 7.4, Case 2
cannot happen because of Observation 7.3, and Case 3 cannot happen for
dS(ai, aj) > R.) Here, note that dX(x0, ajx0) < dX(x0, bjx0) because of
Observation 7.3. This contradicts the minimality of bi.

Next, suppose to the contrary that ci ∈ {bj , cj}. That means

ci ∈ aiAD,F,f (a−1i ) ∩ aiAD,F,f (a−1i bi) ∩ ajAD,F,f (a−1j ).

For the same reason as above, we have aj ∈ aiAD,F,f (a−1i ) and dX(cix0, ajx0) <
dX(cix0, aix0).

We then have

dX(x0, ajx0) ≥ dX(x0, aix0) + 100D, (∵ Observation 7.3)

dX(bix0, ajx0) ≥ dX(bix0, cix0)− dX(ajx0, cix0)

≥ dX(bix0, cix0)− dX(cix0, aix0)

=2D dX(bix0, aix0)
(
∵ ci ∈ aiAD,F,f (a−1i bi)

)
.

This implies that (x0|bix0)ajx0 ≥ 98D. Meanwhile, (x0|cix0)ajx0 ≤ D as ci ∈
ajAD,F,f (a−1j ). By Lemma 3.6, we have (bix0|cix0)ajx0 < 2D. Combining

this with ci ∈ ajAD,F,f (a−1j ), we can apply Observation 7.5 to conclude that

ci ∈ ajBD,F,f (a−1j bi).

We thus have ci ∈ aiAD,E,f (a−1i , bi) ∩ ajAD,E,f (a−1j bi). By Observation
7.4, either:

(1) aj ∈ aiAD,F,f (a−1i bi) and dX(cix0, ajx0) < dX(cix0, aix0), or

(2) ai ∈ ajBD,F,f (a−1j bi) and dX(cix0, ajx0) > dX(cix0, aix0).

(Again, dS(ai, aj) < R is ruled out.) Since we already know dX(cix0, ajx0) <
dX(cix0, aix0), the former case happens.

Hence aj ∈ aiAD,F,f (a−1i )∩aiAD,F,f (a−1i bi) with dX(x0, ajx0) < dX(x0, cix0)−
100D, as ci ∈ ajAD,F,f (a−1j ). This contradicts the minimality of ci. �
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Thanks to the claim, we conclude that #B ≤ #U + #G at each step. But
recall also that ai ∈ A2 is declared good or bad at step i and is not affected
thereafter. Hence, after the last step, there is no element of U left. Hence,
we have #B ≤ #G, and G takes up at least half of A2.

Now, with the final G in hand, for each i ∈ {1, . . . ,#A2} such that ai ∈ G,
we define

Ki := A \ ai
(
HD,E,f (a−1i ) ∪HD,E,f (a−1i bi)

)
.

Since ai ∈ G ⊆ A2, we have #Ki ≥ N . The remaining claim is:

Claim 7.9. For every pair of distinct elements ai, aj ∈ G, Ki and Kj do
not intersect.

To check this claim, suppose to the contrary that Ki and Kj have a
common element w for some i < j such that ai, aj ∈ G. By Lemma 7.6, we
have

w ∈ aiAD,F,f (a−1i ) ∩ aiAD,F,f (a−1i bi) ∩ ajAD,F,f (a−1j ) ∩ ajAD,F,f (a−1j bj).

Depending on whether dX(wx0, ajx0) ≤ dX(wx0, aix0) or not, we have

aj ∈ aiAD,F,f (a−1i )∩aiAD,F,f (a−1i bi) or ai ∈ aj(AD,F,f (a−1j )∩ajAD,F,f (a−1j bj)
by Observation 7.3. This contradicts the goodness of ai or aj . Hence, such
a common element w cannot exist and Ki and Kj are disjoint.

With Claim 4.5 in hand, we have

#A ≥
∑
i:ai∈G

#(Ki ∩A) ≥ N ·#G ≥ N · #A2

2

≥ N · #A1

2 · (2#S)R
≥ 1

ε
(#A−#A′). �

We now have to check the branching property. Recall that A is the
collection of all translates of Ax(f). Let

NFD :=
{
g ∈ G : ∀γ ∈ A [dγ(x0, gx0) < D]

}
,

NF≥iD := NFD ∩ {g : dS(id, g) ≥ i}.

