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Abstract. We study random walks on metric spaces with contracting
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1. Introduction

This is the first in a series of articles concerning random walks on met-
ric spaces with contracting elements. This series is a reformulation of the
previous preprint [Cho22a] announced by the author, aiming for clearer and
more concise expositions. We note that many of the results in this series
have been discussed in [Gou21], [BCK21], [Cho21a] and [Cho21b] for Gro-
mov hyperbolic spaces and Teichmüller space. Still, we aim to present a
more general theory in terms of contracting elements.

Convention 1.1. Throughout, we assume that:

• (X, d) is a geodesic metric space;
• G is a countable group of isometries of X, and
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• G contains two independent contracting isometries.

We also fix a basepoint o ∈ X.

In a companion paper [Cho22c], we generalize this setting to also embrace
asymmetric metric spaces that exhibit the bounded geodesic image property
(BGIP). By doing so, we obtain a unified theory of random walks on the
following spaces:

(1) (X, d) is a geodesic Gromov hyperbolic space and G contains two
independent loxodromics [MT18], e.g. (X, d) is the curve complex of
a finite-type hyperbolic surface and G is the corresponding mapping
class group [MM99], or

(2) (X, d) is the complex of free factors of the free group of rank N ≥ 3
and G is the outer automorphism group Out(FN ) [BF14];

(3) X is Teichmüller space of finite type, G is the corresponding mapping
class group, and d is either the Teichmüller metric dT or the Weil-
Petersson metric dWP ([Min96]; [Beh06], [BF09]);

(4) X is Culler-Vogtmann Outer space CVN for N ≥ 2, G is the outer
automorphism group Out(FN ), and d is the (asymmetric) Lipschitz
metric dCV [KMPT22];

(5) (X, d) is the Cayley graph of a braid group modulo its centerBn/Z(Bn)
with respect to its Garside generating set, and G is the braid group
Bn [CW21];

(6) (X, d) is the Cayley graph of a group with nontrivial Floyd boundary
[GP13];

(7) (X, d) is a (not necessarily proper nor finite-dimensional) CAT(0)
space and G contains two independent strongly contracting isome-
tries [BF09]; e.g., G is an irreducible right-angled Artin group and
(X, d) is the universal cover of its Salvetti complex.

We emphasize that the spaces are not required to be proper nor separable
in general. Note also that we do not assume that the action is properly
discontinuous or WPD. The main results of this paper are as follows:

Theorem A (Deviation inequality). Let (X,G, o) be as in Convention 1.1,
and ω be the random walk generated by a non-elementary measure µ on G.

(1) If µ has finite p-th moment for some p > 0, then there exists K > 0
such that for any x ∈ X we have

(1.1) E
[
sup
n≥0

(ωn o, x)po

]
< K, E

[
sup
n,n′≥0

(ω̌n′o, ωn o)
2p
o

]
< K.

(2) If µ has finite exponential moment, then there exist κ,K > 0 such
that for any x ∈ X we have

(1.2) E
[
sup
n≥0

eκ(x,ωn o)o

]
< K, E

[
sup
n,n′≥0

eκ(ω̌n′o,ωn o)o

]
< K.
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This has been partially observed in Gromov hyperbolic spaces. Benoist
and Quint observed the first item of Inequality 1.1 for cocompact actions
[BQ16, Proposition 5.1]. Mathieu and Sisto observed the second item for
acylindrical actions [MS20, Theorem 11.1]. Considering Benoist-Quint’s ex-
amples in [BQ16, Subsection 5.5], these deviation inequalities are sharp.

Using deviation inequalities, we can obtain several limit laws for random
walks. First, we observe the geodesic tracking of random walks with the
optimal rate.

Theorem B (Geodesic tracking). Let (X,G, o) be as in Convention 1.1 and
ω be the random walk generated by a non-elementary measure µ on G.

(1) Suppose that µ has finite p-th moment for some p > 0. Then for
almost every path ω = (ωn)n, there exists a quasigeodesic γ such
that

lim
n

1

n1/2p
d(ωn o, γ) = 0.

(2) Suppose that µ has finite exponential moment. Then there exists
K < ∞ satisfying the following: for almost every path ω = (ωn)n,
there exists a quasigeodesic γ such that

lim sup
n

1

log n
d(ωn o, γ) < K.

In particular, sublinear (o(
√
n), resp.) geodesic tracking occurs when

the random walk has finite 1/2-th moment (finite first moment, resp.). We
note that sublinear geodesic tracking under finite first moment assumption
was established in Gromov hyperbolic spaces [Kai00], Teichmüller space
([Duc05], [Tio15]) and CAT(0) spaces [KM99], which was elaborated on by
Gekhtman, Qing and Rafi [GQR22]. We also note Horbez’s application of
Benoist-Quint’s deviation inequalities (with exponent p−1 instead of 2p) to
deduce the sublinear geodesic tracking of random walks with finite second
moment [Hor18, Proposition 2.11].

In [Cho21a], the author obtained sharper geodesic tracking as in Theorem
B for Gromov hyperbolic spaces and Teichmüller space. Nonetheless, the
proof there required the endpoint stability of geodesics, i.e., geodesics with
pairwise close endpoints fellow travel. We discuss another proof that does
not rely on such a stability and only requires the presence of contracting
elements.

Meanwhile, sublogarithmic tracking requires stronger moment conditions.
Mathieu and Sisto established sublogarithmic tracking of random walks with
finite exponential moments on acylindrically hyperbolic groups [MS20], and
Maher and Tiozzo established the same result for random walks with finite
support on weakly hyperbolic groups [MT18]; see also [Led01], [BHM11] and
[Sis17] for related results.

We also deduce the central limit theorem (CLT) from the deviation in-
equality using Mathieu and Sisto’s theory in [MS20]. Together with this, we
obtain the law of the iterated logarithm (LIL) as follows.
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Theorem C (CLT and LIL). Let (X,G, o) be as in Convention 1.1, and
ω be the random walk generated by a non-elementary measure µ on G. If
µ has finite second moment, then there exists a Gaussian law with variance
σ(µ)2 to which 1√

n
(d(o, ωn o)− nλ) converges in law. Here, λ is the escape

rate of ω. Moreover, σ(µ) > 0 if and only if µ is non-arithmetic. We also
have

lim sup
n→∞

±d(o, ωn o)− λn√
2n log log n

= σ(µ) almost surely.

We note that CLT has been discovered in Gromov hyperbolic spaces
([BQ16], [MS20]), Teichmüller space [Hor18], CAT(0) cube complices [FLM21]
and CAT(0) spaces [LB22a]. Meanwhile, LIL has not been discussed except
for Gromov hyperbolic spaces and Teichmüller space [Cho21a]. Moreover,
the proof of the converse of CLT in [Cho21a] can also be generalized to the
current setting; we will describe this in [Cho22b]. Finally, we also discuss a
Berry-Esseen type estimates in Theorem 5.8.

1.1. Other limit laws. Our approach is based on Gouëzel’s construction
of pivotal times in [Gou21] and Baik-Choi-Kim’s pivoting [BCK21]. By
using the current theory, Gouëzel’s results in [Gou21] can be discussed in
the current general setting:

Theorem D (SLLN). Let (X,G, o) be as in Convention 1.1, and ω be the
random walk generated by a non-elementary measure µ on G. Then there
exists a constant λ = λ(ω) ∈ (0,+∞] such that

(1.3) lim
n

1

n
d(o, ωn o) = λ

for almost every ω. Moreover, λ(µ) is finite if and only if µ has finite first
moment.

The SLLN for displacement is a consequence of the subadditive ergodic
theorem, so the nontrivial part of the theorem is the strict positivity of
the escape rate. For Gromov hyperbolic spaces, [MT18] proposed a very
general framework and deduced SLLN with and without moment condition.
On Teichmüller space, this is a consequence of the non-amenability of the
mapping class group. Fernós, Lécureux and Mathéus also obtained the pos-
itivity on finite-dimensional CAT(0) cube complices under the finite first
moment assumption. On general CAT(0) spaces, [KM99], [KL06] are rel-
evant results. Recently, Le Bars used rank-1 isometries of proper CAT(0)
spaces to deduce the convergence to the visual boundary and the SLLN for
displacement [LB22b].

Theorem E (Exponential bound from below). Let (X,G, o) be as in Con-
vention 1.1, and ω be the random walk generated by a non-elementary mea-
sure µ on G. Then for any 0 < L < λ(µ), there exists K > 0 such that

P[d(o, ωn o) ≤ Ln] ≤ Ke−n/K

holds.
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Even for free groups and Gromov hyperbolic spaces, this theorem has
been observed very recently by Gouëzel. For other spaces that fall into
Convention 1.1, this result seems new.

Corollary 1.2 (Large deviation principle). Let (X,G, o) be as in Conven-
tion 1.1, and ω be the random walk generated by a non-elementary measure
µ on G. If µ has finite exponential moment, then {d(o, ωn o)/n}n satisfies
a large deviation principle with a proper convex rate function I : [0,+∞)→
[0,+∞] which vanishes only at λ = λ(µ).

Here, the LDP on Gromov hyperbolic spaces is due to Boulanger, Math-
ieu, Sert and Sisto [BMSS22]. They also provided a very general framework
for LDP, namely, only requiring the space to possess a Schottky set. Since
we provide Schottky sets for the setting of Convention 1.1, the existence
of a proper convex rate function for LDP follows from Boulanger-Mathieu-
Sert-Sisto’s theory. Not only this, the usage of Schottky set in our theory is
hugely influenced from their theory. The additional information furnished
from Theorem E is that the rate function vanishes only at λ.

There is another dynamical quantity associated with a random isometry
g, namely, its translation length τ(g). In [BCK21] and [Cho21a], the author
and their coauthors proved the SLLN and the CLT for the translation length.
These can be deduced from Corollary 5.6 proved here; we will discuss them
in [Cho22b] using two different perspectives.

Our strategy is to bring Gouëzel’s innovative idea of pivotal time construc-
tion [Gou21] and Baik-Choi-Kim’s idea of pivoting for translation length
[BCK21] into a more general setting. To achieve this, we first develop geo-
metric lemmata that are preceded by many pioneers’ observations. Since
the main property we use is the contracting property, our theory applies to
a wide range of spaces.

1.2. Structure of the article. In Section 2, we recall basic notions re-
garding contracting sets and random walks. In Section 3, we summarize
the concatenation lemmata developed by Yang ([Yan14], [Yan19]) that were
preceded by the observation of Bestvina and Fujiwara ([BF09]). We also pro-
vide a recipe to generate large enough Schottky sets out of two independent
contracting isometries. In Section 4, we adapt Gouëzel’s pivotal time con-
struction and Baik-Choi-Kim’s pivoting technique to the current setting,
and observe the positivity of the escape rate. In Section 5, we establish
deviation inequalities using the pivoting technique and discuss their conse-
quences. In Section 6, we observe the geodesic tracking of random walks.
In the appendix, we review Gouëzel’s pivotal time construction using the
concatenation lemmata for the sake of exposition.

Acknowledgments. The author thanks Hyungryul Baik, Talia Fernós,
Ilya Gekhtman, Thomas Haettel, Joseph Maher, Hidetoshi Masai, Catherine
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2. Preliminaries

Throughout, we use the notation

(y, x)z :=
1

2

(
d(y, x) + d(x, z)− d(y, z)

)
for the Gromov product of y and z based at x. Given a path γ : I → X, we
denote by γ̄ its reverse, i.e., γ̄(t) := γ(−t).

2.1. Contracting sets and bounded geodesic image property. We
introduce the notion of contracting sets. Intuitively, metric balls disjoint
from these sets are seen as small.

Definition 2.1 (contracting sets). For a subset A ⊆ X of a metric space
X and ε > 0, we define the closest point projection of x ∈ X to A by

πA(x) :=
{
a ∈ A : dX(x, a) = dX(x,A)

}
.

A is said to be K-contracting if:

(1) πA(z) 6= ∅ for all z ∈ X and
(2) for all x, y ∈ X such that dX(x, y) ≤ dX(x,A)−K we have

diamX

(
πA(x) ∪ πA(y)

)
≤ K.

A K-contracting K-quasigeodesic is called a K-contracting axis.

Definition 2.2 (Bounded geodesic image property). A subset A ⊆ X of
a geodesic metric space X is said to satisfy the K-bounded geodesic image
property, or K-BGIP in short, if the following hold:

(1) for any z ∈ X, πA(z) 6= ∅;
(2) for any geodesic η such that η∩NK(A) = ∅, we have diam(πA(η)) ≤

K.

A K-quasigeodesic that satisfies K-BGIP is called a K-BGIP axis.

We quote a lemma of Arzhantseva-Cashen-Tao.

Lemma 2.3 (Lemma 2.4, [ACT15]). Let X be a geodesic space. Then a
quasigeodesic in X is contracting if and only if it has BGIP.

We now collect some properties of contracting axes.

Lemma 2.4 (Continuity of the projection). For each K > 1 there exists a
constant K ′ = K ′(K) that satisfies the following property.

Let γ be a K-contracting axis and x, y ∈ X. Then πγ({x, y}) has diameter
at most K ′ + d(x, y).
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Lemma 2.5 (Large projections are nearby). For each K > 1 there exists a
constant K ′ = K ′(K) that satisfies the following property.

Let γ : I → X be a K-contracting axis and η : J → X be a geodesic such
that diam(πγ(η)) > K ′. Then for

m := inf γ−1πγ(η), M := sup γ−1πγ(η),

γ([m,M ] ∩ I) is within Hausdorff distance K ′ from a subsegment of η.

Lemma 2.6 (Restrictions and nearby sets). For each K > 1 there exists a
constant K ′ = K ′(K) such that any subsegment of a K-contracting axis is
a K ′-contracting axis.

Moreover, if a set A is within Hausdorff distance K from a K-contracting
axis and πA(z) 6= ∅ for any z ∈ X, then A is K ′-contracting.

Lemma 2.7 (No backtracking). For each K > 1 there exists a constant
K ′ = K ′(K) that satisfies the following property.

Let γ : I → X be a K-contracting axis, η : J → X be a geodesic and
αi ∈ J be such that α1 ≤ α2 ≤ α3. Let also a1, a2, a3 ∈ I be such that
γ(ai) ∈ πγη(αi). Then a1 and a3 cannot both belong to (−∞, a2 −K ′] nor
[a2 +K ′,+∞).

These are well-known to experts and we omit the proofs here. Nonethe-
less, interested readers can refer to the proofs in [Cho22c] in a more general
setting that covers asymmetric metric spaces.

Definition 2.8 (Isometries with contracting properties). Let K > 0. An
isometry g of X is said to be K-contracting if the orbit n ∈ Z 7→ gno ∈ X
is a K-contracting axis.

Definition 2.9 (Translation length). For g ∈ G, the (asymptotic) transla-
tion length of g is defined by

τ(g) := lim inf
n→∞

1

n
d(o, gno).

An isometry has positive translation length if and only if its orbit n 7→ gno
is a quasigeodesic.

Definition 2.10 ([BF09, Definition 5.8]). Bi-infinite paths κ = (xi)i∈Z,
η = (yi)i∈Z are said to be independent if the map (n,m) 7→ d(xn, ym) is
proper, i.e., for any M > 0, {(n,m) : d(xn, ym) < M} is bounded.

Isometries g, h of X are said to be independent if their orbits are inde-
pendent.

Definition 2.11. A subgroup of Isom(X) is said to be non-elementary if it
contains two independent contracting isometries.

Note that for a, b ∈ Isom(X) and n,m ∈ Z \{0}, an and bm are indepen-
dent contracting isometries if and only if a and b are so.
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2.2. Random walk. Let µ be a probability measure on a discrete group
G. We consider the step space (GZ, µZ), the product space of G equipped
with the product measure of µ. Each element (gn)n of the step space is
called a step path, and there is a corresponding sample path (ωn)n under the
correspondence

ωn =


g1 · · · gn n > 0
id n = 0

g−1
0 · · · g

−1
n+1 n < 0.

This structure constitutes a random walk with transition probability µ. We
also introduce the notation ǧn = g−1

−n+1 and ω̌n = ω−n.
We define the support of µ, denoted by suppµ, as the set of elements in G

that are assigned nonzero values of µ. 〈suppµ〉 and 〈〈 suppµ 〉〉 denote the
subgroup and the subsemigroup generated by the support of µ, respectively.
In other words, we define

〈suppµ〉 := {g1 · · · gn : n ∈ Z≥0, gi ∈ (suppµ) ∪ (suppµ)−1},
〈〈 suppµ 〉〉 := {g1 · · · gn : n ∈ Z≥0, gi ∈ suppµ}.

We denote by µN the product measure of N copies of µ, and by µ∗N the
N -th convolution measure of µ. A measure µ is said to be non-elementary if
〈〈 suppµ 〉〉 contains two independent contracting isometries. Note that by
taking suitable powers if necessary, we may assume that two independent
contracting isometries belong to the same suppµ∗N for some N > 0. µ is
said to be non-arithmetic if there exist N > 0 and g, h ∈ suppµ∗N such that
τ(g) 6= τ(h). The random walk ω generated by µ is said to be admissible
(non-elementary or non-arithmetic, resp.) if µ is admissible (non-elementary
or non-arithmetic, resp.).

