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Abstract. Continuing from [Cho22b], we study random walks on (pos-
sibly asymmetric) metric spaces using the bounded geodesic image prop-
erty (BGIP) of certain isometries. As an application, we show that a
generic outer automorphism of the free group of rank at least 3 has dif-
ferent forward and backward expansion factors. This answers a question
of Handel and Mosher in [HM07b]. Together with this, we also revisit
limit laws on Outer space including SLLN, CLT, LDP and the genericity
of a fully irreducible outer automorphism.
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1. Introduction

This is the third in a series of articles concerning random walks on metric
spaces with contracting elements. This series is a reformulation of the pre-
vious preprint [Cho22a] announced by the author. In this article, we adopt
the following setting:

Convention 1.1. Throughout, we assume that:

• (X, d) is a geodesic metric space, possibly with an asymmetric metric;
• G is a countable group of isometries of X, and
• G contains two independent isometries that exhibit the bounded geo-

desic image property (BGIP).

We also fix a basepoint o ∈ X.

The main purpose of this article is to generalize the random walk theory
in [Cho22b] to asymmetric metric spaces. Our main result deals with the
mismatch between the forward and backward translation length of a generic
isometry of X.

Theorem A (Asymmetry of a generic translation length). Let (X, d,G)
be as in Convention 1.1. Let ω be the random walk generated by a non-
elementary, asymptotically asymmetric measure µ on G. Then for any K >
0, we have

lim
n→∞

P
(
ω : |τ(ωn)− τ(ω−1

n )| < K
)

= 0.
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Together with this, the limit laws discussed in [Cho22b] and [Cho22c], in-
cluding SLLN, CLT, LIL, geodesic tracking and the genericity of q.i. embed-
ded subgroups, also generalize to the current setting of asymmetric metric
spaces. As an application, we obtain the following corollary:

Corollary 1.2. Let X be Outer space of rank N ≥ 3 and G be the cor-
responding outer automorphism group of the free group FN . Let ω be an
admissible random walk on G. Then for any K > 0, we have

lim
n→∞

P
(
ω : |τ(ωn)− τ(ω−1

n )| < K
)

= 0.

Corollary 1.2 asserts that a generic outer automorphism is a fully irre-
ducible that has a different expansion factor than its inverse. This has been
suggested by Handel and Mosher in [HM07b]. There, they proved the asym-
metry for a large class of automorphisms, namely, the class of parageometric
fully irreducibles. In contrast, a companion result in [HM07a] states that for
any fully irreducible element φ ∈ Out(FN ), the expansion factor λ of φ and
λ′ of φ−1 satisfy 1/C ≤ log(λ/λ′) ≤ C for some constant C that depends on
N , the rank of the free group. In other words, the translation lengths of φ
and φ−1 are within bounded ratio (see also [AKB12]).

Together with this, we also recover Horbez’s SLLN [Hor16a] and CLT
[Hor18] for displacement, and Dahmani-Horbez’s SLLN for translation length
[DH18] on Outer space, the latter with a weaker and optimal moment con-
dition. We also present a CLT for translation length and its converse, which
seems new for Outer space. Moreover, we obtain optimal deviation inequali-
ties on Outer space; see [Hor18] for previously known deviation inequalities.
Using them, we also establish the geodesic tracking of random walks. Finally,
we also discuss the exponential genericity of (atoroidal) fully irreducible au-
tomorphisms, which is a recurring theme in [MT18], [TT16] and [KMPT22];
note that we do not require moment conditions here.

In order to apply our general theory to Outer space, we crucially utilize
the BGIP of fully irreducible outer automorphisms. Namely, we modify
Kapovich-Maher-Pfaff-Taylor’s observation ([KMPT22, Theorem 7.8]) into
the following form:

Proposition 1.3. Let ϕ ∈ Out(FN ) be a fully irreducible outer automor-
phism. Then the orbit {ϕio}i∈Z of o by ϕ is a BGIP axis.

1.1. Structure of the article. In Section 2, we recall the notion of bounded
geodesic image property (BGIP) and prove relevant lemmata. These lem-
mata have been used in [Cho22b] to establish subsequent alignment lem-
mata. Here, we rephrase them in the language of BGIP. In Section 3, we
review preliminaries on the outer automorphism group and Outer space.
The main theorem of this section is the BGIP of fully irreducible outer au-
tomorphisms on Outer space. In Section 4, we first generalize the limit laws
discussed in [Cho22b] and [Cho22c] while pointing out subtle differences.
Next, we review the notion of pivotal times and the pivoting technique that
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are established in [Cho22b]. Using these, we finally prove Theorem A in
Subsection 4.3.
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2. Preliminaries

2.1. Asymmetric metric spaces.

Definition 2.1 (Metric space). An (asymmetric) metric space (X, d) is a
set X equipped with a function d : X×X → R≥0 that satisfies the following:

• for any x, y ∈ X, d(x, y) = 0 if and only if x = y;
• (triangle inequality) for any x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z);
• (local symmetry) for each x ∈ X, there exist ε,K > 0 such that
d(y, z) ≤ Kd(z, y) holds for y, z ∈ {a ∈ X : min (d(x, a), d(a, x)) < ε}.

In this situation, we say that d is a metric on X. d is said to be symmetric
if d(x, y) = d(y, x) holds for all x, y ∈ X. We define a symmetric metric
called the symmetrization of d by

dsym(x, y) := d(x, y) + d(y, x).

We endow (X, d) with the topology induced by dsym.
The diameter of a set A ⊆ X is defined by

diam(A) := sup{d(x, y) : x, y ∈ A},

and the (directed) distances between sets A,B ⊆ X are defined by

d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B},
dsym(A,B) := inf{dsym(x, y) : x ∈ A, y ∈ B}.

For R > 0, the R-neighborhood of a set A ⊆ X is defined by

NR(A) := {x : dsym(x,A) < R}.

The Hausdorff distance between A,B ⊆ X is defined by

dH(A,B) := inf{R > 0 : A ⊆ NR(B) and B ⊆ NR(A)}.
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Definition 2.2 (Quasigeodesics). A path γ : I → X from an interval or a
set of consecutive integers I is called a K-quasigeodesic if

(2.1)
1

K
|t− s| −K ≤ d(γ(s), γ(t)) ≤ K|t− s|+K

holds for all s, t ∈ I such that s < t. If Inequality 2.1 holds for all s, t ∈ I,
we say that γ is a K-bi-quasigeodesic.