We then observe that:

Proposition 7.10. For each D, NFD is r-roughly branching for some r.

Proof. Since G is non-virtually cyclic, there exists w ∈ S such that Ax(f)
and wAx(f) have K0-bounded projection onto each other. This guarantees
a constant K1 such that the following holds. For each g ∈ NFD, there exists
W (g) ∈ {id, w} such that

diamg−1Ax(f)

(
W (g) ·Ax(f)

)
≤ K1.

By increasing K1 if necessary, we can also guarantee that dX(x0, wx0) < K1.
We will prove the proposition for D > 104(δ + K1 + 1). For each g ∈ G

we define F (g) := gW (g)f50D.



PERCOLATION IN ACYLINDRICALLY HYPERBOLIC GROUPS 47

Recall that the set

EC(f) ∩ {g ∈ G : dX(x0, gx0) < 100D}
is a finite set. Namely, it is contained in {g ∈ G : dS(id, g) < R′} for some
R′. Let R = R′ + 2.

We now consider a subset A of NFD that is maximally R-separated in
the word metric dS . Let a1, . . . , ak, b1, . . . , bk ∈ A be such that

F (a1)F (a2) · · ·F (ak) = F (b1)F (b2) · · ·F (bk).

We then claim a1 = b1. To see this, let us define

pi := F (a1) · · ·F (ai)x0 (i = 0, . . . , k),

qi := F (a1) · · ·F (ai−1) · aiW (ai)x0 (i = 1, . . . , k).

We claim that:

(1) dX(qi−1, pi) = 50D, qi−1 is 1.1D-close to [pi−1, pi] and dX(pi−1, pi) >
48D for i = 1, . . . , k;

(2) (qi−1|pi+1)pi , (pi−1|pi+1)pi ≤ 2.2D for i = 1, . . . , k − 1.

Recall that ai ∈ NFD. Hence, we have

daiW (ai)Ax(f)(x0, aix0) ≤ D.
By the coarse Lipschitzness of the projection (Corollary 3.10(1)), we also
have

daiW (ai)Ax(f)

(
aix0, aiW (ai)x0

)
≤ 0.001D.

In summary, we have daiW (ai)Ax(f)(x0, aiW (ai)x0) ≤ 1.001D. By Corollary
3.10(5), we then have

daiW (ai)[x0,f50Dx0](x0, aiW (ai)x0) ≤ 1.01D.

By Lemma 3.8, we conclude (x0|aiW (ai)f
50Dx0)aiW (ai)x0 ≤ 1.015D. Now

Lemma 3.5 tells us that aiW (ai)x0 is 1.1D-close to [x0, aiW (ai)f
50Dx0].

This also implies

dX
(
x0, aiW (ai)f

50Dx0
)
≥ dX

(
aiW (ai)x0, aiW (ai)f

50Dx0
)
−1.1D ≥ 50D−1.1D ≥ 48D.

Hence, we conclude Item (1).
We now observe that

dAx(f)(x0, ai+1x0) ≤ D,
dAx(f)(ai+1x0, ai+1W (ai+1)x0) ≤ 0.001D,

dAx(f)
(
ai+1W (ai+1)x0, ai+1W (ai+1)f

50Dx0
)
≤ 0.001D.

The first inequality is due to the membership ai+1 ∈ NFD. The second
inequality is by Corollary 3.10(1). The third inequality is the requirement
for W (ai+1). Combined with Corollary 3.10(5), these imply

dAx(f)
(
x0, ai+1W (ai+1)f

50Dx0
)
≤ 1.002D, d[f−50Dx0,x0]

(
x0, ai+1W (ai+1)f

50Dx0
)
≤ 1.003D.

All in all, we have(
f−50Dx0

∣∣ ai+1W (ai+1)f
50Dx0

)
x0
≤ 1.01D,
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i.e. (qi−1|pi+1)qi ≤ 2D. Meanwhile, by Item (1) we have(
f−50Dx0

∣∣ f−50DW (ai)
−1a−1i x0

)
x0

=
(
aiW (ai)x0

∣∣x0)F (ai)x0

=4δ dX(x0, f
−50Dx0)− dX(aiW

(
ai)x0, [x0, F (ai)x0]

)
≥ 50D − 1.1D ≥ 48D.