For each p ≥ 0, we define the p-th moment of the probability measure µ
on G by

Eµ[d(o, go)p] :=

∫
d(o, go)pdµ.

We also call it the p-th moment of the random walk ω generated by µ.

3. Concatenation of contracting axes

The goal of this section is to formulate and prove the following. Let
(κi)i be a sequence of contracting axes that begin at xi and terminate at
yi, respectively. Suppose that consecutive axes are well aligned: κi (κi+1,
resp.) projects onto κi+1 (κi, resp.) near xi+1 (yi, resp.). Then we have a
global alignment: κi projects onto κj near xj or yj , depending on whether
i < j or j > i.

We note that Proposition 3.6 and Lemma 3.8 were observed earlier in
[Yan14, Section 3], and Lemma 3.7 follows from [Yan19, Proposition 2.9].
Nonetheless, we include their proofs as applications of Proposition 3.5.
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x x′ y′ y
κ η

Figure 1. Schematics for an aligned sequence of paths.

Definition 3.1 (Witnessing). Let x, y, {xi}ni=1, {yi}ni=1 be points in X and
D > 0. We say that [x, y] is almost D-witnessed by ([x1, y1], . . . , [xn, yn]) if
the geodesic [x, y] contains subsegments [x′i, y

′
i] such that the following hold.

(1) d(x, y′i) ≤ d(x, x′i+1) for i = 1, . . . , n− 1, and
(2) [x′i, y

′
i] and [xi, yi] D-fellow travel for i = 1, . . . , n.

Definition 3.2 (Alignment). We say that a sequence (κ, η) of two paths κ, η
is aligned if κ projects onto η near the beginning point of η and η projects
onto κ near the terminating point of κ.

More precisely, given paths κ from x to x′ and η from y′ to y, we say that
(κ, η) is C-aligned if

diam
(
x′ ∪ πκ(η)

)
< C, diam

(
y′ ∪ πη(κ)

)
< C.

In general, given paths κi from xi to x′i for each i = 1, . . . , n, we say that
(κ1, . . . , κn) is C-aligned if

diam
(
x′i ∪ πκi(κi+1)

)
< C, diam

(
xi+1 ∪ πκi+1(κi)

)
< C.

hold for i = 1, . . . , n− 1.

We can also put points in place of paths in the above definition; in that
case, we regard points as degenerate paths that are endpoints of themselves.
For example, given y ∈ X and a path κ connecting x and x′, we say that
(κ, y) is C-aligned if diam (x′ ∪ πκ(y)) < C.

Note that if sequences (κi, . . . , κj) and (κj , . . . , κk) are C-aligned, then
the sequence (κi, . . . , κj , . . . , κk) is also C-aligned.

Our first lemma states that the projections of endpoints of two contracting
axes onto each other govern the projections of the entire axes.

Lemma 3.3. For each C > 0 and K > 1, there exists D = D(K,C) > C
that satisfies the following property.

Let κ, η be K-contracting axes that connect x to x′ and y to y′, respectively.
Suppose that (κ, y′) and (x, η) are C-aligned. Then (κ, η) is D-aligned.

Note that one cannot expect similar consequences from the assumption
that (κ, y′) and (x′, η) are aligned: imagine a long and thin isosceles triangle
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x x′

y′ y

κ

η

z

κ(s)κ(t)

Figure 2. Schematics for Lemma 3.3

in the hyperbolic plane. Moreover, the assumption that (κ, y) and (x, η) are
aligned also cannot guarantee the desired conclusion.

Proof. Recall Lemma 2.4: small sets are seen as small from a contract-
ing axis. Hence, when κ is short, both x′ ∪ πκ(η) ⊆ κ and y′ ∪ πη(κ) ⊆
(y′ ∪ πη(x)) ∪ πη(κ) are small; the same conclusion follows when η is short.
Hence, it suffices to deal with the case that κ and η are long enough.

Note that if two endpoints of κ project onto η near y′, then the entire
κ also does so. This is due to the fact that πκ([x, x′]) is coarsely between
πκ(x) and πκ(x′) (Lemma 2.7), and that [x, x′] and κ are nearby (Lemma
2.5). Similarly, if two endpoints of η project onto κ near x′, then so does η.
Hence, it suffices to prove that y′ ∪ πη(x′) and x′ ∪ πη(y) are small.

To show the first item, suppose to the contrary that πη(x
′) is far from

y′. Since πη(x) is close to y′, the projection of [x, x′] onto η is large. Due
to Lemma 2.5, [x, x′] passes through a small neighborhood of πη(x), which
is near y′. Since κ and [x, x′] have small Hausdorff distance, we can take a
point p ∈ κ near y′. This implies that d(y′, κ) is small, and

d(y′, x′) ≤ d(y′, πκ(y′)) + d(πκ(y′), x′)

is also small. This in turn means that

d(y′, πη(x
′)) ≤ d(y′, x′) + d(x′, η)

is also small as desired.
For the next item, note that πη(x) ∈ NC(y′) and πη(y) = y are distant

since η is assumed to be long. Lemma 2.5 then tells us that [x, y] passes
through a neighborhood of y′; let z ∈ [x, y] be the closest point to y′. Since
y′ projects onto κ near x′, so does z. Then x, z, y are points on [x, y] in
order from left to right, and πκ(x) is near one endpoint x of κ while πκ(z)
is near the other endpoint x′. By Lemma 2.7, πκ(y) is also near x′ (rather
than x) as desired. �

In the previous lemma, the projection of y onto κ favored x′ over x since
[x, y] had a large projection on η and passes through y′. We can put an
arbitrary point p in place of y and expect the same phenomenon, given that
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the projection of p onto η does not favor y′ over y. In other words, p either
favors y′ over y or favors x′ over x. The following lemma captures this:

Lemma 3.4 (cf. [BF09, Lemma 5.6]). For each C > 0 and K > 1, there
exists D = D(K,C) > C that satisfies the following property.

Let κ, η be K-contracting axes that connect x to x′ and y′ to y, respectively.
Suppose that (κ, η) is C-aligned. Then for any p ∈ X,

diam(πη(p) ∪ y′) ≥ D and diam(πκ(p) ∪ x′) ≥ D

cannot happen simultaneously. Moreover, diam(πη(p) ∪ y′) ≥ D implies
d(p, κ) ≥ d(p, η) +K.

In other words, at least one of the following hold:

• (p, η) is D-aligned;
• (κ, p) is D-aligned.

Moreover, if the first item is not the case, then d(p, κ) ≥ d(p, η) +K. Sym-
metrically, if the second item is not the case, then d(p, η) ≥ d(p, κ) +K.

Proof. For the first assertion, let us put p in place of y in the final paragraph
of the previous proof. If πη(p) and y′ are far from each other, then [x, p] has
large projection on η and passes nearby y′, say at a point z. The rest of the
argument then tells us that πκ(z) and πκ(p) are near x′.

For the second assertion, suppose that (p, η) is not D-aligned, i.e., p
projects onto η far from y′. Then [p, y′] passes through a neighborhood
of πη(p) and we have

d(p, y′) ≥ d(p, πη(p))+d(πη(p), y
′)−diam(πη(p))−K1 ≥ d(p, η)+D/K2−2K1

for some suitable constant K1.
Note also that since any point q ∈ κ projects onto η near y′, we deduce

that [p, q] passes through a neighborhood of y′. This implies that

d(p, q) ≥ d(p, y′)−K1 ≥ d(p, η) +K

for suitable constants K1, D. Hence we have d(p, κ) ≥ d(p, η) +K. �

We are now ready to prove the main result of this section.

Proposition 3.5. For each C > 0 and K > 1, there exist D = D(K,C) > C
and L = L(K,C) > C that satisfies the following.

Let J be a nonempty set of consecutive integers, and p, {xi, yi}i∈J be points
in X. For each i ∈ J , let κi be a K-contracting axis connecting xi to yi whose
domain is longer than L. Suppose also that (κi)i∈J is C-aligned. Then we
have the following:

(1) the statements

(κi, p) is D-aligned, (p, κi) is D-aligned

cannot hold simultaneously;
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(2) the set

J0 = J0

(
p; (κi)i∈J , D

)
:=

{
j ∈ J :

(κi, p) is D-aligned for i ∈ J such that i < j,
(p, κi) is D-aligned for i ∈ J such that i > j

}
consists of either a single integer or two consecutive integers;

(3) π∪iκi(p) is nonempty and is contained in
⋃
{πκj (p) : j ∈ J0}; and

(4) (κl, κm) is D-aligned for any l,m ∈ J such that l < m.

Proof. Let D = D(K,C) be as in Lemma 3.3 and 3.4. For the first item, we
take large enough L such that diam(xi∪πκi(p)) < D and diam(yi∪πκi(p)) <
D cannot happen simultaneously. For example, L = K(2D + 2K) will do.
This choice will guarantee the following for each i ∈ J :

(3.1)
diam(xi ∪ πκi(p)) < D ⇒ diam(yi ∪ πκi(p)) ≥ D,
diam(yi ∪ πκi(p)) < D ⇒ diam(xi ∪ πκi(p)) ≥ D.

This implies that J0 cannot contain two elements of J that are separated
by more than 1. Hence, it suffices to show that J0 is nonempty.

Suppose, say, there exists m such that (κi, p) is D-aligned for all integer
i ≥ m (in particular, J is not bounded above). Then Inequality 3.1 says that
(p, κi) is not D-aligned for i ≥ m, and Lemma 3.4 asserts that d(p, κm+n) <
d(p, κm) − nK for all n ≥ 0; this violates the nonnegativity of the metric.
Hence, such m cannot exist and

{i ∈ J : (κi, p) is D-aligned}

cannot contain an infinite increasing sequence of consecutive integers. In
other words, J is bounded above unless

S := {j ∈ J : (κj , p) is not D-aligned}

is nonempty. If S is empty and J is bounded above, then max J ∈ J0 clearly
holds. Now suppose that S is nonempty and let j ∈ S. Then (κj , p) is not
D-aligned, which implies that (p, κj+1) is D-aligned and (κj+1, p) is not D-
aligned if j + 1 ∈ J . The induction goes on: (p, κi) is D-aligned and (κi, p)
is not D-aligned for all i ∈ J such that i > j. (∗) Note also that for any
k ≤ inf S, (κi, p) is D-aligned for all i ∈ J such that i < k. This implies
that minS ∈ J0 if S has the minimum.

The remaining case is that S is nonempty but S does not have the min-
imum: that means, both J and S is not bounded below. In this case, (∗)
implies that (κi, p) is not D-aligned for all i ∈ J . By Lemma 3.4, we then
have d(p, κi) < d(p, κj)−K(j − i) for all i, j ∈ J such that i < j. Fixing j
and taking small enough i, we obtain a contradiction with the nonnegativ-
ity of the metric. Hence, this case does not happen and the second item is
established.
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We now prove the third and the fourth items. First suppose that J0 is a
singleton {j}. By definition and Inequality 3.1, we have:
(3.2)
diam(xi ∪ πκi(p)) < D, diam(yi ∪ πκi(p)) > D (i ∈ J such that i > j),

diam(yi ∪ πκi(p)) < D, diam(xi ∪ πκi(p)) > D (i ∈ J such that i < j).

If diam(yj ∪ πκj (p)) < D holds in addition, then j + 1 also belongs to J0,
a contradiction. Hence, we have diam(yi ∪ πκi(p)) ≥ D for i ∈ J such that
i ≥ j. Then Lemma 3.4 tells us that d(y, κi+1) > d(y, κi) for i ∈ J \ sup J
such that i ≥ j. By a similar reason, d(y, κi−1) > d(y, κi) for i ∈ J \ inf J
such that i ≤ j. Hence we conclude π∪iκi(p) = πκj (p).

When J0 = {j, j + 1}, we similarly deduce π∪iκi(p) ⊆ πκj (p) ∪ πκj+1(p).
Let us now take l,m ∈ J such that l < m. We want to show that (κl, κm)

is D-aligned, or equivalently, diam(yl ∪ πκl(p)) < D for any p ∈ κm and
diam(xm ∪ πκm(p)) < D for any p ∈ κl. Both directly follow from the
assumption if l = m − 1. When l < m − 1, J0 = J0(p) for p ∈ κm must
contain m because of the third item. Then the second item implies that
l < J0(p) and diam(yl ∪ πκl(p)) < D as desired. Similarly, p ∈ κl implies
J0(p) < m and diam(xm ∪ πκm(p)) < D as desired. �

We just proved that d(p, κi+1) > d(p, κi) for i ∈ J \sup J such that i ∈ J0.
Here, we are using Inequality 3.2 for i ∈ J \ sup J only; in particular, this
holds even if κsup J is short.

Proposition 3.6. For each C > 0 and K > 1, there exist E = E(K,C) > C
and L = L(K,C) > C that satisfy the following. Let x, y ∈ X and κ1, . . . , κN
be K-BGIP axes whose domains are longer than L.

If (x, κ1, . . . , κN , y) is C-aligned, then (x, κi, y) is E-witnessed for each
i = 1, . . . , N . Moreover, p ∈ NE([x, y]) and (x, y)p < E for any p ∈ κi.

Proof. Proposition 3.5 and Lemma 2.5 guarantee that the following state-
ments hold for suitable choices of E1, E2 and L.

First, (x, κ1) is E1-aligned and hence (κ1, x) is not E1-aligned. This pre-
vents J0

(
x; (κi)i, E1

)
from containing elements larger than 1, i.e., J0

(
x; (κi)i, E1

)
=

{1}. By a similar reason, we have J0

(
y; (κi)i, E1

)
= {N}. Consequently we

have that (x, κi, y) is E1-aligned for each i = 1, . . . , N . Since κi is a long
enough K-BGIP axis, there exists a subsegment [x′, y′] of [x, y] that is within
Hausdorff distance E2 from κi. �

We next discuss the contracting of the concatenation of an aligned se-
quence of contracting axes.

Lemma 3.7. For each C,M > 0 and K > 1, there exist K ′ = K ′(K,C,M) >
C and L = L(K,C) > C that satisfies the following.

Let J be a nonempty set of consecutive integers and {xi, yi}i∈J be points
in X. For each i ∈ J , let κi be a K-contracting axis connecting xi and
yi whose domain is longer than L. Suppose that (κi)i∈J is C-aligned and
d(yi, xi+1) < M for i ∈ J \ sup J . Then ∪iκi is a K ′-contracting axis.
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Proof. There exist large enough K1, E, L > K such that the following argu-
ment works.

To show that ∪iκi is contracting, pick x, y ∈ X. If diam(πκi(x)∪πκi(y)) >
K1 for some i, then [x, y] passes through the K1-neighborhood of κi. If not,
i.e., if the projections of x and y onto each κi are close to each other, we
claim that their projections onto ∪iκi are also close to each other.

Let D = D(K,C) > K be as in Proposition 3.5 and let j ∈ J0 =
J0(x; (κi)i, D). Then we have the following cases:

(1) πκj (x) is distant from both xj and yj : then so is πκj (y), and it
follows that J0(y; (κi)i, D) = {j} also. Hence the projections of x
and y onto ∪iκi are those onto κj , which are close to each other.

(2) πκj (x) is close to xj : then J0(x; (κi)i, D) ⊆ {j−1, j}, and πκi(x) is far
from xi for i 6= j. Since πκi(x) and πκi(y) are close to each other, the
same conclusion holds for πκi(y)’s. In other words, J0(y; (κi)i, D) ⊆
{j − 1, j}. In this case,

diam (π∪iκi({x, y})) ≤ diam
(
πκj ({x, y}) ∪ πκj−1({x, y})

)
≤ diam

(
πκj ({x, y}) ∪ xj

)
+ diam(xj ∪ yj−1)

+ diam
(
yj−1 ∪ πκj−1(x)

)
+ diam

(
πκj−1({x, y})

)
is bounded. Here, the first and the last term are bounded thanks to
the assumption. The second term is at most M , and the third term
is also bounded since j ∈ J0(x; (κi)i, D) so (κj−1, x) is D-aligned.

(3) πκi(x) is close to xj+1: an argument similar to the one above works.

We now show that ∪iκi is a quasigeodesic. Note that for any i < j < k
and x ∈ κi, y ∈ κj and z ∈ κk, then (x, κi+1, . . . , κj , . . . , κk−1, z) is C-aligned
and (x, z)y < E due to Proposition 3.6. In fact, (x, z)y is also when x ∈ κi,
z ∈ κi+1 and y = xi+1. Indeed, (x, κ′, z) is C-aligned for the restriction
κ′ of κi+1 between y and z, so Proposition 3.6 tells us that (x, z)y < E if
d(y, z) > E; if not (x, z)y ≤ d(y, z) is clearly bounded by E.

These bounds on the Gromov products imply the following. For i < j,
x ∈ κi and y ∈ κj , we have

d(x, y) ≥ d(x, yi) + d(xi+1, yi+1) + . . .+ d(xj , y)− |j − i|E

≥ 1

2
[d(x, yi) + d(xi+1, yi+1) + . . .+ d(xj , y)]− E.