A metric space X is said to be geodesic if every ordered pair of points can
be connected by a geodesic, i.e., for every x, y ∈ X there exists a geodesic
γ : [a, b]→ X such that γ(a) = x and γ(b) = y.

We will frequently use Inequality 2.1 in the following form. For any points
p, q on a K-bi-quasigeodesic γ, we have

(2.2) diam
(
γ−1(p) ∪ γ−1(q)

)
≤ Kd(p, q) +K2

and

(2.3) d(q, p) ≤ K diam
(
γ−1(p) ∪ γ−1(q)

)
+K ≤ K2d(p, q) +K3 +K.

Note that geodesics are necessarily continuous due to the local symme-
try. However, the reverse of a geodesic may not be a geodesic, or even a
quasigeodesic.

2.2. BGIP and random walks. Let us now recall the notion of bounded
geodesic image property.

Definition 2.3 (Bounded geodesic image property). A subset A ⊆ X of
a geodesic metric space X is said to satisfy the K-bounded geodesic image
property, or K-BGIP in short, if the following hold:

(1) for any z ∈ X, πA(z) 6= ∅;
(2) for any geodesic η such that η∩NK(A) = ∅, we have diam(πA(η)) ≤

K.

A K-bi-quasigeodesic that satisfies K-BGIP is called a K-BGIP axis.

One subtlety of asymmetric metrics is that contracting property and
BGIP may not be equivalent anymore. In principle, we often need to replace
d(x, y), the distance between two points x and y, with its symmetrization
dsym(x, y) in the arguments in [Cho22b] and [Cho22c]. For example, we now
define that:

Definition 2.4 ([BF09, Definition 5.8]). Bi-infinite paths κ = (xi)i∈Z, η =
(yi)i∈Z are said to be independent if the map (n,m) 7→ dsym(xn, ym) is
proper, i.e., for any M > 0, {(n,m) : dsym(xn, ym) < M} is bounded.

Isometries g, h of X are said to be independent if their orbits are inde-
pendent.

Definition 2.5. A subgroup of Isom(X) is said to be non-elementary if it
contains two independent contracting isometries.
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We now fix a non-elementary discrete subgroup G of Isom(X) and con-
sider the random walk ω generated by a non-elementary probability measure
µ on G. We employ the notions defined in [Cho22b, Subsection 2.2], except
for two distinctions.

First, for a given p > 0, we define the p-th moment of µ by

Eµ[d(o, go)p] :=

∫
d(o, go)pdµ.

Note that this and the quantity

Eµ̌[d(o, go)p] :=

∫
d(o, go)pdµ̌ =

∫
d(go, o)pdµ

are distinct in general, and the finitude of the former does not imply that of
the latter. This technicality leads to a subtle difference between limit laws
for symmetric and asymmetric metric spaces. However, many asymmetric
metric spaces (including Outer space) satisfies the following coarse symme-
try: there exists a global constant K > 0 such that d(x, y) ≤ Kd(x, y) for
x, y ∈ G. Under such a coarse symmetry, a measure µ has finite p-th mo-
ment if and only if its reflected version µ̌(·) := µ(·−1) does so. Hence, the
current subtlety will not matter for Outer space and many other spaces.

A measure µ is said to be admissible if 〈〈 suppµ 〉〉 equals the entire group
G. A measure µ is said to be non-elementary if 〈〈 suppµ 〉〉 contains two in-
dependent isometries that satisfy BGIP. Note that by taking suitable powers
if necessary, we may assume that two independent BGIP isometries belong
to the same suppµ∗N for some N > 0. µ is said to be non-arithmetic if there
exist N > 0 and g, h ∈ suppµ∗N such that τ(g) 6= τ(h). Finally, we say that
µ is asymptotically asymmetric if there exists N > 0 and g, h ∈ suppµ∗N

such that

τ(g)− τ(g−1) 6= τ(h)− τ(h−1).

The random walk ω generated by µ is said to be admissible (non-elementary,
non-arithmetic or asymptotically asymmetric, resp.) if µ is admissible (non-
elementary, non-arithmetic or asymptotically asymmetric, resp.).

2.3. BGIP and alignment lemmata. In [Cho22b], we collected some
properties of contracting axes and deduced some alignment lemmata. We
will prove the same properties for BGIP axes here.

Lemma 2.6. Let γ be a K-bi-quasigeodesic such that πγ(y) 6= ∅ for any

y ∈ X. Let also x ∈ NK(γ). Then d(x, p) ≤ K and d(p, x) ≤ 3K3 + 2K
hold for any p ∈ πγ(x).
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Proof. Let us take ε > 0 and y ∈ Nε(x) ∩NK(γ). For p ∈ πγ(x) and q ∈ γ
such that dsym(q, y) ≤ K, we observe

d(x, p) ≤ d(x, q) ≤ d(x, y) + d(y, q) ≤ ε+K,

d(p, x) ≤ d(p, q) + d(q, y) + d(y, x)

≤ [K2d(q, p) +K3 +K] +K + ε

≤ K2[d(q, y) + d(y, x) + d(x, p)] +K3 + 2K + ε

≤ K2[K + ε+ (K + ε)] +K3 + 2K + ε.

By decreasing ε down to zero, we deduce d(x, p) ≤ K and d(p, x) ≤ 3K3+2K
for any p ∈ πγ(x). �

Lemma 2.7 (Continuity of the projection). For each K > 1 there exists a
constant K ′ = K ′(K) that satisfies the following property.

Let γ be a K-BGIP axis and x, y be ε-close points in X, that means,
dsym(x, y) ≤ ε. Then πγ({x, y}) has diameter at most K ′ + 2ε.

Proof. We first show diam(πγ(w)) ≤ 3K3 + 3K for any w ∈ X. If w /∈
NK(γ) then diam(πγ(w)) < K by K-BGIP, and if w ∈ NK(γ) then for any
w′, w′′ ∈ πγ(w) we have d(w′, w′′) ≤ d(w′, w) + d(w,w′′) ≤ K + (3K3 + 2K)
by Lemma 2.6.