Now Gromov’s 4-point inequality implies that(
f−50DW (ai)

−1a−1i x0
∣∣ ai+1W (ai+1)f

50Dx0
)
x0
≤ 1.1D,

i.e. (pi−1|pi+1)pi ≤ 2D. This leads to Item (2).
We can now apply Lemma 3.4 to the sequence(

x0, q1, p1, p2, . . . , pk
)
.

Let γ : [0, L] → X be the geodesic connecting x0 to F (a1) · · ·F (ak)x0. By
Lemma 3.4 there exist τ ≤ τ ′ such that dX(γ(τ), q1), dX(γ(τ ′), p1) ≤ 2.25D.
Note that τ ′ ≥ τ + 40D.

For the exactly same reason, there exist σ ≤ σ′ such that γ(σ), γ(σ′) are
2.25D-close to b1W (b1)x0 and F (b1)x0, respectively.

Suppose without loss of generality that τ ≤ σ. There are two cases.

(1) If σ ≥ τ + 25D, then we have

dγ([τ,τ ′])(x0, γ(σ)) ≥ 25D.

Recall that γ([τ, τ ′]) and [q1, p1] = a1W (a1)[x0, f
50Dx0] are 2.3D-

equivalent by Lemma 3.2. Moreover, γ(σ) and b1x0 are 2.3D-close.
These facts and Corollary 3.10(5) imply

da1W (a1)[x0,f50Dx0](x0, b1x0) ≥ 12D, da1W (a1)Ax(f)(x0, b1x0) ≥ 10D.

This contradicts the requirement that b1 ∈ NFD.
(2) If σ ∈ [τ, τ + 25D], then γ([τ, τ ′]) and γ([σ, σ′]) overlap for length at

least 15D. Since γ([τ, τ ′]) (γ([σ, σ′]), resp.) and a1W (a1)[x0, f
50Dx0]

(b1W (b1)[x0, f
50Dx0], resp.) are 2.3D-equivalent. By Corollary 3.10(1),

(4) and (5), we have

diama1W (a1)[x0,f50Dx0]

(
b1W (b1)Ax(f)

)
≥ 8D, diama1W (a1)Ax(f)

(
b1W (b1)Ax(f)

)
≥ 7D.

This implies that W (a1)
−1a−11 b1W (b1) ∈ EC(f). Meanwhile, note

that a1W (a1)x0 and b1W (b1)x0 are 30D-close. Hence, we have∥∥W (a1)
−1a−11 b1W (b1)

∥∥
S
≤ R′, ‖a−11 b1‖S ≤ R.

Since a1, b1 are chosen from an R-separated set A, we conclude a1 =
b1 as desired.

By induction, we conclude that ai = bi for each i.
It remains to show that NFD is contained in a bounded neighborhood

of F (A) in the word metric. It is clear that NFD is contained in the R-
neighborhood of A, and A is contained in the (50D‖f‖S + 1)-neighborhood
of F (A). This ends the proof. �
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We now observe that NF>iD indeed serves as a “barrier”. First, we record
the following corollary of Lemma 3.14.

Lemma 7.11. There exists K > 0 such that the following holds. Let
γ0, γ1, . . . , γN ∈ A := {gAx(f) : g ∈ G} and let z ∈ X be such that:

(1) dγi−1(x0, γi) ≥ K for 1 ≤ i ≤ N , and
(2) dγN (x0, z) ≥ K.

Then dγ1(x0, z) ≥ dγ0(x0, γ1)−K.

Proposition 7.12. For each large enough D,E > 0, there exists E′ > 0
such that the following holds. Let g ∈ G be such that

(1) there does not exist h ∈ G such that

dS(id, h) ≤ E′ and dhAx(f)(x0, gx0) ≥ 250D.

(2) dS(id, g) ≥ E.

Let (id = g0, g1, . . . , gN := g) be a dS-path between id and g. Then there

exists t such that gt ∈ NF≥E300D.

Proof. Let D0 be as in Lemma 3.16 and let K0 = K be as in Lemma 7.11.
We assume that D > 1000(δ+maxs∈S dX(x0, sx0)+D0+K0). Furthermore,
let Eamp = R(600D,E) be as in Lemma 3.16 and let E′ = Eamp + 600‖f‖S .