Here, we used the fact that d(xk, yk) ≥ L
K−K ≥ 2E for each k. Since each κi

is a K-quasigeodesic, we can conclude that ∪iκi is also a quasigeodesic. �

The latter part of the previous proof still works even when d(yi, xi+1) is
not uniformly bounded, given that the intermediate segments are included.
Hence, we obtain the following:

Lemma 3.8. For each C > 0 and K > 1, there exist K ′ = K ′(K,C) > C
and L = L(K,C) > C that satisfy the following.
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Let J be a nonempty set of consecutive integers and {xi, yi}i∈J be points
in X. For each i ∈ J , let κi be a K-contracting axis connecting xi and yi
whose domains are longer than L. Suppose that (κi)i∈J is C-aligned. Then
the concatenation Γ of (. . . , [xi−1, yi−1], [yi−1, xi], [xi, yi], [yi, xi+1], . . .) is a
K ′-quasigeodesic.

3.1. Schottky set. Using the previous concatenation lemma, we can con-
struct arbitrarily many independent directions out of two independent con-
tracting isometries.

Lemma 3.9. Let K > 1 and κ = (xi)i∈Z, η = (yi)i∈Z be independent K-
contracting axes. Then κ projects onto η small. More precisely, there exists
K ′ > 0 such that

diam (x0 ∪ πκ(η)) < K ′.

Moreover, the projection of the forward half of γ onto its backward half is
also small. More precisely, K ′ can be chosen so that

diam
(
x0 ∪ π{xi}i≥0

({xi}i≤0)
)
< K ′.

Proof. Let K1 = K ′(K) be as in Lemma 2.5. Let l ∈ Z be such that
xl ∈ πκ(y0). For the first assertion, suppose to the contrary and let ni,mi ∈
Z be such that |mi| ≥ i and xmi ∈ πκ(yni). Note that |ni| escapes to
infinity, as ∪|k|≤Mπκ(yk) is finite for each M . Moreover, since κ, η are K-
quasigeodesics, we have d(xl, xmi), d(y0, yni) > K for large enough i. For
those i’s, Lemma 2.5 implies that xmi is contained in the K1-neighborhood
of [y0, yni ], which is contained in the K1-neighborhood of η. In particular, we
have d(xmi , yn′i) < 2K1 for some n′i ∈ Z. This contradicts the independence
of κ and η, and we are led to the conclusion.

The second assertion can be deduced in a similar way, using the fact that
the forward and the backward half-paths diverge from each other. �

In practice, we employ the restrictions of κ and η on various sets J of
consecutive integers. This necessitates the following modification.

Lemma 3.10. Let K > 1 and κ = (xi)i∈Z, η = (yi)i∈Z be independent
K-contracting axes. Then there exists K ′ > 0 such that the following hold:

(1) κ|J := (xi)i∈J , η|J := (yi)i∈J are K ′-contracting axes for any set J
of consecutive integers;

(2) for any set J of consecutive integers that contains 0, we have

diam
(
x0 ∪ πκ|J (η)

)
< K ′;

(3) for any positive integer M we have

diam
(
x0 ∪ π{x0,...,xM}({xi : i ≤ 0})

)
< K ′

Proof. The first item is a part of Lemma 2.6; let K1 = K ′(K) be as in
Lemma 2.6 and K2 = K ′(K1) be as in Lemma 2.5. Let also l ∈ Z be such
that yl ∈ πη(x0) and let d(x0, yl) = D.
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Figure 3. Axes associated with a sequence of isometries s =
(φ1, φ2, φ3, φ4). Points inside the darker shadow constitute
Γ(s), and those inside the lighter shadow constitute Γ2(s).
Points inside the dashed region constitute Γ−1(s).

The proof for the second item is almost identical to the proof of the
previous lemma. First suppose to the contrary; we take ni,mi ∈ Z and sets
of consecutive integers Ji containing 0 such that |mi| ≥ i and xmi belongs
to the projection of yni onto κ|Ji . Again, for each M we have⋃

|i|≤M, 0∈J⊆Z

π{xj :j∈J}(yi) ⊆
⋃
|i|≤M

{xj : d(yi, xj) ≤ d(yi, x0)}

⊆
⋃
|i|≤M

{xj : d(x0, xj) ≤ d(x0, yi)}

⊆ {xj : d(x0, xj) ≤ D + 2KM + 2K},

which is a finite set. Hence, |ni| necessarily escapes to infinity. Moreover,
since κ, η are K-quasigeodesics, we have d(x0, xmi), d(yl, yni) > K for large
enough i. Moreover, κ|Ji have the K1-contracting for all i. Lemma 2.5 then
asserts that xmi is within the K2-neighborhood of [x0, yni ], since it has large
projection on π|Ji . Moreover, it is contained in the (2K2 +D)-neighborhood
of η. We thus have d(xmi , yn′i) < 3K2 + D for some n′i, which contradicts
the independence of κ and η. Hence we are led to the conclusion. Similar
trick works for the third item. �

We will now construct a path out of a sequence of isometries by applying
them to the reference point o. Given a sequence s = (φi)

k
i=1 of isometries of

X, we denote the product of its entries φ1 · · ·φk by Π(s). Now let

xnk+i := Π(s)nφ1 · · ·φio = (φ1 · · ·φk)nφ1 · · ·φio

for each n ∈ Z and i = 0, . . . , k − 1. We let Γm(s) := (x0, x1, . . . , xmk)
when m ≥ 0 and Γm(s) := (x0, x−1, . . . , xmk) when m < 0. When m = 1,
we usually omit the superscript and write Γ(s) = (x0, . . . , xk). Finally, let
Γ±∞(s) = (xi)i∈Z. Note that Γm(s) is a concatenation of |m| translates of
Γ(s) or its reverse.
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Definition 3.11 (cf. [Gou21, Definition 3.11]). Let K > 0 and S ⊆ GM

be a set of sequences of M isometries. We say that S is K-Schottky if the
following hold:

(1) Γm(s) is a K-contracting axis for all s ∈ S and m ∈ Z;
(2) for each x ∈ X, all element s ∈ S except at most 1 satisfies that

(x,Γn(s)) is K-aligned for all n ∈ Z;
(3) for each x ∈ X and s ∈ S, if (x,Γn(s)) is not K-aligned for some

n > 0 (n < 0, resp.) then (x,Γm(s)) is K-aligned for all m ≤ 0
(m ≥ 0, resp.).

An intuitive example of a Schottky set is the set S of all words of length
n in F2 = 〈a, b〉 that consists of letters a and b (not involving a−1 and b−1).
For any infinite ray on F2, there exists at most 1 element s ∈ S that matches
the direction. Moreover, s and s−1 diverge early for any s ∈ S. Note also
that the set of the self-concatenations of these words also satisfy the same
property. This means that we can make the directions made by two words
in S to diverge early (compared to their lengths). This model will help
understanding the following proposition.

Proposition 3.12 (cf. [Gou21, Proposition 3.12]). For any N0 > 0, there
exists a K-Schottky set of cardinality N0 in (suppµ)m for some m and K.

Proof. Since µ is a non-elementary measure, there exist independent BGIP
isometries a, b ∈ 〈〈 suppµ 〉〉. By taking suitable powers if necessary, we may
assume that a = Π(α), b = Π(β) for some sequences α, β ∈ (suppµ)N for
some N . Then Γ±∞(α), Γ±∞(β) are independent contracting axes.

Let:

• K1 = K ′ be as in Lemma 3.10 for Γ±∞(α),Γ±∞(β);
• K2 = D(K1), L2 = L′(K1) be as in Proposition 3.5;
• K3 = K ′(K1), L3 = L′(K1) be as in Lemma 3.7.

Note here that Γ±∞(α), Γ±∞(β) are unchanged after replacing α, β with
their self-concatenations. Hence, by self-concatenating α and β if necessary,
we may assume that N > max(L2, L3). This choice forces the following: for
any x ∈ X, the statements(

x,Γ(α)
)

is K2-aligned,
(
Γ(α), x

)
is K2-aligned

are mutually exclusive. Analogous statements for β are also mutually exclu-
sive. Let us now pick an integer M such that 2M > N0. Since any subset of a
Schottky set is again Schottky, we aim to make a Schottky set of cardinality
2M .

We will consider the set S′ of sequences of MN isometries that are con-
catenations of α’s and β’s, i.e.,

S′ :=
{

(φi)
MN
i=1 ∈ GMN : (φN(k−1)+1, . . . , φNk) ∈ {α, β} for k = 1, . . . ,M

}
.

Given s = (φi)
MN
i=1 ∈ S′, we have defined

xnMN+i(s) = (φ1 · · ·φMN )nφ1 · · ·φio
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for n ∈ Z and i = 0, . . . ,MN − 1. We temporarily define sub-axes of the
main axis Γ(s), namely,

Γk(s) :=
(
xN(k−1)(s), . . . , xNk(s)

)
,

Γ−k(s) :=
(
x−N(k−1)(s), . . . , x−Nk(s)

)
for k = 1, . . . ,M . Then for each m, Γm(s) is a concatenation of Γk(s)’s and
their translates, which are translates of Γ(α) and Γ(β). These translates are
K1-contracting axes whose domains are longer than L2. Moreover, Lemma
3.10 tells us that

(
Γ̄(γ),Γ(γ′)

)
is K1-aligned for γ, γ′ ∈ {α, β}. Lemma 3.7

then implies that Γm(s) is a K3-contracting axis.
We now fix x ∈ X. Let us first consider the condition:

(3.3)
(
x,ΓM (s)

)
is K2-aligned.

We claim that if s ∈ S′ satisfies this condition, then πΓn(s)(x)’s are uniformly
bounded for n ≥ 0. For each n, note that Γn(s) is a concatenation of K1-
contracting axes

(κi)
MN
i=1 =

(
Γ1(s), . . . , ΓM (s), Π(s)Γ1(s), . . . , Π(s)ΓM (s), . . . , Π(s)n−1ΓM (s)

)
.

Each pair of consecutive axes are of the form
(
gΓ̄−1(γ), gΓ(γ′)

)
for some g ∈

G and γ, γ′ ∈ {α, β}, which is K1-aligned due to Lemma 3.10. Hence, we can
apply Proposition 3.5. Note that Condition 3.3 implies that

(
ΓM (s), x

)
is

notK2-aligned. This means that J0 = J0 (x; (κi)i,K2) and {M+1, . . . ,MN}
are disjoint. Therefore, πΓn(s)(x) is contained in Γ1(s) ∪ . . . ∪ ΓM (s) = Γ(s)
and

diam
(
πΓn(s)(x) ∪ o

)
≤ diam(Γ(s)) ≤ K3MN +K3.

By a similar reason, the condition

(3.4)
(
x,Γ−M (s)

)
is K2-aligned

implies diam
(
πΓn(s)(x) ∪ o

)
≤ diam

(
Γ−1(s)

)
≤ K3MN +K3 for all n ≤ 0.

These can be summarized as follows.

Observation 3.13. If s ∈ S′ satisfy Condition 3.3 and 3.4, then

diam
(
πΓn(s)(x) ∪ o

)
< K3MN +K3

holds for all n ∈ Z.

We now consider the case that an element of S′ violates these conditions.

Observation 3.14. If s = (φi)
MN
i=1 ∈ S′ violates Condition 3.3, then all the

other elements s′ = (φ′i)
MN
i=1 ∈ S′ satisfy Condition 3.3.

To show this, let k be the first index such that (φN(k−1)+1, . . . , φNk) and
(φ′N(k−1)+1, . . . , φ

′
Nk) differ. By switching the roles of α and β if necessary,

we may assume that

(φN(k−1)+1, . . . , φNk) = α, (φ′N(k−1)+1, . . . , φ
′
Nk) = β.

Let us denote xi(s) by xi and xi(s
′) by x′i.
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o = x0
xN

x2N
x3N

x4N

x5N
x′N

x′2N
x′3N

x′4N

x′5N

x′−N

x′−2N

x′−3N

x′−4N

x′−5N

x

Figure 4. Schematics for Lemma 3.12. Three solid lines
represent Γ(s), Γ(s′) and Γ−1(s′) in the clockwise order.
The upper dashed line represents the concatenation of
Γ̄M (s), . . . , Γ̄1(s) and Γ̄−1(s′). The lower dashed line rep-
resents the concatenation of Γ̄M , . . . , Γ̄k(s) and Γk(s

′).

Note that the path(
xMN , xMN−1, . . . , x(k−1)N = x′(k−1)N , x

′
(k−1)N+1, . . . , x

′
kN

)
is the concatenation of K1-contracting axes

(ηi)
M−k+2
i=1 :=

(
Γ̄M (s), Γ̄M−1(s), . . . , Γ̄k(s),Γk(s

′)
)
.

(See the lower dashed line in Figure 4.) Each pair of consecutive axes are
of the form

(
gΓ̄−1(γ), gΓ(γ′)

)
for some γ, γ′ ∈ {α, β, α−1, β−1} such that

γ 6= γ′. Lemma 3.10 implies that such pair is K1-aligned, which allows us
to apply Proposition 3.5.

In particular, since we are assuming that
(
Γ̄M (s), x

)
is not K2-aligned,

J0 = J0(x; (ηi)i,K2) is necessarily {1} and (x, ηM−k+2) = (x,Γk(s
′)) is K2-

aligned. We then apply Proposition 3.5 to Γn(s′), a concatenation of K1-
contracting axes

(κ′i)
MN
i=1 =

(
Γ1(s′), . . . , ΓM (s′), Π(s′)Γ1(s′), . . . , Π(s′)ΓM (s′), . . . , Π(s′)n−1ΓM (s′)

)
.
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Then J ′0 = J0(x; (κ′i)i,K2) and {k + 1, . . . ,MN} are disjoint, which implies
Condition 3.3 for s′ and

πΓn(s′)(x) ∈ Γ1(s′) ∪ · · · ∪ Γk(s
′) ⊆ Γ(s′),

diam
(
πΓn(s′)(x) ∪ o

)
≤ diam(Γ(s′)) ≤ K3MN +K3

for all n ≥ 0.
A similar argument leads to the following.

Observation 3.15. If s ∈ S′ violates Condition 3.4, then all the other
elements in S′ satisfy Condition 3.4.

Our next claim concerns the third item.

Observation 3.16. If s = (φi)
MN
i=1 ∈ S′ violates Condition 3.3, then all

elements s′ = (φ′i)
MN
i=1 ∈ S′ (including s′ = s) satisfy Condition 3.4.

To show this, observe that the path(
xMN , xMN−1, . . . , x0 = o, x′−1, . . . , x

′
−N
)

is the concatenation of K0-contracting axes Γ̄M (s), . . ., Γ̄1(s) and Γ̄−1(s′).
(See the upper dashed line in Figure 4.) This sequence is again K1-aligned,
even in the case s = s′, by Lemma 3.10. As before, we can apply Propo-
sition 3.5 and deduce that πΓ−1(s′)(x) ∪ o has diameter less than K2. Now
Proposition 3.5 in turn implies

πΓ−n(s′)(x) ∈ Γ−1(s′), diam(πΓ−n(s′)(x) ∪ o) ≤ diam(Γ−1(s′)) ≤ K3N +K3

for all n ≥ 0.
An analogous statement follows.

Observation 3.17. If s = (φi)
MN
i=1 ∈ S′ violates Condition 3.4, then all

elements s′ = (φ′i)
MN
i=1 ∈ S′ (including s′ = s) satisfy Condition 3.3.

Let us summarize the observations and finish the proof. We take K =
K3MN + K3. The first item was established before. The second item is
equivalent to saying that both Condition 3.3 and Condition 3.4 are satisfied
by all but at most 1 element of S′. The third item is equivalent to saying
that Condition 3.3, 3.4 cannot be violated at the same time by any element
of S′. We have the following 4 cases.

• Every s ∈ S′ satisfies Condition 3.3 and Condition 3.4: then clearly
the second and the third items hold.
• Some s ∈ S′ violates Condition 3.3: then Condition 3.3 is satisfied

by all the other elements of S′ and Condition 3.4 is satisfied by all
elements of S′:
• Some s ∈ S′ violates Condition 3.4: then Condition 3.4 is satisfied

by all the other elements of S′ and Condition 3.3 is satisfied by all
elements of S′.
• Some s ∈ S′ simultaneously violates Condition 3.3 and 3.4; this case

is ruled out by the previous 2 cases.
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In all cases, we conclude that the second and the third items hold. �

The following property is immediate.

Lemma 3.18. Let S be a K-Schottky set in Gm for m > 2K2. Then for
any s, s′ ∈ S, we have

(3.5) diam
(
πΓ−1(s′)(Π(s)o) ∪ o

)
< K, diam

(
πΓ(s)(Π(s′)−1o) ∪ o

)
< K.

Proof. For the first inequality, we observe that

diam
(
πΓ(s)(Π(s)o) ∪ o

)
= diam (Π(s)o ∪ o) ≥ m/K −K > K.

Hence, we observe that

diam
(
πΓn(s′)(Π(s)o) ∪ o

)
≤ K

holds for all n if s 6= s′ (Property (2)), and for n ≤ 0 if s = s′ (Property
(3)); hence the first inequality.

We can analogously deduce the second inequality. �

We will use Schottky sets to guarantee alignments. In order to fully utilize
the previous alignment lemmata, it is important to prepare Schottky sets
whose elements have sufficiently long domains.