Let us now prove the lemma. If one of [x, y] and [y, x] is disjoint from
NK(γ), then diam(πγ({x, y})) < K by the BGIP. If not, we take z ∈ [x, y]∩
NK(γ) and z′ ∈ [y, x] ∩ NK(γ) such that [x, z), [y, z′) are disjoint from

NK(γ). In other words, we take z, z′ to be the ‘leftmost’ ones among the
candidates.

Then for any q′ ∈ πγ(z) and q ∈ πγ(y), we have

d(q′, q) ≤ d(q′, z) + d(z, y) + d(y, q)

≤ 3K3 + 2K + d(z, y) + d(y, πγ(z′))

≤ 3K3 + 2K + d(z, y) + d(y, z′) + d(z′, πγ(z′))

≤ 3K3 + 3K + ε.

Moreover, we have diam(πγ([x, z])) ≤ 3K3 +3K since either x = z ∈ NK(γ)
or [x, z] is disjoint from NK(γ). Hence, we have d(p, q) ≤ 6K3 + 6K + ε for
any p ∈ πγ(x) and q ∈ πγ(y).

By symmetry, we also have d(q, p) ≤ 6K3 + 6K + ε for such pair. Finally,
we know that diam(πγ(x)) ≤ 3K3 + 3K and diam(πγ(y)) ≤ 3K3 + 3K.
Combining these, we conclude that diam(πγ(x) ∪ πγ(y)) ≤ 12K3 + 12K +
ε. �

This leads to the following corollary.

Corollary 2.8 (Continuity of projections II). Let X be a geodesic space. For
each K > 1 there exists a constant K ′ = K ′(K) that satisfies the following
property.
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NK(γ)

γ

η(JL) η(JR)

η(J1)

γ(m) γ(M)

Figure 1. Schematics for the proof of Lemma 2.9. The
projection of η(J ′) onto γ is small for each component J ′ of
J \ J0.

Let γ be a K-BGIP axis, A ⊆ X be a connected set and a ∈ R. If
γ−1πγ(A) is contained in the union of I1 := (−∞, a] and I2 := [a+K ′,+∞)
then it is contained in either I1 or I2.

Lemma 2.9 (Large projections are nearby). For each K > 1 there exists a
constant K ′ = K ′(K) that satisfies the following property.

Let γ : I → X be a K-BGIP axis and η : J → X be a geodesic such that
diam(πγ(η)) > K. Then for m := inf γ−1πγ(η) and M := sup γ−1πγ(η),
γ([m,M ] ∩ I) is within Hausdorff distance K ′ from a subsegment of η that
contains NK(γ) ∩ η.

Proof. Let K0 = K ′(K) be as in Corollary 2.8. Let also J0 = {s ∈ J : η(s) /∈
NK(γ)}, which is open since geodesics are continuous with respect to the
dsym-topology on X.

For each component J ′ of J0, η
(
J̄ ′
)

is disjoint from NK(γ) so we have

diam
(
πγη

(
J̄ ′
))
≤ K. In particular, the assumption diam(πγ(η)) > K forces

that J0 has more than 1 component; hence J \ J0 is nonempty. We now let

A := inf J \ J0, B := sup J \ J0

and claim that γ([m,M ] ∩ I) and η([A,B] ∩ J) are close to each other.
First observe that each component of J0, except the leftmost and the

rightmost ones, are shorter than a uniform bound. For such a component
J ′ = (α, β), we have η(α), η(β) ∈ ∂NK(γ) and diam (πγη ([α, β])) < K.
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This implies that

|β − α| = d(η(α), η(β))

≤ d(η(α), πγη(α)) + diam (πγη(α) ∪ πγη(β)) + d(πγη(β), η(β))

≤ K +K + [3K3 + 2K] =: K1.

Now let s ∈ J be such that A ≤ s ≤ B. By its construction, s either
belongs to J \ J0 or a component J ′ = (α, β) of J0 such that α, β ∈ J \ J0.
In the former case, we have dsym(η(s), πγη(s)) ≤ 3K3 + 3K by Lemma 2.6.
In the latter case, for any p ∈ πγη(β) we have

d(η(s), p) ≤ d(η(s), η(β)) + d(η(β), πγη(β))

≤ K1 +K,

d(p, η(s)) ≤ diam
(
πγ(J ′)

)
+ d(πγη(α), η(α)) + d(η(α), η(s))

≤ K + [3K3 + 2K] +K1.

Since πγη(β) ⊆ γ([m,M ] ∩ I), this establishes one direction.
For the other direction, let us take t ∈ I∩ [m,M ]. Let JL := J ∩(−∞, A),

JR := J ∩ (B,+∞) and J1 := J ∩ [A,B]. Then we have

γ−1πγ(η) ⊆ γ−1πγ(η(JL)) ∪ γ−1πγ(η(J1)) ∪ γ−1πγ(η(JR)).

Also note that γ−1πγ(η(J1)) is a K0-connected set by Corollary 2.8, and
that γ−1πγ(η(JL)), γ−1πγ(η(JR)) have diameters bounded by 2K2. This
implies that there exists t0 ∈ I, s0 ∈ J1 such that γ(t0) ∈ πγ(η(s0)) and
|t− t0| ≤ K0 + 2K2.

If s0 ∈ J \ J0, then dsym(γ(t0), η(s0)) < 3K3 + 3K by Lemma 2.6; since
γ(t) and γ(t0) are close to each other, we are done in this case. If s0 ∈ J0,
it belongs to a component J ′ = (α, β) of J0 that is not the leftmost or
the rightmost one. We then have β ∈ J \ J0 and dsym(γ(t0), πγ(η(β)) ≤
2 diamπγ(J ′) ≤ 2K. By replacing s0 with β and t0 with an element of
πγ(η(β)), we similarly deduce the conclusion. �

Lemma 2.10 (BGIP is contagious). For each K > 1 there exists a constant
K ′ = K ′(K) such that any subsegment of a K-BGIP axis is a K ′-BGIP axis.
Moreover, if a set A is within Hausdorff distance K from a K-BGIP axis
and πA(x) 6= ∅ for any x ∈ X, then A has K ′-BGIP.