Suppose to the contrary that a dS-path P = (g1, . . . , gN ) never intersects

NF≥E300D. We will deduce contradiction. Let

i(0) := max{i : dS(id, gi) ≤ E}.

If gi(0) ∈ NF300D, then it is in NF≥E300D. Due to our standing assumption,
this is not the case.

Thus, there exists h ∈ G such that dhAx(f)(x0, gi(0)x0) ≥ 300D. By

replacing h with an element of {hf i}i∈Z, we may suppose that πhAx(f)(x0)
intersects [hx0, hfx0]. Now consider a dS-geodesic Q = (id, g′1, . . . , g

′
E =:

gi(0)) connecting id and gi(0). By the coarse Lipschitzness of πhAx(f)(·),
there exist 1 ≤ j ≤ E such that dX(hx0, πhAx(f)(g

′
jx0)) =D 30D.

Then πhAx(f)(x0) and πhAx(f)(g
′
jx0) are contained in [hf−300Dx0, hf

300Dx0],
so we have

d[hf−300Dx0,hf300Dx0](x0, g
′
jx0) = dhAx(f)(x0, g

′
jx0) ≥ 25D.

Note here that ‖g′j‖S ≤ ‖gi(0)‖S = E. Lemma 3.16 then tells us that ‖h‖S ≤
Eamp and ‖h‖S ≤ E′.

In summary, the collection

C0 := {γ ∈ A : dγ(x0, gi(1)x0) ≥ 300D}
is a nonempty collection, and each element of C0 is realized as hAx(f) for
some ‖h‖S ≤ E′. Let us take γ0 = h0Ax(f) ∈ C0 whose axis is the closest
to x0, i.e., the one with the smallest dX(x0, h0Ax(f)).

If dh0Ax(f)(x0, gix0) ≥ 300D for all i ≥ i(0), including i = N , then it
contradicts the condition on g. Hence, dh0Ax(f)(x0, gix0) < 290D for some i.
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Let us take the smallest such i and name it i(1). By the coarse Lipschitzness
of πh0Ax(f)(·), we have dh0Ax(f)(x0, gi(1)x0) ≥ 289D.

Meanwhile, by our standing assumption, the collection

C1 := {γ ∈ A : dγ(x0, gi(1)x0) > 300D}
is nonempty. We pick γ1 ∈ C1 that is the closest to x0. Clearly γ1 6= γ0.

Now, as in the proof of Claim 6.3, we can prove that γ1 appears later
than γ0 along [x0, gi(2)x0]; otherwise it will contradict the minimality of γ0
in C0. We deduce that dγ0(x0, γ1) > 289D.

The proof goes on. If dγ1(x0, gix0) ≥ 300D for all i ≥ i(1), including i =
N , then Lemma 7.11 implies that dγ0(x0, gNx0) > 280D. This contradicts
the condition on g.

Hence, dγ1(x0, gix0) < 290D for some i, and we take the smallest such i
as i(2). We have dγ1(x0, gt2x0) ≥ 289D. By the standing assumption,

C2 := {γ ∈ A : dγ(x0, gu(2)x0) > 300D}
is nonempty. We pick γ2 ∈ C2 that is the closest to x0. We then observe
that γ2 appears later than γ1; otherwise it violates the minimality of γ1 in
C1. We deduce that dγ1(x0, γ2) > 289D.

If dγ2(x0, gix0) ≥ 300D for all i ≥ i(2), then Lemma 7.11 again implies
that dγ0(x0, gNx0) > 280D, a contradiction. Thus, dγ2(x0, gix0) < 290D for
some i, and we take the smallest such i as i(3). We have dγ2(x0, gi(3)x0) ≥
289D.

If this process persists, it means we get an infinite sequence i(1) < i(2) <
. . . in a finite sequence 0 ≤ 1 ≤ . . . ≤ N . This is a contradiction. �

Corollary 7.13. Let Γ be the Cayley graph of an acylindrically hyperbolic
group G. Then Equation 2.2 holds.

Proof. Without loss of generality, we can fix an action of G on a δ-hyperbolic
space X with a unital, axial WPD element f ∈ G. Let S be a finite gener-
ating set for G that gives rise to Γ = Cay(G,S). Let x0 ∈ Ax(f).