From now on we fix an integer N0 > 410. Let K0 := K(N0)
be as in Proposition 3.12, and
• K1 := K ′(K0) be as in Lemma 2.4,
• K2 := K ′(K0) be as in Lemma 2.5,
• K3 := K ′(K0) be as in Lemma 2.7,
• D0 := D(K0,K0 +K1 +K2 +K3) be as in Lemma 3.3

and 3.4;
• for i = 1, 2, Di := D(K0, Di−1), Li := L(K0, Di−1) be

as in Lemma 3.3, 3.4 and Proposition 3.5;
• E0 := E(K0, D2), L3 := L(K0, D2) be as in Proposition

3.6.
Let us now fix a K0-Schottky set S ⊆ (suppµ)M0 of car-

dinality at least N0. Note that the n-self-concatenations of
elements of S also comprise a K0-Schottky set. Hence, we
may assume that

(3.6) M0 > L1 + L2 + L3 + 20K0(K0 + E0).

From now on, K0-contracting axes of the form Γm(s) for
s ∈ S and m 6= 0 are called Schottky axes.

4. Pivotal times and pivoting

4.1. Pivotal times. We adapt Gouëzel’s pivotal time construction in [Gou21]
to our setting. Most of the proofs will be deferred to Appendix A, since the
original lemmata are already proved in [Gou21]; see also [Cho21a].

Let (wi)
∞
i=0, (vi)

∞
i=1 be isometries in G. Now given a sequence

s = (α1, β1, γ1, δ1, . . . , αn, βn, γn, δn) ∈ S4n,
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y−i,2
y−i,1 y−i,0

y+
i,0 y+

i,1

y+
i,2

ai bi

vi

ci
di

wi

Figure 5. y±i,k inside a trajectory.

we first define

(4.1) ai := Π(αi), bi := Π(βi) ci := Π(γi), di := Π(δi).

We then consider isometries that are subwords of

w0a1b1v1c1d1w1 · · · akbkvkckdkwk · · · .

More precisely, we set the initial case w+
−1,2 := id and define

w−i,2 := w+
i−1,2wi−1, w−i,1 := w−i,2ai, w−i,0 := w−i,2aibi,

w+
i,0 := w−i,2aibivi, w+

i,1 := w−i,2aibivici, w+
i,2 := w−i,2aibivicidi

and the translates y±i,t = w±i,to of o by them. We also employ notations

Υ(αi) := w−i,2Γ(αi), Υ(βi) := w−i,1Γ(βi),

Υ(γi) := w+
i,0Γ(γi), Υ(δi) := w+

i,1Γ(δi).

for simplicity. We will later consider modified versions of a given sequence
s such as s̃ = (α̃i, β̃i, γ̃i, δ̃i)

n
i=1 or s̄ = (ᾱi, β̄i, γ̄i, δ̄i)

n
i=1. We also employ

notations analogous to the above for these choices, i.e., ãi, . . ., d̃i, āi, . . .,
d̄i, w̃

±
i,j , w̄

±
i,j and Υ(α̃i), . . ., Υ(δ̃i), Υ(ᾱi), . . ., Υ(δ̄i).

We now define the set of pivotal times and Pn = Pn (s, (wi)
n
i=0, (vi)

n
i=1)

and an auxiliary moving point zn = zn (s, (wi)
n
i=0, (vi)

n
i=1) inductively. First

set P0 = ∅ and z0 = o. Now given Pn−1 ⊆ {1, . . . , n− 1} and zn−1 ∈ X, Pn
and zn are determined as follows.

(A) When (zn−1,Υ(αn)),
(

Υ(βn), y+
n,1

)
,
(
y−n,0,Υ(γn)

)
and

(
Υ(δn), y−n+1,2

)
are K0-aligned, then we set Pn = Pn−1 ∪ {n} and zn = y+

n,1.

(B) Otherwise, we seek sequences {i(1) < · · · < i(N)} ⊆ Pn−1 (N > 1)
such that(

Υ(δi(1)),Υ(αi(2)),Υ(βi(2)), . . . ,Υ(αi(N)),Υ(βi(N))
)

is D0-aligned and
(

Υ(βi(N)), y
−
n+1,2

)
is K0-aligned.
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zk−1

y−k,2 y−k,0

y−k,1

γk δk

y+
k,1

y+
k,2

y−k+1,2

vk wk

αk βk

Figure 6. Schematics for Criteria 4.2, 4.3, 4.4 and 4.5.

If exists, let {i(1) < · · · < i(N)} be such a sequence with maximal
i(1); we set Pn = Pn−1 ∩ {1, . . . , i(1)} and zn = y−i(N),1. If such a

sequence does not exist, then we set Pn = ∅ and zn = o.1

One reason for defining Pn is that it records the Schottky axes aligned
along [o, ωn o]. More precisely, we have:

Lemma 4.1. Let Pn = {i(1) < . . . < i(m)}. Then(
o,Υ(αi(1)),Υ(βi(1)),Υ(γi(1)),Υ(δi(1)), . . . ,Υ(αi(m)),Υ(βi(m)),Υ(γi(m)),Υ(δi(m)), y

−
n+1,2

)
is a subsequence of a D0-aligned sequence of Schottky axes. In particular, it
is D1-aligned.

This is originally from [Gou21, Lemma 5.3] and we defer the proof to
Appendix A.

From now on, let us endow the Schottky set S with the uniform measure
and consider the product measure on S4n. In other words, we assume that
αi, βi, γi, δi are drawn from S independently. We now discuss when new
pivotal time is added to the set of pivotal times; this tells us how to pivot
the direction a pivotal time without affecting the set of pivotal times.

Lemma 4.2. For 1 ≤ k ≤ n, s ∈ S4(k−1), we have

P
(

#Pk(s, αk, βk, γk, δk) = #Pk−1(s) + 1
)
≥ 1− 4/N0.

Proof. Recall Criterion (A) for #Pk = #Pk−1 + 1. We will investigate four
required conditions one-by-one.

First, the condition

(4.2) diam
(
πΥ(γk)(y

−
k,0) ∪ y+

k,0

)
= diam

(
πΓ(γk)(v

−1
k o) ∪ o

)
< K0

depends only on γk. This holds for at least (#S − 1) choices in S.

1When there are several sequences that realize maximal i(1), we choose the maximum
in the lexicographic order on the length of sequences and i(2), i(3), . . ..
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Similarly, the condition

(4.3) diam
(
πΥ(δk)(y

−
k+1,2) ∪ y+

k,2

)
= diam

(
πΓ−1(δk)(wko) ∪ o

)
< K0

depends only on δk, and holds for at least (#S − 1) choices in S.
Now fixing the choice of γk, the condition

(4.4) diam
(
πΥ(βk)(y

+
k,1) ∪ y−k,0

)
= diam

(
πΓ−1(βk)(vkcko) ∪ o

)
< K0

depends only on βk. This holds for at least (#S − 1) choices in S.
This time, let us fix the choice of s = (α1, β1, γ1, δ1, . . . , αk−1, βk−1, γk−1, δk−1);

in particular, w−k,2 and zk−1 are now determined. Then the condition

(4.5)

diam
(
πΥ(αk)(zk−1) ∪ y−k,2

)
= diam

(
πΓ(αk)

(
(w−k,2)−1zk−1

)
∪ o
)
< K0

depends on αk. This holds for at least (#S − 1) choices of αk.
In summary, the probability that Criterion (A) holds is at least

#S − 1

#S
· #S − 1

#S
· #S − 1

#S
· #S − 1

#S
≥ 1− 4

N0
�

Given α1, β1, γ1, δ1, . . ., αk−1, βk−1, γk−1, δk−1, we define the set S̃k of
triples (αk, βk, γk) in S3 that satisfy Condition 4.2, 4.4 and 4.5.

Note that S̃k takes up large portion of S3: in the previous proof we

observed that #
[
S3 \ S̃k

]
≤ 3(#S)2. Moreover, for (αk, βk, γk) ∈ S̃k,

{(αk, β′k, γk) ∈ S̃k : βk ∈ S} has at least #S − 1 elements. In addition,

S̃k is the set of allowed choices for pivoting:

Lemma 4.3. Let i ∈ Pk(s) for a choice s = (α1, β1, γ1, δ1, . . . , αn, βn, γn, δn),
and s̄ be obtained from s by replacing (αi, βi, γi) with

(ᾱi, β̄i, γ̄i) ∈ S̃i(α1, β1, γ1, δ1, . . . , αi−1, βi−1, γi−1, δi−1).

Then Pl(s) = Pl(s̄) and S̃l(s) = S̃l(s̄) for any 1 ≤ l ≤ k.

This corresponds to [Gou21, Lemma 5.7], whose proof can be found in
Appendix A.

Given 1 ≤ k ≤ n and a partial choice s = (α1, β1, γ1, δ1, . . . , αk, βk, γk, δk),
we say that s̄ = (ᾱ1, β̄1, γ̄1, δ̄1, . . . , ᾱk, β̄k, γ̄k, δ̄k) is pivoted from s if:

• δj = δ̄j for all 1 ≤ j ≤ k,

• (ᾱi, β̄i, γ̄i) ∈ S̃i(s) for each i ∈ Pk(s), and
• (αj , βj , γj) = (ᾱj , β̄j , γ̄j) for each j ∈ {1, . . . , k} \ Pk(s).

Lemma 4.3 then asserts that being pivoted from each other is an equivalence
relation. For each s ∈ S4k, let Ek(s) be the equivalence class of s. Our central
estimation follows:

Lemma 4.4. For 1 ≤ k ≤ n, j ≥ 0 and s ∈ S4(k−1), the probability

P
(

#Pk(s̃, αk, βk, γk, δk) < #Pk−1(s)− j
∣∣∣ s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4

)
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is less than (4/N0)j+1.

This corresponds to [Gou21, Lemma 5.8] and we defer the proof to Ap-
pendix A.

Corollary 4.5. When s = (αi, βi, γi, δi)
n
i=1 is chosen from S4n with the

uniform measure, #Pn(s) is greater in distribution than the sum of n i.i.d.
Xi, whose distribution is given by

(4.6) P(Xi = j) =


(N0 − 4)/N0 if j = 1,

(N0 − 4)4−j/N−j+1
0 if j < 0,

0 otherwise.

More generally, the distribution of #Pk+n(s)−#Pk(s) conditioned on the
choices of (αi, βi, γi, δi)

k
i=1 also dominates the sum of n i.i.d. Xi.

Moreover, we have P(#Pn(s) ≤ (1− 10/N0)n) ≤ e−Kn for some K > 0.

This corresponds to [Gou21, Lemma 5.9, Proposition 5.10].

4.2. Pivoting for pairs of independent paths. In this subsection, we
deal with two independent paths at the same time. Let us fix two K0-
Schottky sets S, Š of cardinality N0. We then fix isometries (wj)

∞
j=0, (vj)

∞
j=1,

(w̌j)
∞
j=0 and (v̌j)

∞
j=1. We also draw choices s = (αj , βj , γj , δj)

n
j=1 ∈ S4n and

š = (α̌j , β̌j , γ̌j , δ̌j)
n
j=1 ∈ Š4n.

We first construct the set of pivotal times on the words

w = w0a1b1v1c1d1 · · · anbnvncndnwn,
w̌ = w̌0ǎ1b̌1v̌1č1ď1 · · · ǎnb̌nv̌nčnďnw̌n

separately. Let E , Ě be equivalence classes made by the pivoting for w and
ω̌, respectively. Let also

P (E) = {i(1) < i(2) < . . .}, P (Ě) = {̌i(1) < ǐ(2) < . . .}.

We will now construct

S∗1(s, š) := S∗1 ,

Š∗1(s, š) := Š∗1(αǐ(1)),

S∗2(s, š) := Š∗2(α̌i(1), β̌ǐ(1), γ̌ǐ(1), αi(1), βi(1), γi(1)),

Š∗2(s, š) := Š∗2(α̌ǐ(1), β̌ǐ(1), γ̌ǐ(1), αi(1), βi(1), γi(1), αi(2)),

...

for 1 ≤ k ≤M . We first consider

φk := (w̌−
ǐ(k),2

)−1w−i(k),2 = w̌−1
ǐ(k)

ď−1
ǐ(k)−1

č−1
ǐ(k)−1

· · · w̌−1
0 · w0a1b1v1c1d1 . . . wi(k).
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Figure 7. Defining φk’s used in the pivoting for a pair of
independent paths.

We now define

S∗k(s, š) :=
{
αi(k) ∈ S :

(
φ−1
k o,Γ(αi(k))

)
is K0-aligned

}
:=
{
αi(k) ∈ S :

(
y̌−
ǐ(k),2

,Υ(αi(k))
)

is K0-aligned
}
,

Š∗k(s, š) :=
{
α̌ǐ(k) ∈ S :

(
φkai(k)o,Γ(α̌ǐ(k))

)
is K0-aligned

}
:=
{
α̌ǐ(k) ∈ S :

(
y−i(k),1,Υ(α̌ǐ(k))

)
is K0-aligned

}
.

Then the property of Schottky sets imply that S \S∗k , S \ Š∗k ’s consist of at

most 1 element each. Moreover, Lemma 3.3 says that
(

Ῡ(α̌ǐ(k)),Υ(αi(k))
)

is D0-aligned when αi(k) ∈ S∗k and α̌ǐ(k) ∈ Š∗k .

We now estimate the probability that αi(k) ∈ S∗k and α̌ǐ(k) ∈ Š∗k . Given

s = (αi(l), βi(l), γi(l))l=1,...,k−1 and š = (α̌ǐ(l), β̌ǐ(l), γ̌ǐ(l))l=1,...,k−1, we define

S†k :=

{
(αi(k), βi(k), γi(k), α̌ǐ(k), β̌ǐ(k), γ̌ǐ(k)) ∈ Si(k)(E)× Šǐ(k)(Ě)

: αi(k) ∈ S∗i(k)(s) and α̌ǐ(k) ∈ Š∗k(š, α̌ǐ(k))

}
Then we have the following:

Lemma 4.6. For each 1 ≤ k ≤ bM/2c, S†k has cardinality at least (#S)6−
8(#S)5.
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Proof. There are at least (#S − 1) choices of γi(k) and γ̌ǐ(k) that satisfy

Inequality 4.2. Fixing those choices, at least (#S − 1) choices of βi(k) and

β̌ ˇi(k) in S satisfy Inequality 4.4. Fixing those choices, there are at most 1

choice of αi(k) in S that violates Inequality 4.5 and at most 1 choice that
lies outside S∗k . If we choose αi(k) in S∗k that satisfies Inequality 4.5, now

at least (#S − 2) choices of α̌ǐ(k) satisfy Inequality 4.5 and belong to Š∗k .

Overall, we conclude that S∗(k) has cardinality at least (#S−1)4(#S−2)2 ≥
(#S)6 − 8(#S)5. �

Corollary 4.7. If #Pn(E), #Pn(Ě) are greater than m, then we have
(4.7)

P
(
αi(k) ∈ S∗k(s, š), α̌ǐ(k) ∈ Š

∗
k(s, š) for some k ≤ m

∣∣∣ E × Ě) ≥ 1−
(

8

N0

)m
.

4.3. Pivotal times in random walks. Let µS be the uniform measure on
S. By taking suitably small α between 0 and 1, we can decompose µ4M0 as

µ4M0 = αµ4
S + (1− α)ν

for some probability measure ν. We then consider:

• Bernoulli RVs ρi with P(ρi = 1) = α and P(ρi = 0) = 1− α,
• ηi with the law µ4

S , and
• νi with the law ν,

all independent, and define

(g4M0k+1, . . . , g4M0k+4M0) =

{
νk when ρk = 0,
ηk when ρk = 1.

Then (gi)
∞
i=1 has the law µ∞. We now define Ω to be the ambient probability

space on which the above RVs are all measurable. We will denote an element
of Ω by ω. We also fix

• ωk := g1 · · · gk,
• B(k) :=

∑k
i=0 ρi, i.e., the number of the Schottky slots till k, and

• ϑ(i) := min{j ≥ 0 : B(j) = i}, i.e., the i-th Schottky slot.

For each ω ∈ Ω and i ≥ 1 we define

wi−1 := g4M0[ϑ(i−1)+1]+1 · · · g4M0 ϑ(i),

αi := (g4M0 ϑ(i)+1, . . . , g4M0 ϑ(i)+M0
),

βi := (g4M0 ϑ(i)+M0+1, . . . , g4M0 ϑ(i)+2M0
),

γi := (g4M0 ϑ(i)+2M0+1, . . . , g4M0 ϑ(i)+3M0
),

δi := (g4M0 ϑ(i)+3M0+1, . . . , g4M0 ϑ(i)+4M0
).

In other words, ηϑ(i) corresponds to (αi, βi, γi, δi) (with M0 steps each) and
wi corresponds to the products of intermediate steps of νk’s in between
ηϑ(i−1) and ηϑ(i). As in Subsection 4.1, we employ the notation ai := Π(αi),
bi := Π(δi) and so on.
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In order to represent ωn for arbitrary n, we set n′ := bn/4M0c and w(n) :=
g4M0[ϑ(B(n′))+1]+1 · · · gn. We then have

(4.8) ωn = w0a1b1c1d1w1 · · · aB(n′)bB(n′)cB(n′)dB(n′)w
(n)

and we can bring the discussion in Subsection 4.1 here (with vi’s set as id).
As before, we denote by s the choices of αi, βi, γi, δi and define

(4.9)

P1(ω) = P1

(
(wi)

1
i=0, a1, b1, c1, d1

)
,

P2(ω) = P2

(
(wi)

2
i=0, (ai, bi, ci, di)

2
i=1

)
,

...

and

P (n)(ω) = PB(n′)

((
w0, . . . , wB(n′)−1, w

(n)
)
, (ai, bi, ci, di)

B(n′)
i=1

)
.