Proof. Let γ : I → X be a K-BGIP axis, γ′ = γ|I′ : I ′ → X be its
subsegment and η : J → X be a geodesic. Let also IL := {x ∈ I : x < I ′},
IR := {x ∈ I : x > I ′}. Let K1 = K ′(K) be as in Lemma 2.9, K2 = K ′(K)
be as in Lemma 2.7, R = 3K(K1 + K2 + K), R1 = K1 + 2(R + 1) and
K ′ = KR1 +K2.

Let z ∈ η. We first claim that if γ−1(πγ(z)) ∩ IR 6= ∅, then γ−1πγ′(z) ⊆
[sup I ′ − R, sup I ′]. If not, then there exists w ∈ πγ′(z) such that γ−1(w)
intersects (−∞, sup I ′−R). Then diam(πγ(z)∪w) ≥ R/K −K > K + 1 so
[z, w] passes through NK1(γ(sup I ′)) by Lemma 2.9. Let p ∈ [z, w] be that
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intersection point. Then

d(z, γ(sup I ′ − ε)) ≤ d(z, γ(sup I ′)) +Kε+K

≤ d(z, p) + d(p, γ(sup I ′)) +Kε+K

≤ d(z, w)− d(p, w) + d(p, γ(sup I ′)) +Kε+K

≤ d(z, w)− d(γ(sup I ′), w) + d(γ(sup I ′), p) + d(p, γ(sup I ′)) +Kε+K

≤ d(z, w) +K1 +Kε+K − (R/K −K) < d(z, w)

for sufficiently small ε > 0, which is a contradiction.
By a similar reason, γ−1(πγ(z))∩IL 6= ∅ implies πγ′(z) ⊆ γ([inf I ′, inf I ′+

R]). Finally, if γ−1(πγ(z)) ∩ I ′ 6= ∅ then πγ′(z) = πγ(z) ∩ γ′.
Let us now suppose that the diameter of πγ′(η) is greater than K ′. With-

out loss of generality, let x, y ∈ η and s′ ∈ γ−1πγ′(x), t′ ∈ γ−1πγ′(y) be such
that t′ − s′ > K ′/K − K = R1. We then pick s to be s′ if s′ ∈ γ−1πγ(x)
and an arbitrary element of γ−1πγ(x) if not. Similarly we take t = t′ or an
element of γ−1πγ(y).

We claim that s ≤ s′ + R + 1. If not, we have either s ∈ IR or s′ ≤
s − R − 1 ≤ sup I ′ − R − 1. In the former case we have sup I ′ − R ≤ s′ <
t′ ≤ sup I ′ and t′ − s′ ≤ R < R1, a contradiction. In the latter case, the
previous observation tells us that γ−1(πγ(x)) ∩ IR = ∅. This forces one of
the following cases:

• γ−1(πγ(x)) ∩ I ′ 6= ∅ holds, in which case πγ′(x) = πγ ∩ γ′(x) and
|s− s′| ≤ K diam(πγ(x)) +K2 ≤ R hold; or,
• γ−1(πγ(x)) < I ′ and s ≤ s′; in either case we have a contradiction.

By a similar reason, we also deduce t ≥ t′−R−1. In conclusion, we have

(2.4) t−s ≥ min(t, t′)−max(s, s′) ≥ t′−s′−2(R+1) ≥ R1−2(R+1) ≥ K1

and NK(γ(s∗)) ∩ η 6= ∅ for all s ≤ s∗ ≤ t by K-BGIP of γ. Also, Inequality
2.4 implies that s∗ ∈ [min(t, t′),max(s, s′)] exists, which clearly belongs to
I ′. This establishes K ′-BGIP of γ′.

We now investigate the second assertion. Let

K3 := 2K2(10K3 +K1 +K2) +K2.

As before, let γ : I → X be a K-BGIP axis and A be a K-bi-quasigeodesic
that is within Hausdorff distance K from γ. For x ∈ X, we claim that
πγ(x) ∪ πA(x) is bounded. To see this, let z ∈ πγ(x) and z′ ∈ πA(x). Since
γ and A are within Hausdorff distance K, there exist w ∈ γ, w′ ∈ A such
that dsym(w, z′), dsym(w′, z) ≤ K. Then for any w∗ ∈ πγ(z′) we have

diam(z′ ∪ w∗) ≤ d(z′, w∗) + d(w∗, z′)

≤ d(z′, w) + d(w∗, w) + d(w, z′)

≤ dsym(w, z′) +K2d(w,w∗) +K3 +K

≤ dsym(w, z′) +K2[d(w, z′) + d(z′, w∗)] +K3 +K

≤ (K2 + 1)dsym(w, z′) +K3 +K ≤ 2K3 + 2K.
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Now, if d(z, z′) ≥ 2K3 + 3K +K1 +K2, then

diam(πγ([x, z′])) ≥ diam(z ∪ πγ(z′)) ≥ diam(z ∪ z′)− diam(πγ(z′) ∪ z) ≥ K

and [x, z′] passes through NK1(z) by K-BGIP of γ. Let p ∈ [x, z′] be a point
in the intersection. This implies that

d(x,w′) ≤ d(x, p) + d(p, w′)

≤ d(x, z′)− d(p, z′) + d(p, z) + d(z, w′)

≤ d(x, z′)− [d(z, z′)− d(z, p)] + d(p, z) + d(z, w′)

≤ d(x, z′)− (2K3 + 3K +K1 +K2) +K1 +K < d(x, z′),

which contradicts the fact that z′ ∈ πA(x). Hence, we conclude that d(z, z′) <
2K3 + 3K + K1 + K2 and d(z, w) ≤ 2K3 + 4K + K1 + K2. Since γ is a
K-bi-quasigeodesic, we have

d(w, z) ≤ K2(2K3 + 4K +K1 +K2) +K3 +K,

d(z′, z) ≤ K2(2K3 + 4K +K1 +K2) +K3 + 2K

≤ K2(10K3 +K1 +K2).

In short, we have dsym(z, z′) ≤ K3−K2. Since diam(πγ(x)) ≤ K2 by Lemma
2.7, we conclude that diam(πγ(x) ∪ πA(x)) ≤ K3.