Let r > 0 be as in Proposition 6.1. Given D,E > 0, we define

HD :=
{
{g ∈ G : gx0 ∈ Hr·D(x0, ux0)} : u ∈ G

}
,

SD := NF300D = t∞i=1NF i300D.
Also, let E′ = E′(D,E) be as in Proposition 7.12 for D and E. We then
define

GD,E :=
{
g ∈ G : ‖g‖S ≥ E, 6 ∃h ∈ G

[
‖h‖S ≤ E′ and dhAx(f)(x0, gx0) ≥ 250D

]}
.

Now given ε > 0 as well, we let N = N(ε, rD,E′(rD,E), E) be as in Propo-
sition 7.7.

Then SD is roughly branching for each D. Moreover, for each H ∈ HD

there exists an r-branching subset B = B1t . . .tBD that is a disjoint union
of D dS-barriers B1, . . . , BD between id and H, by Proposition 6.1.

Finally, for each D,E > 0 we observe that NF≥E300D is a dS-barrier for id
and GD,E by Proposition 7.12. Lastly, Proposition 7.7 guarantees that for
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each finite A ⊆ G there exist A′ ⊆ A with #A′ ≥ (1 − ε)#A such that for
each a ∈ A′, there exist H1,H2 ∈HD such that

#
(
A \ a(H1 ∪H2 ∪ GD,E)

)
≤ N.

We can thus apply Theorem 2.16 and conclude Equation 2.2. �

Appendix A. Proof of Theorem 2.8

We summarize Hutchcroft’s proof of Theorem 2.8. Let G,S,R and H =
{H(g) : g ∈ G} be as in the assumption. Our goal is to show that there

exists ε > 0 such that
(
d
dp

)
+
χp ≥ εχ2

p holds for all pc/2 ≤ p ≤ pc. Then by

integration we will have χp ≤ ε−1(pc − p)−1 for each pc/2 < p < pc, which
leads to Equation 2.1.

We first define a {0, 1}-valued function I = I(g,A) ⊆ Ω for inputs a ∈ G
and A ⊆ G:

I(a,A) := 1{∃g,h∈G[‖g‖S ,‖h‖S≤R and A⊆aH(g) and H(g)∩hH(g)=∅]}.

By our assumption, we have∑
a∈A

I(a,A) ≥ 1

2
#A

for each A ⊆ G. We now define F : Ω×G→ R:

F (ω, a) := I
(
a,Cω(id)

)
1a∈Cω(id).

We will now fix pc/2 < p < pc. We have∑
a∈G

Ep F (ω, a) = Ep
∑

a∈Cω(id)

I
(
a,Cω(id)

)
≥ Ep

(
1

2
#Cω(id)

)
=

1

2
χp.

Meanwhile, we have∑
a∈G

Ep F (ω, a) =
∑
a∈G

Ep F (ω, a−1) = Ep
∑

a:a−1∈Cω(id)

I
(
a−1, Cω(id)

)
= Ep

∑
a:id∈Cω(a)

I
(
id, Cω(a)

)
= Ep

∑
a∈Cω(id)

I
(
id, Cω(id)

)
= Ep

[
#Cid · I

(
id, Cω(id)

)]
.

Recall also that there are at mostN choices g, h ∈ G such that ‖g‖S , ‖h‖S <
R, where N = (2#S)2R. Among those finitely many candidates, there exist
a concrete, non-random g, h such that H(g) and hH(g) are disjoint and such
that

Ep
[
#C(id) · 1{C(id)⊆H(g)}

]
≥ 1

2N
χp.

By applying the action of h, we also have

Ep
[
#C(h) · 1{C(h)⊆hH(g)}

]
≥ 1

2N
χp.
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Now, note that the event {C(id) ⊆ H(g)} is determined solely by edges in
H(g), and {C(h) ⊆ hH(g)} is determined solely by edges in hH(g). Since
the two sets are disjoint, the two events are independent. We conclude that

Ep
[(

#C(id)
)
·
(
#C(h)

)
· 1{C(id)⊆H(g) and C(h)⊆hH(g)}

]
≥ 1

4N2
χ2
p.