Note that P (n)(s) is built using the decomposition in Equation 4.8, and its
partial sets of pivotal times are P1(ω), . . ., PB(n′)−1(ω). We finally define

Pn(ω) :=
{

4M0 ϑ(i) : i ∈ P (n)(s)
}
.

Lemma 4.8. Let ω be a non-elementary random walk on G. Then Pn(ω)
increases linearly outside a set of exponentially decaying probability. More
precisely, there exists K > 0 such that

P
(

#Pm(ω)−#Pm(ω) ≤ K(m− n)
)
≤ 1

K
e−K(m−n)

holds for all 0 ≤ n ≤ m.

Proof. We denote bm/4M0c by m′ and bn/4M0c by n′. Recall that the
first model involves independent RVs {ρi, ηi, νi}’s. We first draw choices of
{ρi}mi=1 that determine the values of B(n′) and {ϑ(1), . . . , ϑ(B(n′))}. Since
ρi has uniform exponential moment and uniform positive expectation, B(n′)
increases linearly outside a set of exponentially decaying probability. More
precisely, there exists K1 (independent of m, n) such that for any m,n,

(4.10) P
(
B
(
m′
)
−B

(
n′
)
≤ K1(m− n)

)
≤ 1

K1
e−K1(m−n).

Let us fix choices of {ρi}mi=1 that makes B(m′)−B(n′) > K1(m− n).

We then draw choices of {νi}mi=1 that determine the values of {wi−1}B(m′)
i=1 ,

w′B(m′) and w′B(n′). Now the values of {αi, βi, γi, δi}B(m′)
i=1 are determined by

the values of {ηϑ(1), . . . , ηϑ(B(m′))}, which follow the law of µ
4 B(n′)
S . Now

Corollary 4.5 provides a constant K2 > 0 such that the following holds:

P
(

#Pm(ω)−#Pn(ω) ≤ K2(m− n)
)

≤ P
(

#P (m)(ω)−#PB(n′)−1(ω) ≤ K2(m− n) + 1
)

≤ 1

K2
e−K2(B(m′)−B(n′)) ≤ 1

K2
e−K2K1(m−n).
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Here, the first inequality is due to the relationship

#Pn(ω) = #P (n)(ω) ≤ #PB(n′)−1(ω) + 1.

Combined with Inequality 4.10, this yields the desired conclusion. �

We now arrive at the first description of the escape rate.

Corollary 4.9. Let ω be a non-elementary random walk on G. Then there
exists K > 0 such that

P
(
d(o, ωn o) ≤ Kn

)
≤ 1

K
e−Kn.

Proof. Lemma 4.1 tells us that there exists a sequence of Schottky axes
(κl)

M
l=1 with M > 4#Pn(ω) such that (o, κ1, . . . , κM , ωn o) is D0-aligned.

Proposition 3.6 then tells us that

d(o, ωn) ≥
[(

M0

K0
−K0

)
− 3E0

]
· (4#Pn(ω)) ≥ 4E0#Pn(ω).

By combining this with Lemma 4.8, we deduce the desired conclusion. �

Corollary 4.9 even implies

P (min{#Pk(ω) : k ≥ n} ≤ Kn) ≤ 1

K
e−Kn

for some K > 0. We now claim that if #Pk(ω) ≥ Kn for all k ≥ n,
then Pn(ω), Pn+1(ω), . . . all possess the same first Kn − 1 pivotal times.
Suppose to the contrary that for some k ≥ n, Pk(ω) does not start with the
first Kn− 1 pivotal times of Pn(ω).

Since the complete set of pivotal times P (n)(ω) has at least Kn elements,
PB(n′)−1(ω) has at least Kn − 1 elements. Let i1, . . . , idKn−1e be the first
dKn− 1e elements of PB(n′)−1.

We now note that one of {PB(n′)(ω), . . . , PB(k′)−1(ω), P (k)(ω)} becomes
a proper subset of {i1, . . . , idKn−1e}; otherwise all of i1, . . . , idKn−1e survives

in P (k)(ω) and leads to a contradiction. If P (k) is so, then we have a con-

tradiction #Pk(ω) = #P (k)(ω) < Kn − 1. Now suppose that Pl(ω) is so

for some B(n′) ≤ l < k. Since Pl(ω) = P (4M0 ϑ(l))(ω), we have

#P4M0 ϑ(l)(ω) = #Pl < Kn− 1,(4.11)

#P4M0 ϑ(l+1)(ω) = #Pl+1 ≤ Pl(ω) + 1 < Kn.(4.12)

Note that 4M0 ϑ(l+1) > n, since otherwise we have a contradiction, namely,
B(bn/4M0c) ≥ l+1 > B(n′). However, Inequality 4.12 then also contradicts
the assumption. Hence, the claim follows.

Having the argument above in mind, we define

Qn(ω) := ∩k≥n Pk(ω), Q(ω) := ∪nQn(ω) = lim inf Pn(ω)

; we call this the set of eventual pivotal times. We have proven:



30 INHYEOK CHOI

Lemma 4.10.

(4.13) P(#Qn(ω) ≤ Kn) ≤ 1

K
e−Kn

holds for some K > 0.

Suppose now that #Qn(ω) = {i(1) < . . . < i(M)}. Let (κl)
4M
l=1 be the

sequence of Schottky axes at pivotal times in Qn(ω). Then for any k, k′ ≥ n,

(o, κ1, . . . , κ4M , ωk o), (o, κ1, . . . , κ4M , ωk′ o)

are subsequences of D0-aligned sequences; namely, they are D1-aligned.
Then the terminating point ωi(M)+4M0

o of the last axes κ4M is far from
o and passed by [o, ωk o] and [o, ωk′ o]. More precisely, we have

d(o, ωi(M)+4M0
o), d(ωi(M)+4M0

o, o) ≥
[(

M0

K0
−K0

)
− 3E0

]
· 4M ≥ 4E0M

and

d(ωi(M)+4M0
o, [ωk o, o]), d(ωi(M)+4M0

o, [o, ωk′ o]) ≤ E0.

This implies that the Gromov product (ωk o, ωk′ o)o is at least 4E0M −5E0,
and we have:

Corollary 4.11 ([Gou21, Proposition 4.13]). There exists K > 0 such that
the following hold:

(4.14) P
(

inf
k,k′≥n

(ωk o, ωk′ o)o ≤ Kn
)
≤ 1

K
e−n/K .

By combining subadditive ergodic theorem with Corollary 4.9, we obtain
Theorem D for random walks with finite first moment. Gouëzel’s arguments
in [Gou21, Section 5] provide the remaining information; namely, the argu-
ments there show that:

(1) Equation 1.3 holds with λ = +∞ if µ has infinite first moment, and
(2) Theorem E holds.

Using the pivotal time construction in Section 4, one can realize Gouëzel’s
arguments in the current setting. Since the idea is identical, we will not
repeat them here.

5. Deviation inequalities

In this section, we establish deviation inequalities and their consequences.
In order to derive deviation inequalities, we will seek an (eventual) pivotal
time at which the Schottky segment will witness two sides of the triangle
made by points. This will make the triangle ‘thin’ and guarantee that the
Gromov product is bounded by the progress made till the pivotal time. Such
a pivotal time will appear before the n-th step outside a set of exponentially
decaying probability. Using this exponential bound, we will estimate the
p-moment and the 2p-moment of the Gromov product.
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×

o
ωi o

ωi+M0 o

ωi Γ(α)

x

ως o

Figure 8. Persistent progress and ς. Here, o and x are
on the left with respect to the persistent progress ωi Γ(α),
while the loci after ως o are all on the right. Note that
we do not restrict the locations of ω1 o, . . . , ωi−1 o and
ωi+M0+1 o, . . . , ως −1 o.

5.1. Persistent progress. Given x ∈ X, we seek an index k such that
there exists i ≤ k −M0 such that:

(1) α := (gi+1, . . . , gi+M0) is a Schottky sequence;
(2) (o, ωi Γ(α), ωn o) is D1-aligned for all n ≥ k;
(3) (x, ωi Γ(α)) is D1-aligned.

Let ς = ς(ω;x) be the minimal index k that satisfies the above. If such an
index does not exist, then we set ς = +∞.

For example, when x = o, ς(ω; o) will be smaller than n if Qn(ω) 6= ∅.
We have previously constructed the pivotal times in order to guarantee wit-
nessing of [o, ωn o]. We will now perform additional pivoting at the pivotal
times in order to guarantee the witnessing of [x, ωn o] as well.

Lemma 5.1. There exists K,κ > 0 such that for any x ∈ X and gk+1 ∈ G,
we have

P
(
ς(ω;x) ≥ k

∣∣ gk+1

)
≤ Ke−κk

for each k.

Proof. The proof is essentially given in [Cho21a], except that we employ the
language of BGIP and closest point projections here.
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We first freeze the choices of g4M0bk/4M0c+1, . . . , g4M0(bk/4M0c+1) (or equiv-
alently, the values of ρbk/4M0c, νbk/4M0c and ηbk/4M0c) and exclude them from

the potential pivotal time. We still have P(#Qk ≤ κ1k) ≤ K1e
−κ1k.

Let us fix an equivalence class E made by pivoting the choice of βi’s at
the first κ1k eventual pivotal times that appeared before k. Let i(1) <
. . . < i(κ1k) be the first κ1k eventual pivotal times in Qk(E), and j(1) <
. . . < j(κ1k) be be the corresponding indices in the fixed words model, i.e.,
4M0 ϑ(j(l)) = i(l) for l = 1, . . . , κ1k.

Recall that ω ∈ E is then determined by the choices (βj(1), . . . , βj(κ1k),
and at each l there are at least N0 − 1 choices of βj(l) for the pivoting. For
any ω ∈ E and l = 1, . . . , κ1k, we have:

• i(l) + 3M0 ≤ k −M0,
• βj(l) = (gi(l)+M0+1, . . . , gi(l)+2M0

) and γj(l) = (gi(l)+2M0+1, . . . , gi(l)+3M0
)

are Schottky, and
• (o,Υ(βj(l)), ωn o), (o,Υ(γj(l)), ωn o) are D1-aligned for all n ≥ k by

Lemma 4.1 and Proposition 3.5.

It now suffices to guarantee for most ω ∈ E that (x,Υ(βj(l))) or (x,Υ(γj(l)))
is D1-aligned at some l.

Suppose that (x,Υ(γj(κ1k))) is not D1-aligned for some ω ∈ E (∗). Recall:(
Υ(αj(1)),Υ(βj(1)),Υ(γj(1)), . . . ,Υ(γj(κ1k))

)
is a subsequence of a D0-aligned Schottky axes. (∗) and Proposition 3.5
imply that (Υ(βj(l)), x) is D1-aligned for l = 1, . . . , κ1k. In particular,
(x,Υ(βj(l))) is not D1-aligned for l = 1, . . . , κ1k. Let us now consider

ω̃ = (β̃j(1), . . . , β̃j(1)) ∈ E

that differs from ω. Let j(l) be the first index at which ω and ω̃ differ. Then

ωi(l)+M0
= ω̃i(l)+M0

holds, and (x,Υ(β̃j(l))) is K0-aligned by the property of
the Schottky set S. Therefore, we have either:

• (x,Υ(γj(κ1k))) is D1-aligned for all ω ∈ E , or;
• (x,Υ(βj(l))) is K0-aligned at some l for all but one ω ∈ E .

In summary, we have

P
(
ς(ω;x) ≥ k

∣∣ E) ≤ 1

#E
≤
(

1

N0 − 1

)κ1k
≤
(

2

N0

)κ1k
.

These conditional probabilities and the probability P{#Qk(ω) ≤ κ1k}
together take up an exponentially decaying probability. �

For ω ∈ Ω and n, k ≥ ς(ω;x), we have i such that

(1) α := (gi+1, . . . , gi+M0) is a Schottky sequence;
(2) (o, ωi Γ(α), ωn o) and (o, ωi Γ(α), ωk o) are D2-aligned, and
(3) (x, ωi Γ(α)) is D2-aligned.
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By Proposition 3.6, there exists q ∈ [x, ωn o] that are within d-distance E0

from ωi o. Hence, we have

(x, ωn o)o ≤
1

2

[
d(x, ωi o) + d(ωi o, o) + d(o, ωi o) + d(ωi o, ωn o)

−d(x, q)− d(q, ωn o)

]
≤ d(o, ωi o) + d(q, ωi o) < d(o, ωk o).

Here, the final inequality holds because [o, ωk o] is E0-witnessed by [ωi o, ωi+M0 o]
whose length is at least 10E0.

For a similar reason, we have d(o, [x, ωn o]) ≤ d(o, ως o). Hence, we obtain:

Corollary 5.2. There exist κ,K > 0 such that for any x ∈ X and gk+1 ∈ G,
we have

P

[
sup
n≥k

(x, ωn o)o ≥ d(o, ωk o)
∣∣∣gk+1

]
≤ Ke−κK ,

P

[
sup
n≥k

d(o, [x, ωn o]) ≥ d(o, ωk o)
∣∣∣gk+1

]
≤ Ke−κK .

Let us now define another index for a persistent progress made by two
independent paths (ω̌, ω). Given k, we seek an index i ≤ k −M0 such that:

(1) α := (gi+1, . . . , gi+M0) is a Schottky sequence;
(2) (o, ωi Γ(α), ωn o) is D1-aligned for all n ≥ k, and
(3) (ω̌n′ o, ωi Γ(α)) is D2-aligned for all n′ ≥ 0.

We define υ = υ(ω̌, ω) by the minimal index k such that the above index
i ≤ k exists. In other words, after index k, the forward path ω deviates
forever from the directions made by each point in the backward path ω̌.
Moreover, this deviation is witnessed by some Schottky progress ωi Γ(α)
made before index k.

Lemma 5.3. There exist κ,K > 0 such that the following estimate holds
for all k:

(5.1) P
(
υ(ω̌, ω) ≥ k

∣∣∣ gk+1, ǧ1, . . . , ǧk+1

)
≤ Ke−κk.

Proof. We first freeze the choices of g4M0bk/4M0c+1, . . . , g4M0(bk/4M0c+1) and

ǧ1, . . . , ǧ4M0d(k+1)/4M0e. We still have P(#Qk(ω) ≤ κ1k) ≤ K1e
−κ1k and

P(#Q2k(ω̌) ≤ κ1k) ≤ K1e
−κ1k.

Now for paths ω withQk(ω) > κ1k, we pivot at the first κ1k pivotal times;
let E be one equivalence class made from this early pivoting. Let also Ě be
an equivalence class of backward paths ω̌’s that have #Q2k(ω̌) ≥ κ1k, made
by pivoting at the first κ1k pivotal times. Note that the pivotal times for ω̌’s
are always formed after k+1 since we have frozen the first 4M0d(k+1)/4M0e
steps. Let

Qk(E) = {i(1) < . . . < i(κ1k) < . . .},
Q2k(Ě) = {̌i(1) < . . . < ǐ(κ1k) < . . .},

i(l) = 4M0 ϑ(j(l)), ǐ(l) = 4M0ϑ̌(ǰ(l)) (l = 1, . . . , κ1k).
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o
ωi o

ωi+M0 o

ωi Γ(α)

ως o

(ωn o)n

(ω̌no)n

Figure 9. Persistent progress and υ. Here, all of the back-
ward loci (ω̌no)n≥0 are on the left of the persistent progress
ωi Γ(α), while the forward loci after ως o are all on the right.

Now on Ě ×E , Corollary 4.7 implies that (Ῡ(α̌ǰ(l)),Υ(αj(l))) is K0-aligned

for some l ≤ κ1k/2 for probability at least 1 − (8/N0)κ1k/2 on Ě × E . We
now freeze the choices at the first κ1k/2 pivotal times for ω and the entire
pivotal times for ω̌ that make (Ῡ(α̌ǰ(l)),Υ(αj(l))) K0-aligned. Then E is

divided into finer equivalence classes E1 made by pivoting at the latter κ1k/2
pivotal times.

Lemma 5.1 asserts that for each n′ = 1, 2, . . . , 2k, (ω̌n′ o,Υ(γj(κ1k))) is
D1-aligned for all but at most one choice in E1. Except at most 2k such bad
choices, we now have the following:

• i(κ1k) + 4M0 ≤ k,
• (o,Υ(γj(κ1k)), ωn o) is D2-aligned for all n ≥ k,

•
(
ω̌n′ o, Ῡ(γ̌j(l)),Υ(αj(l)),Υ(γj(κ1k))

)
is a subsequence of a D1-aligned

sequence for all n′ ≥ 2k, and
•
(
ω̌n′ o,Υ(γj(κ1k))

)
is D2-aligned for n′ = 1, . . . , 2k.

Then (ω̌n′o,Υ(γj(κ1k))) is D2-aligned for all n′ by Proposition 3.5, and
i(κ1k) + 2M0 ≤ k −M0 works for ω. Hence,

P
(
υ(ω̌, ω) ≥ k

∣∣∣ Ě × E) ≤ ( 8

N0

)κ1k/2
+ 2k ·

(
3

N0

)κ1k/2
.