Now suppose diam(πA([x, y])) > 2K3 + K. By the previous argument,
we deduce that diam(πγ([x, y])) > K and [x, y] passes through NK(γ) ⊆
N2K(A). Hence, A has (2K3 + 2K)-BGIP. �

Lemma 2.11 (No backtracking). For each K > 1 there exists a constant
K ′ = K ′(K) that satisfies the following property.

Let γ : I → X be a K-BGIP axis, η : J → X be a geodesic and αi ∈ J be
such that α1 ≤ α2 ≤ α3. Let also a1, a2, a3 ∈ I be such that γ(ai) ∈ πγη(αi).
Then a1 and a3 cannot both belong to (−∞, a2 −K ′] nor [a2 +K ′,+∞).

Proof. Let K1 = K ′(K) be as in Lemma 2.9 and K2 = K ′(K) be as in
Lemma 2.7. We claim that K ′ = K(2K + 3K1 + 1) works.

Suppose first that a1, a3 ∈ [a2 +K ′,+∞). Let a := min{a1, a3}. We then
have a ∈ [a2, a1], γ(ai) ∈ πγη(αi) and
(2.5)

diam(πγη([α1, α2])) ≥ diam(πγη(α2)∪πγη(α1)) >
1

K
|a1−a2|−K > K+ 1.

Hence, by Lemma 2.9, there exists w1, w2 ∈ [α1, α2] such that

dsym(η(w1), γ(a)) < K1, dsym(η(w2), γ(a2)) < K1.

Similarly, we have w′1, w
′
2 ∈ [α2, α3] such that

dsym(η(w′1), γ(a)) < K1, dsym(η(w′2), γ(a2)) < K1.

Meanwhile, Inequality 2.5 also shows that diam(πγ([η(α1), γ(a2)])) is larger
than K+1. Since a2 ≤ a ≤ a1, Lemma 2.9 implies that [η(α1), γ(a2)] passes
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η(α1)η(α2)

η(α3)

η(w′1)

η(w1)

η(w′2)

η(w2)

γ(a)γ(a2)
γ

Figure 2. Schematics for the proof of Lemma 2.11.

through NK1(γ(a)). Let p be the intersection point and note that

d(η(α1), η(α2)) ≥ d(η(α1), η(w2))

≥ d(η(α1), γ(a2))− d(η(w2), γ(a2))

= d(η(α1), p) + d(p, γ(a2))− d(η(w2), γ(a2))

≥ [d(η(α1), γ(a))− d(p, γ(a))] + [d(γ(a), γ(a2))− d(γ(a), p)]− 2K1

≥ d(η(α1), γ(a)) +

[
1

K
|a− a2| −K

]
− dsym(p, γ(a))− 2K1

≥ d(η(α1), γ(a)) +
K ′

K
−K − 3K1.

By a similar reason, [γ(a2), η(α3)] passes through NK1(γ(a)) and we can
deduce

d(η(α2), η(α3)) ≥ d(γ(a), η(α3)) +
K ′

K
−K − 3K1.

Since η(α1), η(α2) and η(α3) are aligned on the same geodesic η, we deduce

d(η(α1), η(α3)) = d(η(α1), η(α2)) + d(η(α2), η(α3))

≥ d(η(α1), γ(a)) + d(γ(a), η(α3)) + 2

(
K ′

K
−K − 3K1

)
≥ d(η(α1), η(α3)) + 2

(
K ′

K
−K − 3K1

)
.

Since K ′ > K(K + 3K1), this gives a contradiction. Similar investigation
also prevents a1, a3 ∈ (−∞, a2 −K ′]. �

Lemma 2.12 (Fellow traveling). For each K > 1 there exists a constant
K ′ = K ′(K) that satisfies the following property.

Let γ : I → X be a K-bi-quasigeodesic and η1 : [0, L1] → X, η2 :
[0, L2] → X be geodesics such that dH(γ, η1), dH(γ, η2) < K. Suppose also
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that d(η1(0), η2(0)) < K. Then |L1 − L2| < K ′, and η1 and η2 K
′-fellow

travel on the interval [0,min{L1, L2}].

Proof. For each 0 ≤ s1 ≤ L1, let t ∈ I be such that dsym(η1(s1), γ(t)) < K
and let s2 ∈ [0, L2] be such that dsym(η2(s2), γ(t)) < K. Then we have

|s1 − s2| = |d(η1(0), η1(s1))− d(η2(0), η2(s2))|
≤ dsym(η1(0), η2(0)) + |d(η2(0), η2(s2))− d(η2(0), η2(s2))|+ dsym(η2(s2), η1(s1))

≤ 4K.

In particular, this implies that L2 ≥ L1−4M . By symmetry, L1 ≥ L2−4M
also holds.

Now for 0 ≤ s1 ≤ min{L1, L2}, define t and s2 as above. Let also t′ ∈ I
be such that dsym(η2(s1), γ(t′)) < K. We then have

d(η1(s1), η2(s1)) ≤ d(η1(s1), η2(s2)) + d(η2(s2), η2(s1))

≤ 2K + d(η2(s2), γ(t)) + d(γ(t), γ(t′)) + d(γ(t′), η2(s1))

≤ 2K + 2K +K|t− t′|+K

≤ 5K +K2d(γ(t′), γ(t)) +K2

≤ (5K +K2) +K2[d(γ(t′), η2(s1)) + d(η2(s1), η2(s2)) + d(η2(s2), γ(t))]

≤ (5K +K2 + 2K3) +K2d(η2(s1), η2(s2)).

Since one of d(η2(s2), η2(s1)) and d(η2(s1), η2(s2)) is bounded by |s1− s2| ≤
4K, we conclude that d(η1(s1), η2(s1)) ≤ 6K +K2 + 6K3. Similar estimate
holds for d(η2(s1), η1(s1)). �

Thanks to these lemmata, we can copy the alignment lemmata in [Cho22b]
by replacing K-contracting axes with K-BGIP axes.