We now pick a dS-geodesic γ = (g1, g2, . . . , g‖h‖S ) connecting id to h. Let

e = −−−−→gngn+1 be the first (oriented) edge of γ that connects H(g) to Γ \H(g).
As described in Hutchcroft’s proof, a standard conversion of finitely many
states guarantees a constant cp, which is a linear combination of finitely
many products and ratios of p and 1−p, hence bounded on compact subsets
of (0, 1), such that

Ep
[(

#C(gn)
)
·
(
#C(gn+1)

)
·1{gn 6↔gn+1}

]
≥ cp Ep

[(
#C(id)

)
·
(
#C(h)

)
·1{C(id)⊆H(g),C(h)⊆hH(g)}

]
.

By applying the action by g−1n , we conclude that

Ep
[(

#C(id)
)
·
(
#C(s)

)
· 1id 6↔s

]
≥ cχ2

p

for some c uniform on 0.5pc < p < pc and for some s = s(p) in the generating
set S.

We now recall Russo’s formula. For each g ∈ G, a closed edge e =
−−−→
e−e+ ∈

E→ is pivotal for the event {id ↔ g} if and only if id ↔ e−, e+ ↔ g and
e− 6↔ e+. Hence, we have(

d

dp

)
+

τp(g) ≥ 1

1− p
∑
e∈E→

Pp({id↔ e−} ∩ {e− 6↔ e+} ∩ {e+ ↔ g}).

Since τp(g) are monotonic for each g ∈ G, summing over finitely many g’s
and taking limits imply(

d

dp

)
+

χp ≥
1

1− p
∑
g∈G

∑
e∈E→

Pp({id↔ e−} ∩ {e− 6↔ e+} ∩ {e+ ↔ g})

=
1

1− p
∑
s∈S

∑
h∈G

∑
g∈G

Pp({id↔ h} ∩ {h 6↔ hs} ∩ {hs↔ g})

=
1

1− p
∑
s∈S

∑
h∈G

∑
g∈G

Pp({id↔ h} ∩ {h 6↔ hs} ∩ {hs↔ hsg})

=
1

1− p
∑

g,h∈G,s∈S
Pp({h−1 ↔ id} ∩ {id 6↔ s} ∩ {s↔ g}).

The last summation is bounded from below by 1
1−p Ep

[(
#C(id)

)
·
(
#C(s)

)
· 1id6↔s

]
for our choice s = s(p). Hence, we conclude that (d/dp)+χp is uniformly
coarsely bounded from below by χ2

p for p ∈ (pc/2, pc). This ends the proof.
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Appendix B. Proof of Corollary 3.10

We sketch the proof of Corollary 3.10.

(1) It is a direct consequence of Lemma 3.9.
(2) We have

dX(x, p) + dX(p, y)− 12δ ≤ dX(x, p) + dX(p, q) + dX(q, y)− 12δ ≤ dX(x, y).

Hence, (x|y)p ≤ 6δ. Pick x′ ∈ [x, y] such that dX(x, x′) = (y|p)x.
Then by Lemma 3.5, x′ is 10δ-close to p. Similarly, the point y′ ∈
[x, y] such that dX(x, y′) = (y|q)x is 10δ-close to p. Note that

dX(x, p) ≤ dX(x, y)−dX(q, y)−dX(p, q)+12δ < dX(x, q)−12δ+12δ = dX(x, q).

For a similar reason, we have dX(y, q) < dX(y, p). This implies that

dX(x, x′) =
1

2
[dX(x, y)+dX(x, p)−dX(y, p)] ≤ 1

2
[dX(x, y)+dX(x, q)−dX(y, q)] = dX(x, y′).

Hence, x′ comes earlier than y′ along [x, y]. By Lemma 3.2, [x′, y′]
and [p, q] are 12δ-equivalent.

(3) Suppose to the contrary that there exist p ∈ πγ(x), q ∈ πγ(y) and
r ∈ πγ(z) such that r /∈ N12δ([p, q]). This means that dX(p, r) +
dX(r, q) > 24δ + dX(p, q).

Now Lemma 3.9 tells us that

dX(x, z) ≥ dX(x, p) + dX(r, z) + dX(p, r)− 12δ,

dX(z, y) ≥ dX(y, q) + dX(r, z) + dX(q, r)− 12δ.