We now sum up these conditional probabilities and the excluded probability
to conclude. �
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As before, we deduce

(ω̌n′o, ωn o)o ≤ d(o, ωk o)

for all n′ ≥ 0 and n, k ≥ υ(ω̌, ω). Hence, we deduce:

Corollary 5.4. There exist κ,K > 0 such that for any gk+1, ǧ1, . . . , ǧk+1 ∈
G, we have

P

[
sup

n′≥0,n≥k
(ω̌n′o, ωn o)o ≥ d(o, ωk o)

∣∣∣∣∣ gk+1, ǧ1, . . . , ǧk+1

]
≤ Ke−κk.

We similarly define υ̌ = υ̌(ω̌, ω) as the minimal index k that are associated
with another index i ≤ k such that:

(1) α̌ := (ǧi+1, . . . , ǧi+M0) is a Schottky sequence;
(2) (o, ω̌iΓ(α̌), ω̌no) is D1-aligned for all n ≥ k, and
(3) (ωn o, ω̌iΓ(α̌)) is D2-aligned for all n ≥ 0.

Then we similarly have

(5.2) P
(
υ̌(ω̌, ω) ≥ k

∣∣∣ ǧk+1, g1, . . . , gk+1

)
≤ K2e

−κ2k.

Note that Inequality 5.1 is proven using the pivoting at the first k steps of
ω and eventual escape to infinity of ω, ω̌. This enables us to fix ǧ1, . . . , ǧk+1

and gk+1 in prior: we do not use the randomness of the initial trajectory
of ω̌. Likewise, Inequality 5.2 does not rely on the pivoting at the initial k
steps of ω. This will lead to the exponent doubling for the geodesic tracking;
roughly speaking, this is a consequence of the fact that the minimum of two
independent RVs with finite p-th moment has finite 2p-th moment.

5.2. Deviation inequalities. Thanks to Corollary 5.2 and 5.4, we can es-
tablish the following deviation inequality.

Proposition 5.5. Suppose that µ has finite p-moment for some p > 0.
Then there exists K > 0 such that for any x ∈ X, we have

E
[
sup
n≥0

(x, ωn o)
p
o

]
, E

[
sup
n,n′≥0

(ω̌n′o, ωn o)
2p
o

]
< K.

Note the difference between this proposition and [Cho21a, Proposition
5.6, 5.8]; we are taking the global suprema, not the limit suprema.

Proof. We have observed that supn≥ς(ω;x)(x, ωn o)o is dominated by d(o, ως(ω;x) o).

Moreover, for i = 1, . . . , ς(ω;x), (x, ωi o)o and (ωi o, x)o are bounded above
by d(o, ωi o). Hence, we have

sup
n

(x, ωn o)
p
o ≤ max

1≤i≤ς(ω;x)
d(o, ωi o)

p

≤
∞∑
i=0

|d(o, ωi+1 o)
p − d(o, ωi o)

p| 1i<ς(ω;x).
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Let us now recall that two simple inequalities: for t, s ≥ 0,

(5.3) |tp − sp| ≤
{

|t− s|p p ≤ 1,
2p
(
|t− s|p + sp−1|t− s|

)
p > 1.

Moreover, for t1, . . . , tn ≥ 0 and p > 0, we have

(t1 + . . .+ tn)p ≤ (nmax
i
ti)

p ≤ np(tp1 + . . .+ tpn)

and

E[d(o, ωn o)
p] ≤ np+1 Eµ[d(o, go)p].

Hence, it suffices to show that

E

[ ∞∑
i=0

d(o, gi+1o)
p1i<ς(ω;x)

]
< K1

for some K1 that does not depend on x, and when p > 1, also

E

[ ∞∑
i=0

d(o, ωi o)
p−1d(o, gi+1o)1i<ς(ω;x)

]
< K2

for some K2 that does not depend on x.
The first summation is estimated based on Lemma 5.1. Let K3, κ3 be as

in Lemma 5.1; recall that K3, κ3 does not depend on x. Then we have

∞∑
i=0

E [d(o, gi+1o)
p1i<ς ] =

∞∑
i=0

E
[
d(o, gi+1o)

p · P
(
ς(ω;x) > i

∣∣ gi+1

)]
≤
∞∑
i=0

E
[
d(o, gi+1o)

p ·K3e
−κ3i]

≤ 2p (Eµ[d(o, go)p] + Eµ̌[d(o, go)p]) ·K3

∑
i

e−κ3i =: K1

Similarly, for p > 1, we estimate based on a dichotomy. Note that for any
gi+1 and c > 0, we have
(5.4)
E
[
d(o, ωi o)

p−11ς>i
∣∣ gi+1

]
≤ E

[
d(o, ωi o)

p−11ς>i1d(o,ωi o)≤c
∣∣ gi+1

]
+ E

[
d(o, ωi o)

p−11ς>i1d(o,ωi o)>c

∣∣ gi+1

]
≤ cp−1 P

(
ς > i

∣∣ gi+1

)
+ E

[
d(o, ωi o)

p · c−1|gi+1

]
≤ cp−1K3e

−κ3i + c−1ip+1 · Eµ[d(o, go)p].
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By setting c = eκ3i/2p, we deduce
∞∑
i=0

E
[
d(o, ωi o)

p−1d(o, gi+1o)1i<ς
]

=

∞∑
i=0

E
[
d(o, gi+1o)E

[
d(o, ωi o)

p1ς>i
∣∣ gi+1

]]
≤
∞∑
i=0

E
[
d(o, gi+1o) ·

(
K3e

−κ3i/2 + ip+1e−κ3i/2p Eµ[d(o, go)p]
)]

≤
(
K3 Eµ[d(o, go)p] + Eµ[d(o, go)p]2

)
·
∑
i

ip+1e−κi/2p =: K2.

Clearly, K1 and K2 do not depend on the choice of x.
We now investigate (ω̌n′o, ωn o)o. Let

Ďk :=

k∑
i=1

d(o, ǧio), Dk :=

k∑
i=1

d(o, gio).

It is clear that d(o, ωk o) < Dl for all k ≤ l.
We begin by claiming that

sup
n′,n≥0

(ω̌n′o, ωn o)
2p
o ≤

∞∑
i=0

|Ďp
i+1D

p
i+1 − Ď

p
iD

p
i |
(

1Ďi≥Di1i<υ + 1Ďi≤Di1i<υ̌

)
.

First, note that the RHS is at least Ďp
lD

p
l for

l := min
{
i : 1Ďi≥Di1i<υ + 1Ďi≤Di1i<υ̌ = 0

}
.

(If such minimum does not exist, then the RHS becomes infinity almost
surely since Ďk, Dk tends to infinity almost surely.) Note that either Ďl ≥ Dl

or Ďl ≤ Dl holds.
In the first case l ≥ υ must hold. Then for n′ ≥ 0 and n ≥ l, we have

(ω̌n′o, ωn o)
2p
o ≤ d(o, ωl o)

2p ≤ D2p
l ≤ Ď

p
lD

p
l .

Moreover, for n′ ≥ 0 and n ≤ l, we have

(ω̌n′o, ωn o)
2p
o ≤ d(o, ωn o)

2p ≤ D2p
n ≤ D

2p
l ≤ Ď

p
lD

p
l .

In the second case l ≥ υ̌ must hold, and the argument as above implies that
(ω̌n′o, ωn o)

2p
o is dominated by Ďp

lD
p
l , as desired.

Note that for ti, si ≥ 0, we have

|tp1t
p
2 − s

p
1s
p
2| = |t

p
1(tp2 − s

p
2) + (tp1 − s

p
1)sp2|

≤ 2p+q
(
|t1 − s1|p + s

p−np
1 |t1 − s1|np + sp1

)(
|t2 − s2|p + s

p−np
2 |t2 − s2|np

)
+ 2p

(
|t1 − s1|p + s

p−np
1 |t1 − s1|np

)
sp2.(

np =

{
p 0 ≤ p ≤ 1
1 p > 1.

)
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Considering this, it suffices to show

E
[
d(o, ǧi+1)n1d(o, gi+1)n2Ďp−n1

i Dp−n2
i

(
1Ďi≥Di1i<υ + 1Ďi≤Di1i<υ̌

)]
< K(i+1)2p+2e−κi

for some K and κ, for 0 ≤ n1, n2 ≤ p such that n1 +n2 ≥ min(p, 1). We will
discuss the case n2 > 0; the other case can be handled in the same way.

Let us first fix ǧi+1 and gi+1. We then compute

E
[
Ďp−n1
i Dp−n2

i 1Ďi≥Di1i<υ

∣∣∣ ǧi+1, gi+1

]
≤ E

[
Ďp−n1
i Dp−n2

i 1Di>c1Ďi≥Di1i<υ

∣∣∣ ǧi+1, gi+1

]
+ E

[
Ďp−n1
i Dp−n2

i 1Di≤c1Ďi≥Di1i<υ

∣∣∣ ǧi+1, gi+1

]
≤ E

[
Ďp−n1
i Dp

i · c
−n2

∣∣∣ ǧi+1, gi+1

]
+ E

[
Ďp−n1
i · E

[
cp−n21i<υ

∣∣ ǧ1, . . . , ǧi+1, gi+1

]]
≤ E[Ďp−n1

i ] · E[Dp
i ] · c

−n2 + E[Ďp−n1
i ] · cp−n2 P

[
υ > i

∣∣ ǧ1, . . . , ǧi+1, gi+1

]
≤ (i+ 1)p−n1+1 Eµ[d(o, go)p−n1 ] · (i+ 1)p+1 Eµ[d(o, go)p] · c−n2

+ (i+ 1)p−n1+1 Eµ[d(o, go)p−n1 ] · cp−n2 ·K3e
−κ3i.

We also observe

E
[
Ďp−n1
i Dp−n2

i 1Ďi≤Di1i<υ̌

∣∣∣ ǧi+1, gi+1

]
≤ E

[
Ďp−n1
i Dp−n2

i 1Ďi>c1Ďi≤Di1i<υ̌

∣∣∣ ǧi+1, gi+1

]
+ E

[
Ďp−n1
i Dp−n2

i 1Ďi≤c1Ďi≤Di1i<υ̌

∣∣∣ ǧi+1, gi+1

]
≤ E

[
Ďp−n1
i Dp−n2

i 1Di>c1i<υ̌

∣∣∣ ǧi+1, gi+1

]
+ E

[
Ďp−n1
i Dp−n2

i 1Ďi≤c1i<υ̌

∣∣∣ ǧi+1, gi+1

]
≤ E

[
Ďp−n1
i Dp

i · c
−n2

∣∣∣ ǧi+1, gi+1

]
+ E

[
Dp−n2
i · E

[
cp−n11i<υ̌

∣∣ ǧi+1, g1, . . . , gi+1

]]
≤ E[Ďp−n1

i ] · E[Dp
i ] · c

−n2 + E[Dp−n2
i ] · cp−n1 P

[
υ̌ > i

∣∣ ǧi+1, g1 . . . , gi+1

]
≤ (i+ 1)p−n1+1 Eµ[d(o, go)p−n1 ] · (i+ 1)p+1 Eµ[d(o, go)p] · c−n2

+ (i+ 1)p−n2+1 Eµ[d(o, go)p−n2 ] · cp−n1 ·K3e
−κ3i.

Note that the trick

Ďp−n1
i Dp−n2

i 1Di>c < Ďp−n1
i Dp

i c
−n2

makes use of the fact n2 > 0; it cannot work on the side of Ďi since n1 may
vanish in this case. Throughout the first argument, the factor 1Ďi≥Di did

not play any role (though it is necessary for the case n1 > 0 and n2 = 0);
the factor 1Ďi≤Di in the second argument played a role only once, namely,

switching Ďi and Di at the second step.
The proof ends by taking c = eκ3i/2p. �

We now record a corollary for the geodesic tracking.

Corollary 5.6. Suppose that µ has finite p-moment for some p > 0. Then
there exists K > 0 such that

E
[
min{d(o, ωυ o), d(o, ω̌υ̌o)}2p

]
< K.
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Proof. In view of the second half of the previous proof, it suffices to check

min{d(o, ωυ o), d(o, ω̌υ̌o)}2p ≤
∞∑
i=0

|Ďp
i+1D

p
i+1−Ď

p
iD

p
i |
(

1Ďi≥Di1i<υ + 1Ďi≤Di1i<υ̌

)
.

The RHS is at least Ďp
lD

p
l for l = min{i : 1Ďi≥Di1i<υ + 1Ďi≤Di1i<υ̌ = 0}.

Note that either Ďl ≥ Dl or Ďl ≤ Dl holds. In the first case, we are forced
to have l ≥ υ; then

min{d(o, ωυ o), d(o, ω̌υ̌o)}2p ≤ d(o, ωυ o)
2p ≤ D2p

υ ≤ D
2p
l ≤ Ď

p
lD

p
l .

In the second case, we are forced to have l ≥ υ̌; then

min{d(o, ωυ o), d(o, ω̌υ̌o)}2p ≤ d(o, ω̌υ̌o)
2p ≤ Ď2p

υ̌ ≤ Ď
2p
l ≤ Ď

p
lD

p
l

as desired. �

We also discuss the case of finite exponential moment.

Proposition 5.7. Suppose that µ has finite exponential moment. Then
there exist κ,K > 0 such that

E

[
sup
n,n′≥0

eκ(x,ωn o)o

]
< K, E

[
sup
n,n′≥0

eκ(ω̌n′o,ωn o)o

]
< K.

Proof. We explain the latter inequality; the former one follows from the
same argument by replacing the role of υ with ς.

Note that (ω̌′no, ωn o)o ≤ d(o, ωυ o) for n′ ≥ 0 and n ≥ υ(ω̌, ω), and
(ω̌n′o, ωn o)o ≤ d(o, ωn o) ≤ Dυ for 0 ≤ n ≤ υ(ω̌, ω). This implies

sup
n,n′≥0

eκ(ω̌n′o,ωn o)o ≤ eκDυ ≤
∞∑
i=0

eκDi1i<υ.

Let us estimate the expectation of the summand. Fixing ω = (ǧ1, ǧ2, . . .)
and gi+1, we observe

(5.5)

E
[
eκDi1i<υ

]
= E

[
eκDi1Di<c1i<υ

]
+ E

[
eκDi1Di≥c1i<υ

]
≤ E [eκc1i<υ] + E

[
e(A+1)κDie−Aκc

]
≤ eκc ·K3e

−κ3i + e−Aκc Eµ
[
e(A+1)κd(o,go)

]i
.

By the assumption, E[emd(o,go)] < M for some m,M > 0. We first take
c = c1i for each i, where c1 is large enough so that ec1m ≥ M4. We then
take κ small enough so that 11κ < m and κc1 < κ3/4, and (A + 1)κ = m.
Then the RHS of Inequality 5.5 decays exponentially as desired. �
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5.3. Central limit theorems. We now prove Theorem C.

Proof. Let us first assume that µ has finite second moment; then Proposition
5.5 gives the uniform fourth-moment deviation inequality. Then Theorem
4.2 of [MS20] asserts that [d(o, ωn o)− λn]/

√
n converges to a Gaussian law

in distribution.
If µ is non-arithmetic, there exists g, g′ ∈ suppµ∗M that has distinct

translation lengths. By taking powers if necessary, we may assume that
d(o, go)− d(o, g′o) ≥ 104E0. Now using the decomposition

µ4M0+M = α(µ2
S × (1/2{g} + 1/2{g′})× µ2

S) + (1− α)ν

and the argument for [Cho21a, Claim 6.1], we conclude that V ar[d(o, ωn)]
increases at least linearly. This implies that the limiting distribution has
strictly positive variance.

Now consider the inequality

|d(o, go)− d(o, ho)| ≤ 104E0.

If this holds for all g, h ∈ suppµ∗n for all n, then we have

|d(o, go)− λn| ≤ 104E0

for all g ∈ suppµ∗n for all n and the limiting distribution will be degenerate.
In other words, if the limiting distribution is non-degenerate, then there
exist n and g, h ∈ suppµ∗n such that |d(o, go) − d(o, ho)| > 104E0. Since
there are many choices in the Schottky set S, there exists s ∈ S such that
(Γ(s), go) and (Γ(s), ho) are K0-aligned. Moreover, there exists s′ ∈ S such
that (g−1(Π(s))−1o,Γ(s′)) and (h−1(Π(s))−1o,Γ(s′)) are K0-aligned. These
conditions imply that

(Γ(s),Π(s)gΓ(s′)), (Γ(s),Π(s)hΓ(s′))

are D0-aligned by Lemma 3.3, and consequently, that

(o, gΓ(s′), gΠ(s′)Γ(s), gΠ(s′)Π(s)gΓ(s′), . . . , (gΠ(s′)g)n−1gΠ(s′)Γ(s), (gΠ(s′)Π(s))no),

(o, gΓ(s′), hΠ(s′)Γ(s), hΠ(s′)Π(s)hΓ(s′), . . . , (hΠ(s′)h)n−1hΠ(s′)Γ(s), (hΠ(s′)Π(s))no)

are D0-aligned. In particular, the Gromov products among the endpoints
are bounded by E0 and we deduce∣∣τ(gΠ(s)Π(s′))− d(o, go) + d(o,Π(s)o) + d(o,Π(s′)o)]

∣∣ ≤ 3E0,∣∣τ(hΠ(s)Π(s′))− d(o, ho) + d(o,Π(s)o) + d(o,Π(s′)o)]
∣∣ ≤ 3E0.