Definition 2.13 ([Cho22b, Definition 3.2]). Given paths κi from xi to x′i
for each i = 1, . . . , n, we say that (κ1, . . . , κn) is C-aligned if

diam
(
x′i ∪ πκi(κi+1)

)
< C, diam

(
xi+1 ∪ πκi+1(κi)

)
< C.

hold for i = 1, . . . , n− 1.

Lemma 2.14 ([Cho22b, Lemma 3.3]). For each C > 0 and K > 1, there
exists D = D(K,C) > C that satisfies the following property.

Let κ, η be K-BGIP axes that connect x to x′ and y to y′, respectively.
Suppose that (κ, y′) and (x, η) are C-aligned. Then (κ, η) is D-aligned.

Proposition 2.15 ([Cho22b, Proposition 3.5]). For each C > 0 and K > 1,
there exist D = D(K,C) > C and L = L(K,C) > C that satisfies the
following.

Let J be a nonempty set of consecutive integers, and p, {xi, yi}i∈J be points
in X. For each i ∈ J , let κi be a K-BGIP axis connecting xi to yi whose
domain is longer than L. Suppose also that (κi)i∈J is C-aligned. Then we
have the following:
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(1) the statements

(κi, p) is D-aligned, (p, κi) is D-aligned

cannot hold simultaneously;
(2) the set

J0 = J0

(
p; (κi)i∈J , D

)
:=

{
j ∈ J :

(κi, p) is D-aligned for i ∈ J such that i < j,
(p, κi) is D-aligned for i ∈ J such that i > j

}
consists of either a single integer or two consecutive integers;

(3) π∪iκi(p) is nonempty and is contained in
⋃
{πκj (p) : j ∈ J0}; and

(4) (κl, κm) is D-aligned for any l,m ∈ J such that l < m.

Proposition 2.16 ([Cho22b, Proposition 3.6]). For each C > 0 and K >
1, there exist E = E(K,C) > C and L = L(K,C) > C that satisfy the
following. Let x, y ∈ X and κ1, . . . , κN be K-BGIP axes whose domains are
longer than L.

If (x, κ1, . . . , κN , y) is C-aligned, then (x, κi, y) is E-witnessed for each
i = 1, . . . , N . Moreover, p ∈ NE([x, y]) and (x, y)p < E for any p ∈ κi.

Lemma 2.17 ([Cho22b, Lemma 3.7]). For each C,M > 0 and K > 1,
there exist K ′ = K ′(K,C,M) > C and L = L(K,C) > C that satisfies the
following.

Let J be a nonempty set of consecutive integers and {xi, yi}i∈J be points
in X. For each i ∈ J , let κi be a K-BGIP axis connecting xi and yi whose
domain is longer than L. Suppose that (κi)i∈J is C-aligned and d(yi, xi+1) <
M for i ∈ J \ sup J . Then ∪iκi is a K ′-BGIP axis.

We now recall the concept of Schottky sets. Given a sequence s = (φi)
k
i=1

of isometries of X, we denote the product of its entries φ1 · · ·φk by Π(s).
We also define the reversal of s by s−1 := (φ−1

k−i+1)ki=1, i.e.,

s = (φ1, . . . , φk) ⇔ s−1 = (φ−1
k , . . . , φ−1

1 ).

Now let

xnk+i := Π(s)nφ1 · · ·φio = (φ1 · · ·φk)nφ1 · · ·φio
for each n ∈ Z and i = 0, . . . , k − 1. We let Γm(s) := (x0, x1, . . . , xmk)
when m ≥ 0 and Γm(s) := (x0, x−1, . . . , xmk) when m < 0. When m = 1,
we usually omit the superscript and write Γ(s) = (x0, . . . , xk). Finally, let
Γ±∞(s) = (xi)i∈Z. Note that Γ−m(s) = Γm(s−1), and Γm(s) is a concatena-
tion of |m| translates of Γ(s) or its reverse.

Definition 2.18 ([Cho22b, Definition 3.11]). Let K > 0 and S ⊆ GM be
a set of sequences of M isometries. We say that S is K-Schottky if the
following hold:

(1) Γm(s) is a K-BGIP axis for all s ∈ S and m ∈ Z;
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(2) for each x ∈ X, all element s ∈ S except at most 1 satisfies that
(x,Γn(s)) is K-aligned for all n ∈ Z;

(3) for each x ∈ X and s ∈ S, if (x,Γn(s)) is not K-aligned for some
n > 0 (n < 0, resp.) then (x,Γm(s)) is K-aligned for all m ≤ 0
(m ≥ 0, resp.).

Proposition 2.19 ([Cho22b, Proposition 3.12]). For any N0 > 0, there
exists a K-Schottky set of cardinality N0 in (suppµ)m for some m and K.

From now on we fix an integer N0 > 410. Let K0 := K(N0)
be as in Proposition 2.19, and
• D0 := D(K0,K0) be as in Lemma 2.14;
• for i = 1, 2, Di := D(K0, Di−1), Li := L(K0, Di−1) be

as in Lemma 2.14 and Proposition 2.15;
• E0 := E(K0, D2), L3 := L(K0, D2) be as in Proposition

2.16.
Let us now fix a K0-Schottky set S ⊆ (suppµ)M0 of car-

dinality at least N0.
Note that the set of n-self-concatenations of elements of S

is also a K0-Schottky set. Hence, we may assume that

(2.6) M0 > L1 + L2 + L3 + 20K0(K0 + E0).

From now on, K0-BGIP axes of the form Γm(s) for s ∈ S
and m 6= 0 are called Schottky axes.

Our choice of constants is important: since M0 is larger than L3, Propo-
sition 2.15 tells us the following.

Corollary 2.20. Let (Γ1, . . . ,ΓN ) be a D2-aligned sequence of Schottky
axes. Let us also define a relation for x, y ∈ ∪iΓi: x ≺ y if

• x ∈ γi and y ∈ γj for some i < j, or
• x and y are the beginning and terminating points, respectively, of the

same axis Γj for some j.

Then y ∈ NE0([x, z]) and (x, z)y < E0 hold for any triple x, y, z ∈ ∪iγi such
that x ≺ y ≺ z.