This implies that

dX(x, y) ≥ dX(x, p)+dX(y, q)+
(
dX(p, r)+dX(r, q)

)
−24δ > dX(x, p)+dX(y, q)+dX(p, q).

This is a contradiction.
(4) Let γ = [y, z] and γ′ = [y′, z′]. Let a ∈ [y, z] be such that dX(y, a) =

(x|z)y, let b ∈ [y, x] be such that dX(y, b) = (x|z)y, let c ∈ [y, x] be
such that dX(y, c) = (x|z′)y, let d ∈ [x, z′] be such that dX(z′, d) =
(x|y)z′ , let e ∈ [x, z′] be such that dX(z′, e) = (x|y′)z′ , and let f ∈
[y′, z′] be such that dX(z′, f) = (x|y′)z′ .

Then by Lemma 3.8, a and e are 8δ-equivalent to πγ(x) and πγ′(x),
respectively. Moreover, Lemma 3.5 tells us that dX(a, b), dX(c, d), dX(e, f) ≤
4δ, and the triangle inequality tells us that dX(b, c) ≤ dX(z, z′) ≤ D,
dX(d, e) ≤ dX(y, y′) ≤ D. In conclusion, πγ(x) and πγ′(x) are
(2D + 28δ)-equivalent as desired.

(5) Suppose that there exist p ∈ πγ(x) and q ∈ πγ(y) that realizes
dX(p, q) = dγ′(x, y) > 12δ. By Corollary 3.10(2), there exists x′, y′ ∈
[x, y] that are 10δ-close to p and q, respectively. In particular, x′ and
y′ are 16δ-close to γ′ ⊆ γ. This implies

πγ(x′) ⊆ N10δ(x
′) ⊆ N20δ(p), πγ(y′) ⊆ N10δ(y

′) ⊆ N20δ(q).
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This implies that dγ(x′, y′) ≥ dX(p, q) − 40δ. Meanwhile, Corollary
3.10(3) tells us that dγ(x, y) ≥ dγ(x′, y′) − 24δ. Combining these
two, we conclude that

diamγ(x, y) ≥ dγ(x′, y′)− 24δ ≥ dX(p, q)− 64δ.
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groupes, volume 1441 of Lecture Notes in Mathematics. Springer-Verlag,
Berlin, 1990. Les groupes hyperboliques de Gromov. [Gromov hyperbolic
groups], With an English summary.

[Cho25] Inhyeok Choi. Acylindrically hyperbolic groups and counting problems. arXiv
preprint arXiv:2504.20985, 2025.

[DGO17] F. Dahmani, V. Guirardel, and D. Osin. Hyperbolically embedded subgroups
and rotating families in groups acting on hyperbolic spaces. Mem. Amer. Math.
Soc., 245(1156):v+152, 2017.

[FKG71] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre. Correlation inequalities on
some partially ordered sets. Comm. Math. Phys., 22:89–103, 1971.

[GKN92] A. Gandolfi, M. S. Keane, and C. M. Newman. Uniqueness of the infinite com-
ponent in a random graph with applications to percolation and spin glasses.
Probab. Theory Related Fields, 92(4):511–527, 1992.



PERCOLATION IN ACYLINDRICALLY HYPERBOLIC GROUPS 55

[GN90] G. R. Grimmett and C. M. Newman. Percolation in ∞ + 1 dimensions. In
Disorder in physical systems, Oxford Sci. Publ., pages 167–190. Oxford Univ.
Press, New York, 1990.

[Gri89] Geoffrey Grimmett. Percolation. Springer-Verlag, New York, 1989.
[Gro87] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math.

Sci. Res. Inst. Publ., pages 75–263. Springer, New York, 1987.
[GS21] Antoine Goldsborough and Alessandro Sisto. Markov chains on hyperbolic-like

groups and quasi-isometries. arXiv preprint arXiv:2111.09837, 2021.
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[HPS99] Olle Häggström, Yuval Peres, and Roberto H. Schonmann. Percolation on
transitive graphs as a coalescent process: relentless merging followed by si-
multaneous uniqueness. In Perplexing problems in probability, volume 44 of
Progr. Probab., pages 69–90. Birkhäuser Boston, Boston, MA, 1999.
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