In summary, we obtained two elements gΠ(s)Π(s′), hΠ(s)Π(s′) in the sup-

port of µ∗(n+2M0) whose translation lengths are distinct; µ is non-arithmetic.
For the LIL, we refer to the proof in [Cho21a, Section 7]. The proof there

relies on the bounds on E[(ω̌mo, ωm′ o)
3
o]’s for various m, m′, which we have

for µ with finite second moment. �

Let us observe a quantitative version of CLT.
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Theorem 5.8. Let (X,G, o) be as in Convention 1.1, and ω be the ran-
dom walk generated by a non-elementary, non-arithmetic measure µ on G.
Suppose that µ has finite third moment, and let Fn(x) be the distribution of
[d(o, ωn o)− nλ]/σ

√
n. Then there exists K > 0 such that

|Fn(x)−N (x)| ≤ K
5
√
n

holds for all x and n.

Proof. Let us denote 1√
n

√
V ar[d(o, ωn o)] by σn. In [Cho21a, Section 6], we

proved the existence of a constant K > 0 such that the following hold. All
descriptions are with respect to the Lévy metric.

(1) the RVs
(

1√
n
d(o, ωn o)− E[d(o, ωn o)]

)
n>0

converges to N (0, σ) for

some σ > 0.
(2) For each k > 0, the RVs { 1√

k2n
d(o, ωk2n o) − E[d(o, ωk2n o)]}n>0 are

eventually K/ 3
√
k-close to N (0, σk).

These two imply that N (0, σk) and N (0, σ) are K/ 3
√
k-close. We also have

E |d(o, ωn)−E[d(o, ωn)]|3 ≤ K ′n3/2 for some K ′ > 0 ([MS20, Theorem 4.9]).
Given n, we fix the following notations throughout the proof:

yi := ωi o (i = 0, . . . , n),

N2 := bn2/5c,
N3 := bn/N2c,
Yi,n := d(y(i−1)N3

, yiN3), (i = 1, . . . , N2)

Y ∗n := d(yN2N3 , yn),

c∗ := (o, yn)yN2N3
.

Next, we define a family of sequences {(m(i; k))2k
i=0}

blog2N2c
k=0 as follows. First

we set m(0; 0) = 0, m(1; 0) = N2. Now given (m(i; k − 1))2k−1

i=0 for k ≤
log2N2, we define m(2i; k) := m(i; k − 1) for i = 0, . . . , 2k−1 and

m(2i− 1; k) := m(i− 1; k − 1) +

⌊
m(i; k − 1)−m(i− 1; k − 1)

2

⌋
for i = 1, . . . , 2k−1. Then

(5.6) 2blog2N2c−k ≤ m(i; k)−m(i− 1; k) ≤ 2blog2N2c−k+1

holds for k = 0, . . . , blog2N2c and i = 1, . . . , 2k.
From this sequences we define

bi;k := (yN3·m(2i−2;k), yN3·m(2i;k))yN3·m(2i−1;k)

for k = 1, . . . , blog2N2c − 1 and i = 1, . . . , 2k−1. Finally, note that(
m (0; blog2N2c) ,m (1; blog2N2c) , . . . ,m

(
2blog2N2c; blog2N2c

))
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is a sequence that increases by 1 or 2 at each step. Let m′(1) < . . . <

m′(N2 − 2blog2N2c) be the numbers in the sequence that differs with the
previous step by 2, and define

ct := (yN3·m′(t), yN3·m′(t)−2)yN3·m′(t)−1
.

We then observe that
(5.7)
d(o, ωn o) = d(o, ωN2N3 o) + d(ωN2N3 o, ωn o)− 2(o, ωn o)ωN2N3

o

= d(o, ωN2N3 o) + Y ∗n − 2c∗

=

N2∑
i=1

Yi,n + 2

blog2N2c∑
k=1

2k−1∑
i=1

bi;k

+ 2

N2−2blog2 N2c∑
i=1

ci

+ Y ∗n − 2c∗.

For convenience, let us denote by Ȳ the centered version Y −E[Y ] of an RV
Y . We then also have
(5.8)

1

σ
√
n

[d(o, ωn o)− λn] =
1

σ
√
n

N2∑
i=1

Ȳi,n −
2

σ
√
n

blog2N2c∑
k=1

2k−1∑
i=1

b̄i;k

− 2

σ
√
n

N2−2blog2 N2c∑
i=1

c̄i


+

1

σ
√
n
Ȳ ∗n −

2

σ
√
n
c̄∗ +

(
1

σ
√
n
E[d(o, ωn o)]−

√
nλ

σ

)
.

We now deal with each term of Equation 5.8. First, note that

E
[√

N2

σ
√
n
Ȳ 3
i,n

]
≤ K ′N

3/2
3 N

3/2
2

n3/2
≤ K ′

and

E
[√

N2

σ
√
n
Ȳ 2
i,n

]
≥ 0.9s2N3 ·N2

n
≥ 0.8s2

for large enough n. Then the classical Berry-Esseen estimate asserts that
there exists K > 0 (that works for all large n) such that

|F (1)
n (x)−N ′(x)| ≤ K 1

5
√
n

holds for all x ∈ R, where F
(1)
n (x) is the distribution of 1

σ
√
n

∑N2
i=1 Ȳi,n and

N ′ is the distribution of N
(

0, (σN3/σ) ·
√

(N2N3)/n
)

. Since N (0, σN3) and

N (0, σ) are K/ 5
√
n-close, we have

|N ′(x)−N1(x)| ≤ K
5
√
n

for all x where N1(x) is the distribution of N (0,
√

(N2N3)/n). Moreover, we

note 1−
√
N2N3/n ≤ K/n2/5; this implies |N ′(x)−N (x)| ≤ K/ 5

√
n for all

x also. Since N (x) is Lipschitz, it now suffices to show that the remaining
terms are O(1/ 5

√
n) outside a set of probability O(1/ 5

√
n).
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To deal with the second summation, let us recall that {b̄i;k}i is a family
of independent RVs that have uniformly bounded 6th moment. Hence,

E

2k−1∑
i=1

b̄i;k

6

≤ K(2k−1)3

for some K that does not depend on k and n. Using the Chebyshev in-
equality, we have | 1

σ
√
n

∑
i b̄i;k| < n−1/52−k/6 outside a set of probability

O(n−9/524k). Summing up these effects, we have

P

 2

σ
√
n

blog2N2c∑
k=1

2k−1∑
i=1

b̄i;k

 >
1
5
√
n

 ≤ 2 · 24 log2N2 ·O(n−9/5) = O(n−1/5).

Similarly, the third term of Equation 5.8 has 6th moment of orderO(n−9/5)

and is bounded by 1/ 5
√
n outside a set of probabilityO(n−3/5). Moreover, the

fourth term is a sum of at most N2 independent RVs with uniformly bounded
variance, so its variance is bounded by O(N2/n) = O(n−3/5). Again, it is

bounded by 1/ 5
√
n outside a set of probability O(n−1/5). The fifth term has

variance O(1/n) and can be handled similarly.
Finally, recall the proof in [Cho21a, Section 6] that the error arising from

the average, namely, |
√
nλ − 1√

n
E[d(o, ωn o)]|, is of order O(1/

√
n). This

finishes the proof. �

6. Geodesic tracking

Given a random path ω = (ωn)n with the set of eventual pivotal times
Q(ω) = {i(1) < i(2) < . . .}, we consider the concatenation Γ = Γ(ω) of

(η1, η2, . . .) := ([o, ωi(1) o], [ωi(1) o, ωi(1)+M0
o], [ωi(1)+M0

o, ωi(2) o], [ωi(2) o, ωi(2)+M0
o], . . .).

By Lemma 3.8, Γ is a quasigeodesic. We now show the geodesic tracking
with doubled exponent.

Proposition 6.1. Suppose that µ has finite p-th moment for some p > 0.
Then for almost every sample path ω = (ωn)n, we have

lim
k→∞

d(ωk o,Γ)

k1/2p
= 0.

Proof. By Corollary 5.6, min[d(o, ωυ o), d(o, ω̌υ̌o)]
2p is dominated by an in-

tegrable RV. This implies that

(6.1)
∑
k

P (min[d(o, ωυ o), d(o, ω̌υ̌o)] > g(k)) <∞

for some g such that limk g(k)/k1/2p = 0. Note that the probabilities in
the summation do not change after the Bernoulli shift T . Note also that
P(max{υ, υ̌} ≥ k) is summable and is invariant under the Bernoulli shift. By
the Borel-Cantelli lemma, we deduce the following for a.e. (ω̌, ω). For each
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large k, there exists j = j(k) ∈ Z such that |j| ≤ k, d(ωk o, ωk+j o) ≤ g(k)
and either:

(1) there exists 0 < i ≤ j −M0 such that
• α := (gk+i+1, . . . , gk+i+M0) is a Schottky sequence,
• (ωk o, ωk+i Γ(α), ωk+n o) is D1-aligned for all n ≥ j, and
• (ωk−n′ o, ωk+i Γ(α)) is D2-aligned for all n′ ≥ 0,

or;
(2) there exists 0 > i ≥ j +M0 such that

• α := (g−1
k+i, g

−1
k+i−1, . . . , g

−1
k+i−M0+1) is a Schottky sequence,

• (ωk o, ωk+i Γ(α), ωk+n o) is D1-aligned for all n ≤ j,
• (ωn′+k o, ωk+i Γ(α)) is D2-aligned for all n′ ≥ 0.

The first case is where j equals υ(T k(ω̌, ω)) and the second case is where j
equals −υ̌(T k(ω̌, ω)). In both cases, the second item for n = j leads to

d(ωk o, ωk+i Γ(α)) ≤ d(ωk o, ωk+j o) ≤ g(k).

We now let N = k+|j|; note i(N) > N . In the first case of the dichotomy,
(o, ωk+i Γ(α), ωi(N) o) isD2-aligned. In the second case, (ωi(N) o, ωk+i Γ(α), o)
is D2-aligned. We now claim that d(ηm, ωk+i Γ(α)) is bounded for some m.

The projections of the beginning point of η1 and the terminating point of
η2N−1 onto ωk+i Γ(α) are far away. Hence, one of the following holds.

(a) some ηm has a large projection on ωk+i Γ(α): more precisely, there
exists ηm with endpoints {xm, ym} such that

d(πωk+i Γ(α)(xm), ωk+i o) ≤ 2K0 +K3 + 2E0 +D2,

d(πωk+i Γ(α)(ym), ωk+i+M0 o) ≤ 2K0 +K3 + 2E0 +D2,

(b) an endpoint p of some ηm projects onto ωk+i Γ(α) in the middle, i.e.,

d(πωk+i Γ(α)(p), ωk+i o), d(πωk+i Γ(α)(p), ωk+i+M0 o) > 2K0 +K3 + 2E0 +D2.

Recall that

d(ωk+i o, ωk+i+M0 o) ≥ 2

(
M0

K0
−K0

)
≥ 6K0 + 2K3 + 4E0 + 2D2.

Hence, in Case (a), we deduce d
(
πωk+i Γ(α)(xi), πωk+i Γ(α)(yi)

)
≥ 2K0 and ηi

is within a neighborhood of ωk+i Γ(α) by the K0-BGIP of Γ(α).
In Case (b), recall that the Schottky axes at eventual pivotal times are

parts of a D0-aligned sequence; by Proposition 3.6, p is within d-distance E1

from some q ∈ [o, ωnt o]. Then q also projects onto ωk+i Γ(α) in the middle:

d(πωk+i Γ(α)(q), ωk+i o), d(πωk+i Γ(α)(q), ωk+i+M0 o) > 2K0 +D2.

Since the projections of [o, q] and [q, ωnt o] onto ωk+i Γ(α) are both large,
we can apply Lemma 2.5 and obtain q1 ∈ [o, q], q2 ∈ [q, ωnt o] such that
d(q1, πωk+i Γ(α)(q)), d(q2, πωk+i Γ(α)(q)) < K3. This forces that p is also near
ωk+i Γ(α). �



RANDOM WALKS AND CONTRACTING ELEMENTS I 45

o ωnt o

ωnt o o

ηi

p

ωk+i Γ(α)

Figure 10. Dichotomy in the proof of Proposition 6.1. o
and ωnt o are distant when seen from ωk+i Γ(α), so either an
ηi is seen large (the upper case) or an endpoint p of some ηi
is seen in the middle (the lower case).

In the previous lemma, we only assumed p > 0. Namely, sublinear track-
ing occurs even when µ, µ̌ has finite (1/2)-th moment only. When µ has
finite exponential moment, the exact same proof works with g(k) = C log k
for some suitable C. This leads to the following:

Proposition 6.2. Suppose that µ has finite exponential moment. Then
there exists C > 0 such that for almost every sample path ω = (ωn)n, we
have

lim sup
k→∞

d(ωk o,Γ)

log k
≤ C.

Appendix A. Proofs of lemmata for the set of pivotal times

In this section, we provide proofs for Lemma 4.1, 4.3 and 4.4.
We begin with the following consequence of Lemma 3.18 and Lemma 3.3:

Observation A.1. For any s ∈ S4n and 1 ≤ i ≤ n, (Υ(αi),Υ(βi)) and
(Υ(γi),Υ(δi)) are D0-aligned.

Lemma A.2 ([Cho21b, Lemma 3.1]). Let l < m be consecutive elements in
Pk, i.e., l,m ∈ Pk and l = max(Pk ∩ {1, . . . ,m − 1}). Then there exists a
sequence {l = i(1) < . . . < i(M) = m} ⊆ Pk with cardinality M ≥ 2 such
that (

Υ(δl),Υ(αi(2)),Υ(βi(2)), . . . ,Υ(αi(M−1)),Υ(βi(M−1)),Υ(αm)
)

is D0-aligned.
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Proof. l,m ∈ Pn implies that l ∈ Pl and l,m ∈ Pm. In particular, l (m,
resp.) is newly chosen at step l (m, resp.) by fulfilling Criterion (A). Hence,
(Υ(δl), y

−
l+1,2) and (zm−1,Υ(αm)) are K0-aligned (∗), and zl = y+

l,1. More-

over, we have Pm = Pm−1 ∪ {m} and l = maxPm−1.
If l = m−1 and m was newly chosen at step m = l+ 1, then zm−1 = zl =

y+
l,1 holds. Then Lemma 3.3 and (∗) imply that (Υ(δl),Υ(αm)) is D0-aligned.

If l < m− 1, then l = maxPm−1 has survived at step m− 1 by fulfilling
Criterion (B); there exist l = i(1) < . . . < i(M−1) in Pm−2 (with M−1 ≥ 2)
such that:

•
(
Υ(δi(1)),Υ(αi(2)),Υ(βi(2)), . . . ,Υ(αi(M−1)),Υ(βi(M−1))

)
isD0-aligned;

•
(

Υ(βi(M−1)), y
−
n+1,2

)
is K0-aligned, and

• zm−1 equals y−i(M−1),1, the beginning point of Υ(βi(M−1)).

We have also observed that (zm−1,Υ(αm)) is K0-aligned (∗). Then Lemma
3.3 asserts that

(
Υ(βi(M−1)),Υ(αm)

)
is D0-aligned as desired. �

Let us now prove Lemma 4.1.

Proof. Considering the previous lemma, it suffices to prove the following:

•
(
o,Υ(αi(1))

)
is K0-aligned;

• for each 1 ≤ t ≤ m,
(
Υ(αi(t)),Υ(βi(t)),Υ(γi(t)),Υ(δi(t))

)
is D0-

aligned;
• there exist finitely many Schottky axes Υ(δi(m)) = Υ1, . . . ,ΥM such

that
(

Υ1, . . . ,ΥM , y
−
n+1,2

)
is D0-aligned.

Note that for each t = 1, . . . ,m, i(t) is newly chosen as a pivotal time at
step i(t) by fulfilling Criterion (A). In particular, we have that:

• (Υ(αn),Υ(βn)) is D0-aligned (Observation A.1);

• (Υ(βn),Υ(γn)) is D0-aligned since
(

Υ(βn), y+
n,1

)
and

(
y−n,0,Υ(γn)

)
are K0-aligned (Lemma 3.3), and
• (Υ(γn),Υ(δn)) is D0-aligned (Observation A.1).

This guarantees the second item.
We also note that Pi(1)−1 = ∅. Indeed, any j in Pi(1)−1 is smaller than

i(1) and would have survived in Pi(1) (since what happened at step i(1) was
an addition of an element, not a deletion). Since i(1) was not deleted at
any later step, such j would also not be deleted till the end and should have
appeared in Pn. Since i(1) is the earliest pivotal time in Pn, no such j exists.
Hence, zi(1)−1 = o and Criterion (A) for i(1) leads to the first item.

We now observe how i(m) survived in Pn. If i(m) = n, then it was newly
chosen at step n by fulfilling Criterion (A). In particular, (Υ(δn), y−n+1,2) is
K0-aligned as desired.