3. Outer space

The aim of this section is to collect facts regarding the outer automor-
phism group and Outer space. For detailed definitions and theories, see the
general exposition of Vogtmann [Vog15] or individual papers, e.g. [BH92],
[FM11], [FM12], [AKB12], [AK11], [DH18], [DT18] and [KMPT22].

Let X be the Culler-Vogtmann Outer space CVN of rank N ≥ 3, which
is the space of unit-volume marked metric graphs with fundamental group
FN . In other words, a point p ∈ CVN corresponds to the homotopic class of
a homotopy equivalence h : RN → Γ, where RN is a fixed rose with N petals
and Γ is a unit-volume metric graph. The corresponding space without the
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volume normalization is called the unprojectivized Outer space cvN , and
there is a projectivization from cvN to CVN by dilation.

Outer space comes equipped with a canonical metric, the Lipschitz dis-
tance, which is defined as follows: for two markings h1 : RN → Γ1 and
h2 : RN → Γ2, the distance from Γ1 to Γ2 is defined by

dCV (Γ1,Γ2) := inf{log Lip(f) : f ∼ f2 ◦ f−1
1 },

where Lip(f) is the (maximal) Lipschitz constant of f . We now make a
convention that differs from the traditional one. Namely, the outer auto-
morphism group Out(FN ) of rank N acts on CVN by changing the basis
of the marking with the inverses: given φ ∈ Out(FN ) and h : RN → Γ

representing a point of CVN , φ moves h to h ◦ φ−1 : FN
φ−1

→ FN
h→ Γ. This

is a left action by isometries. We denote action by X 3 h 7→ φ · h ∈ X.
It is known that the Lipschitz distance is asymmetric [FM11] and not

uniquely geodesic. However, distances among ε-thick points (i.e., those
with systole at least ε) have the coarse symmetry: there exists a con-
stant C = C(ε) < +∞ such that for any ε-thick points x and y, one has
d(x, y) ≤ Cd(y, x) [AKB12]. In particular, distances among the translates
of the reference point o by Out(FN ) satisfy the coarse symmetry.

Just as Teichmüller space T (Σ) is accompanied by the curve complex
C(Σ) and the coarse projection πC : T (Σ) → C(Σ), CVN is accompa-
nied by the complex of free factors FFN and the coarse projection πFF :
CVN → FFN . This projection is coarsely Out(FN )-equivariant and coarsely
Lipschitz. Moreover, geodesics in CVN projects to K-unparametrized bi-
quasigeodesics for some uniform K > 0 [BF14, Proposition 9.2].

Outer space also accomodates lots of BGIP isometries. We say that an
outer automorphism φ ∈ Out(FN ) is reducible if there exists a free product
decomposition FN = C1 ∗ · · · ∗ Ck ∗ Ck+1, with k ≥ 1 and Ci 6= {e}, such
that φ permutes the conjugacy classes of C1, . . . , Ck. If not, we say that φ is
irreducible. We also say that φ is fully ireducible (or iwip) if no power of φ
is reducible, or equivalently, no power of φ preserves the conjugacy class of
any proper free factor of FN . We also say that φ is atoroidal (or hyperbolic)
if no power of φ fixes any nontrivial conjugacy class in FN . When φ is fully
irreducible, it is non-atoroidal if and only if it is geometric, i.e., induced by
a pseudo-Anosov ϕ : Σ → Σ on a compact surface Σ with one boundary
component, via an identification of FN with π(Σ). Bestvina and Feighn
proved in [BF14] that φ ∈ Out(FN ) is fully irreducible if and only if it acts
on FFN loxodromically.

We say that a subgroupG ≤ Out(FN ) is non-elementary if it acts on FFN
in a non-elementary way, or equivalently, contains two fully irreducibles
with mutually distinct attracting/repelling trees. It is known that if G ≤
Out(FN ) does not fix any finite subset of FFN ∪ ∂FFN , or equivalently, if
it is not virtually cyclic nor virtually fixes the conjugacy class of a proper
free factor of FN , then G is non-elementary [Hor16b]. Since πFF is coarsely
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Lipschitz, the independence of two fully irreducibles in FFN is lifted to the
independence in CVN .

We refer the readers to [BH92], [AK10], [BF14] and [AKKP19] for the
precise definition of a train-track representative f : Γ → Γ of an outer
automorphism φ. Roughly speaking, a train-track representative of φ is a
self-map f : Γ → Γ in the free homotopy class of φ on a simplicial graph Γ
that sends vertices to vertices, restricts to an immersion on each edge of Γ,
and sends edges to immersed segments after iterations. It is due to Bestvina
and Handel [BH92] that every irreducible outer automorphism admits a
train-track representative, although it may not be unique.

Given such a structure, one can endow Γ with a metric such that f
stretches each edge of Γ by the same constant λ > 1, which is called the
expansion factor of f . This expansion factor is uniquely determined by the
choice of φ and does not depend on the choice of f . Moreover, in view of
Skora’s interpretation of Stallings fold decompositions, one obtains a contin-
uous path on cvN from Γ to Γ◦φ by folding a single illegal turn at each time
(cf. [AKKP19]). This descends to a geodesic segment of length log λ (after
a reparametrization) and the concatenation of its translates by powers of φ
becomes a bi-infinite, φ-periodic geodesic. We call this a (optimal) folding
axis of φ. Algom-Kfir observed the following:

Theorem 3.1 ([AK11]). Folding axes of fully irreducible outer automor-
phisms are strongly contracting.

Unfortunately, we need BGIP instead of the strongly contracting property
in our setting, and the author does not know a way to promote the latter
to the former. Meanwhile, I. Kapovich, Maher, Pfaff and Taylor observed
the following version of BGIP in Outer space. This requires the notion
of greedy folding path, whose accurate definition can be found in [FM11],
[BF14] and [DH18]. In short, a greedy folding path γ : I → cvN is obtained
by folding every illegal turns at each time with speed 1, where the illegal
turn structures at different forward times are identical and define a well-
defined illegal turn structure. This also descends to a geodesic on CVN , and
we have the following theorem:

Theorem 3.2 ([KMPT22, Theorem 7.8]). Let φ ∈ Out(FN ) be a fully ir-
reducible outer automorphism. Suppose that γ is a bi-infinite, φ-periodic
greedy folding path. Then there exist C > 0 such that the following holds.