If i(m) 6= n, then it has survived at step n as the last pivotal time by
fulfilling Criterion (B). In particular, there exist {i(m) = j(1) < . . . <
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j(k)} ⊆ Pn−1 (k > 1) such that

(κi)
2k−1
i=1 =

(
Υ(δj(1)),Υ(αj(2)),Υ(βj(2)), . . . ,Υ(αj(k)),Υ(βj(k))

)
is D0-aligned and

(
Υ(βj(k)), y

−
n+1,2

)
is K0-aligned. �

Next, we prove Lemma 4.3.

Proof. Since α1, β1, γ1, δ1, . . . , αi−1, βi−1, γi−1, δi−1 are intact, Pl(s) = Pl(s̄)

and S̃′l(s) = S̃′l(s̄) hold for l = 0, . . . , i−1. At step i, δi satisfies Condition 4.3
(since i ∈ Pk(s)) and (ᾱi, β̄i, γ̄i) satisfies Condition 4.2, 4.4 and 4.5. Hence,
i is newly added in Pi(s̄) and

Pi(s̄) = Pi−1(s̄) ∪ {i} = Pi−1(s) ∪ {i} = Pi(s).

We also have S̃i(s) = S̃i(s̄) as zi−1, w−i,2 are not affected. Meanwhile, zi is

modified into z̄i = ȳ+
i,1 = gy+

i,1 = gzi, where g := w−i,2āib̄ivic̄i(w
−
i,2aibivici)

−1.
More generally, we have

(A.1)

w−l,t = gw−l,t (t ∈ {0, 1, 2}, l > i),

w+
l,0 = gw+

l,0 (l > i),

w+
l,t = gw+

l,t (t ∈ {1, 2}, l ≥ i).

We now claim the following for i < l ≤ k:

(1) If s fulfills Criterion (A) at step l, then so does s̄.
(2) If not and {i(1) < . . . < i(M)} ⊆ Pl−1(s) is the maximal sequence

for s in Criterion (B) at step l, then it is also the maximal one for s̄
at step l.

(3) In both cases, we have Pl(s) = Pl(s̄) and z̄l = gzl.

Assuming the third item for l − 1: Pl−1(s) = Pl−1(s̄) and z̄l−1 = gzl−1,
Equality A.1 implies the first item. In this case we also deduce Pl(s) =
Pl−1(s) ∪ {l} = Pl−1(s̄) ∪ {l} = Pl(s̄) and z̄l = ȳ+

l,1 = gy+
l,1 = gzl, the third

item for l.
Furthermore, Equality A.1 implies that a sequence {i(1) < . . . < i(M)}

in Pl−1(s) ∩ {i, . . . , l − 1} = Pl−1(s̄) ∩ {i, . . . , l − 1} works for s in Criterion
(B) if and only if it works for s̄. Note that i ∈ Pl(s) since i ∈ Pk(s) and
l ≤ k; hence, such sequences exist and the maximal sequence is chosen
among them. Therefore, the maximal sequence {i(1) < . . . < i(M)} for s
is also maximal for s̄. We then deduce Pl(s) = Pl−1(s) ∩ {1, . . . , i(1)} =
Pl−1(s̄)∩{1, . . . , i(1)} = Pl(s̄) and z̄l = ȳ−i(M),1 = gy−i(M),1 = gzl (noting that

i(M) > i), the third item for l.
Since we have z̄i = gzi, induction shows that Pl(s) = Pl(s̄) for each i < l ≤

k. Moreover, Equality A.1 and z̄l−1 = gzl−1 imply that S̃l(s) = S̃l(s̄). �

We finally prove Lemma 4.4. Recall that Ej(s) is the set of choices pivoted
from the choice s ∈ S4j . Also recall that being pivoted from each other is
an equivalence relation, by Lemma 4.3.
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Proof. Let us fix s = (α1, β1, γ1, δ1, . . . , αk−1, βk−1, γk−1, δk−1) ∈ S4(k−1) and

A :=
{

(αk, βk, γk, δk) ∈ S4 : #Pk(s, αk, βk, γk, δk) = #Pk−1(s) + 1
}
.

Then Lemma 4.2 implies that P(A |S4) ≥ 1−4/N0. Moreover, for (αk, βk, γk, δk) ∈
A we have Pk−1(s) ⊆ Pk−1(s)∪{k} = Pk(s, αk, βk, γk, δk). Hence, (s̃, αk, βk, γk, δk)
is pivoted from (s, αk, βk, γk, δk) for any s̃ ∈ Ek−1(s). Lemma 4.3 then im-
plies that Pk(s̃) = Pk(s) = Pk−1(s) ∪ {k} = Pk−1(s̃) ∪ {k}, and we have

P
(

#Pk(s̃, αk, βk, γk, δk) < #Pk−1(s̃)
∣∣∣ s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4

)
≤ 1− P(A|S4) ≤ 4/N0.

This settles the case j = 0.
Now let j = 1. The event under discussion becomes void when #Pk−1(s) <

2. Excluding such cases, let l < m be the last 2 elements of Pk−1(s). For
each s̃ ∈ Ek−1(s) and A ⊆ S3 we define

E(s̃, A) :=

s̄ = (ᾱi, β̄i, γ̄i, δ̄i)
k−1
i=1 :

ᾱi = α̃i, γ̄i = γ̃i, δ̄i = δ̃i for all i,

β̄i = β̃i for i 6= m,

(α̃m, β̄m, γ̃m) ∈ A

 .

In other words, we only modify a single choice of β̃m in a way that the
modified triple at step m belongs to A. Then {E(s̃, S̃m(s)) : s̃ ∈ Ek−1(s)}
partitions Ek−1(s) by Lemma 4.3. Note that for each s̃ ∈ Ek−1(s), the size

of E(s̃, S̃m(s)) is the number of β̄m ∈ S that satisfies Condition 4.4 (with
γ̃m instead of γm there); there are at least #S − 1 such choices.

We now fix (αk, βk, γk, δk) ∈ S4 and s̃ = (α̃i, β̃i, γ̃i, δ̃i)
k−1
i=1 ∈ Ek−1(s). Let

Ã = Ã(s̃, αk, βk, γk, δk) ⊆ S̃m(s) be the collection of elements (α̃m, β̄m, γ̃m)

in S̃m(s) such that β̄m satisfies
(A.2)

diam
(
πΓ−1(β̄m)((w̃

−
m,0)−1w̃−k−1,2akbkvkckdko) ∪ o

)
= diam

(
o ∪ πΓ−1(β̄m)(vmc̃md̃mwm · · · ãk−1b̃k−1vk−1c̃k−1d̃k−1wk−1 · akbkvkckdkwko)

)
< K0.

The size of Ã is the number of β̄m ∈ S that satisfies Condition 4.4 plus
Condition A.2; there are at least #S − 2 such choices.

We claim that #Pk(s̄, αk, βk, γk, δk) ≥ #Pk−1(s) − 1 for s̄ ∈ E(s̃, Ã).
First, since l < m are consecutive elements in Pk−1(s̄), Lemma A.2 gives a
sequence {l = i(1) < . . . < i(M) = m} ⊆ Pk−1 such that(

Υ(δ̄i(1)),Υ(ᾱi(2)),Υ(β̄i(2)), . . . ,Υ(ᾱi(M−1)),Υ(β̄i(M−1)),Υ(ᾱm)
)

is D0-aligned. Moreover, Observation A.1 and Condition A.2 imply that(
Υ(ᾱm),Υ(β̄m)

)
,
(

Υ(β̄m), ȳ−k+1,2

)
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are D0-aligned and K0-aligned, respectively. In summary, {l = i(1) < · · · <
i(M)} ⊆ Pk−1(s̄) works for (s̄, αk, βk, γk, δk) in Criterion (B) at step k. This
implies Pk(s̄, αk, βk, γk, δk) ⊇ Pk−1(s̄) ∩ {1, . . . , l}, hence the claim.

As a result, for each s̃ ∈ Ek−1(s) we have

P
(

#Pk(s̄, αk, βk, γk, δk) < #Pk−1(s)− 1
∣∣∣ s̄ ∈ E(s̃, S̃m)

)
≤

#
[
E(s̃, S̃m) \ E(s̃, Ã)

]
#E(s̃, S̃m)

≤ 3

#S − 1
≤ 4

N0
.

Since E(s̃, S̄m)’s for s̃ ∈ Ek−1(s) partition Ek−1(s), we deduce

P
(

#Pk(s̃, αk, βk, γk, δk) < #Pk−1(s)− 1
∣∣∣ s̃ ∈ Ek−1(s)

)
≤ 4

N0
.

Moreover, the above probability vanishes when (αk, βk, γk, δk) ∈ A. Since
P(A |S4) ≥ 1− 4/N0, we deduce that
(A.3)

P
(

#Pk(s̃, αk, βk, γk, δk) < #Pk−1(s)− 1
∣∣∣ s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4

)
≤ 4

N0
· 4

N0
≤
(

4

N0

)2

.

Now let j = 2. We similarly discuss only for s such that #Pk−1(s) ≥ 3;
let l′ < l < m be the last 3 elements. For (ᾱm, β̄m, γ̄m) ∈ S3 we define

s′(ᾱm, β̄m, γ̄m) := (α1, β1, γ1, δ1, . . . , ᾱm, β̄m, γ̄m, δm, . . . , αk−1, βk−1, γk−1, δk−1).

In other words, s′(ᾱm, β̄m, γ̄m) is obtained from s by replacing αm with ᾱm,
βm with β̄m and γm with γ̄m. We then define

A1 :=

{(
ᾱm, β̄m, γ̄m,
αk, βk, γk, δk

)
∈ S̃m(s)× S4 : #Pk

(
s′(ᾱm, β̄m, γ̄m), αk, βk, γk, δk

)
≥ #Pk−1(s)− 1

}
.

Equivalently, we are requiring

Pk−1(s) ∩ {1, . . . , l} ⊆ Pk
(
s′, αk, βk, γk, δk

)
.

(This equivalence relies on the fact Pk−1(s′) = Pk−1(s) due to Lemma 4.3.)

Observation A.3. Let

s̃ = (α̃i, β̃i, γ̃i, δ̃i)
k−1
i=1 ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4.

Then (α̃m, β̃m, γ̃m, αk, βk, γk, δk) ∈ A1 if and only if #Pk(s̃, αk, βk, γk, δk) ≥
#Pk−1(s)− 1.

To see this, suppose first that (α̃m, β̃m, γ̃m, αk, βk, γk, δk) ∈ A1. Then

(s̃, αk, βk, γk, δk) is pivoted from
(
s′(α̃m, β̃m, γ̃m), αk, βk, γk, δk

)
, as the for-

mer choice differs from the latter choice only at entries (αi, βi, γi)’s for
i ∈ Pk−1(s) ∩ {1, . . . , l} ⊆ Pk (s′, αk, βk, γk, δk). Lemma 4.3 then implies
that

Pk−1(s) ∩ {1, . . . , l} ⊆ Pk(s′, αk, βk, γk, δk) = Pk(s̃, αk, βk, γk, δk)
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and #Pk(s̃, αk, βk, γk, δk) ≥ #Pk−1(s)− 1.
Conversely, suppose #Pk(s̃, αk, βk, γk, δk) ≥ #Pk−1(s)− 1. This amounts

to saying
Pk−1(s) ∩ {1, . . . , l} ⊆ Pk(s̃, αk, βk, γk, δk).

Then
(
s′(α̃m, β̃m, γ̃m), αk, βk, γk, δk

)
is pivoted from (s̃, αk, βk, γk, δk), as the

former choice differs from the latter choice only at entries (α̃i, β̃i, γ̃i)’s for
i ∈ Pk−1(s)∩{1, . . . , l} ⊆ Pk (s̃, αk, βk, γk, δk). Lemma 4.3 then implies that

Pk−1(s) ∩ {1, . . . , l} ⊆ Pk(s̃, αk, βk, γk, δk) = Pk(s
′, αk, βk, γk, δk)

and (α̃m, β̃m, γ̃m, αk, βk, γk, δk) ∈ A1.
Combining Observation A.3 and Inequality A.3, we deduce

P(A1 | S̃′m(s)× S4)

= P
(

(α̃m, β̃m, γ̃m, αk, βk, γk, δk) ∈ A1 | s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4
)

= P
(

#Pk(s̃, αk, βk, γk, δk) ≥ #Pk−1(s)− 1
∣∣∣ s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4

)
≥ 1−

(
4

N0

)2

.

We now define for s̃ ∈ Ek−1(s) and A ⊆ S3

E1(s̃, A) :=

s̄ = (ᾱi, β̄i, γ̄i, δ̄i)
k−1
i=1 :

ᾱi = α̃i, γ̄i = γ̃i, δ̄i = δ̃i for all i,

β̄i = β̃i for i 6= l,

(α̃l, β̄l, γ̃l) ∈ A

 .

Then {E1(s̃, S̃l(s)) : s̃ ∈ Ek−1(s)} partitions Ek−1(s) by Lemma 4.3. More-

over, for each s̃ ∈ Ek−1(s) we have #E(s̃, S̃l(s)) ≥ #S − 1.

Now fixing (αk, βk, γk, δk) ∈ S4 and s̃ = (α̃i, β̃i, γ̃i, δ̃i)
k−1
i=1 ∈ Ek−1(s), let

Ã1 = Ã1(s̃, αk, βk, γk, δk) ⊆ S̃l(s) be the collection of elements (α̃l, β̄l, γ̃l)
that satisfies

(A.4) diam
(
πΓ−1(β̄l)

((w̃−l,0)−1w̃−k−1,2akbkvkckdko) ∪ o
)
< K0.

As before, the size of Ã1 is at least #S − 2.
We now claim that #Pk(s̄, αk, βk, γk, δk) ≥ #Pk−1(s)−2 for s̄ ∈ E1(s̃, Ã1).

First, since l′ < l are consecutive elements in Pk−1(s̄), Lemma A.2 gives a
sequence {l′ = i(1) < . . . < i(M) = l} ⊆ Pk−1 such that(

Υ(δ̄i(1)),Υ(ᾱi(2)),Υ(β̄i(2)), . . . ,Υ(ᾱi(M−1)),Υ(β̄i(M−1)),Υ(ᾱl)
)

is D0-aligned. Moreover, Observation A.1 and Condition A.2 imply that(
Υ(ᾱl),Υ(β̄l)

)
,
(

Υ(β̄l), ȳ
−
k+1,2

)
is D0-aligned and K0-aligned, respectively. In summary, {l′ = i(1) < · · · <
i(M)} ⊆ Pk−1(s̄) works for (s̄, αk, βk, γk, δk) in Criterion (B) at step k. This
implies Pk(s̄, αk, βk, γk, δk) ⊇ Pk−1(s̄) ∩ {1, . . . , l′}, hence the claim.
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As a result, for each s̃ ∈ Ek−1(s) we have

P
(

#Pk(s̄, αk, βk, γk, δk) < #Pk−1(s)− 2
∣∣∣ s̄ ∈ E1(s̃, S̃l)

)
≤

#
[
E(s̃, S̃l) \ E(s̃, Ã1)

]
#E(s̃, S̃′l)

≤ 3

#S − 1
≤ 4

N0
.

Moreover, Observation A.3 asserts that the above probability vanishes for s̃
and (αk, βk, γk, δk) such that (α̃m, β̃m, γ̃m, αk, βk, γk, δk) ∈ A1. Since

P
[⋃
{E1(s̃, S̃l)× (αk, βk, γk, δk) : (α̃m, β̃m, γ̃m, αk, βk, γk, δk) /∈ A1}

∣∣∣ Ek−1(s)× S4
]

= P
[
(α̃m, β̃m, γ̃m, αk, βk, γk, δk) /∈ A1

∣∣∣ S̃m(s)× S4
]
≤ (4/N0)2,

we sum up the conditional probabilities to obtain
(A.5)

P
(

#Pk(s̃, αk, βk, γk, δk) < #Pk−1(s)− 2
∣∣∣ s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4

)
≤
(

4

N0

)2

× 4

N0
≤
(

4

N0

)3

.

We repeat this procedure to cover all j < #Pk−1(s). The case j ≥ #Pk−1(s)
is void. �

Lemma 4.3 leads to the estimation in Corollary 4.5.

Proof. Let {Xi}i be the family of i.i.d. as in Equation 4.6 that is also
assumed to be independent from the choice s. Lemma 4.2 and Lemma 4.4
imply the following: for 0 ≤ k < n and any i,

(A.6) P
(

#Pk+1(s) ≥ i+ j
∣∣∣#Pk(s) = i

)
≥

{
1− 4

N0
if j = 1,

1−
(

4
N0

)−j+1
if j < 0.

Hence, there exists a nonnegative RV Uk such that #Pk+1 −Uk and #Pk +
Xk+1 have the same distribution.

For each 1 ≤ k ≤ n, we claim that P(#Pk ≥ i) ≥ P(X1 + · · · + Xk ≥ i)
for each i. For k = 1, we have #Pk−1 = 0 always and the claim follows from
Inequality A.6. Given the claim for k, we have

P(#Pk+1 ≥ i) ≥ P(#Pk +Xk+1 ≥ i) =
∑
j

P(#Pk ≥ j)P(Xk+1 = i− j)

≥
∑
j

P(X1 + · · ·+Xk ≥ j)P(Xk+1 = i− j)

= P(X1 + · · ·+Xk +Xk+1 ≥ i).

The second assertion follows from a similar induction on {#Pk+l−#Pk}l≥0.
The final assertion holds since Xi’s have finite exponential moments and

expectation greater than 1− 9/N0. �
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