Let x, y ∈ X be points such that dsym(πγ(x), πγ(y)) ≥ C, and satisfy
dsym(πγ(x)) = γ(t1), dsym(πγ(y)) = γ(t2) for some t1 < t2. Then any
geodesic [x, y] between them contains a subsegment [z1, z2] such that

dsym(z1, πγ(x)) < C, dsym(z2, πγ(y)) < C.

This uni-directional version of BGIP is designed for outer automorphisms
that have an invariant greedy folding line. It seems not shown that all fully
irreducibles have such a line. (The author thanks Sam Taylor for pointing
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this out.) Nonetheless, by adapting Dowdall-Taylor’s idea and Kapovich-
Maher-Pfaff-Taylor’s proof of Theorem 3.2, we can obtain the following re-
sult. This proof was kindly informed by Sam Taylor.

Proposition 1.3. Let ϕ ∈ Out(FN ) be a fully irreducible outer automor-
phism. Then the orbit {ϕio}i∈Z of o by ϕ is a BGIP axis.

Proof. Before we begin, we recall the following facts regarding a geodesic
δ-hyperbolic space Y .

(1) (Morse property) A K-quasigeodesic and a geodesic with the same
endpoints are within Hausdorff distance K2 = K2(K, δ).

(2) The closest point projections onto a K-quasigeodesic and a geodesic
on Y with the same endpoints are within distance K3 = K3(K, δ).

(3) If the projections of x, y ∈ Y to K-quasigeodesic γ contain γ(s) and
γ(t), respectively, and d(γ(s), γ(t)) > K4 = K4(K, δ), then [x, y] and
[x, πγ(x)] ∪ γ|[s,t] ∪ [πγ(y), y] are within Hausdoff distance K4.

(4) If K-quasigeodesics γ, γ′ are within Hausdorff distant K and the
distance between starting points is at most K, then γ′ crosses γ up
to a constant K5 = K5(K, δ), i.e., γ and γ′ ◦ ρ K5-fellow travel for
some orientation-matching reparametrization ρ.

Let T+, T− be the attracting and repelling trees of ϕ, respectively. There
exist optimal greedy folding lines γ± : R→ CVN such that

(3.1) lim
t→+∞

γ±(t) = T±, lim
t→−∞

γ±(t) = T∓

([BR15], Lemma 6.7 and Lemma 7.3). Since {ϕio}i is a quasigeodesic whose
endpoints agree with γ+, Theorem 4.1 of [DT18] asserts that dH({ϕio}i, γ+) <
K1 and πFF (γ+) is a K1-quasigeodesic for some K1. Similarly, by compar-
ing {ϕ−io}i and γ−, we deduce that dH({ϕio}i, γ−) < K1 and πFF (γ−) is
a K1-quasigeodesic. Also, γ± are uniformly thick.

Let us now take x+
i ∈ πγ+(ϕio) and x−i ∈ πγ−(ϕio) for each i. We

recall the following result of Dahmani and Horbez ([DH18, Proposition 5.17,
Corollary 5.22]; see also Section 7 of [KMPT22]): there exist B,D > 0 such
that γ± are (B,D)-contracting at x±i ’s (with a suitable crossing constant
κ). In other words, a geodesic η on CVN projects to a path that κ-crosses
up a large enough subsegment of πFFγ± that begins from πFF (x±i ), then η
has a point p whose distance to γ± is bounded by D. Since γ± are thick,
the distance from γ± to such point p is also controlled and η intersects a
neighborhood of γ± in such a case.

We now observe that πFFπγ+ , π
FFπγ− and ππFF ({ϕio}i) ◦ π are coarsely

equivalent. First, Lemma 4.11 of [DT18] asserts that πγ± and Prγ± are
equivalent, where Pr stands for the Bestvina-Feighn left projection. Then
Lemma 4.2 of the same paper asserts that πFFPrγ± and ππFF (γ±) ◦ π are

equivalent. These are then equivalent to ππFF ({ϕio}i) ◦π, since πFF (γ±) and

πFF ({ϕio}i) are close to each other and πFF ({ϕio}i), a quasi-geodesic on
the Gromov hyperbolic space FF , is strongly contracting.
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We now lift these projections: we claim that πγ+ , πγ− and π{ϕio}i are

equivalent. First, suppose that πγ+(x) and πγ−(x) are far from each other

for some x ∈ X. Since γ+, γ−, {ϕio}i are close to each other, we may
take ϕio and ϕjo near πγ+(x) and πγ−(x), respectively, and conclude that

|i− j| is large. This implies that πFF (ϕio) and πFF (ϕjo) are also far from
each other (since ϕ is loxodromic on CVN ), and consequently πFF (πγ+(x)),

πFF (πγ−(x)) are far from each other. (∗) Since we have proved that πFFπγ+

and πFFπγ− are equivalent, this cannot happen. Hence, πγ+ and πγ− are
equivalent.

Now suppose that π{ϕio}i(x) and πγ±(x) are far from each other for some

x ∈ X. We take ϕjo ∈ π{ϕio}i(x) and ϕj
′
o near πγ±(x) and conclude

that |j′ − j| is large. If j is much larger than j′, then πFF ([x, ϕjo]) is

a quasigeodesic whose endpoints project onto πFF ({ϕio}i) near πFFϕj
′
o

and πFFϕjo, respectively. Since j′ − j is large enough, this quasigeodesic
crosses up long enough subsegments of πFF ({ϕio}i) and πFF (γ+) that begin

at πFF (ϕj
′
o) and πFF (xj′), respectively. Using the (B,D)-contraction at

x+
j′ of γ+, we conclude that [x, ϕjo] contains a point p nearby x+

j′ , which

makes d(x, ϕj
′
o) shorter than d(x, ϕjo) and leads to a contradiction. Similar

contradiction occurs due to the contracting property of γ− at x−i ’s when j′

is much larger than j. Hence, π{ϕio}i(x) and πγ±(x) are equivalent.

Now if a geodesic η on CVN has a large projection on {ϕio}i, then it also
has large projections on γ±. This also forces large πFF (πγ±(η)), due to the

argument as in (∗). When πFF (πγ±(η)) progresses in the forward direction

with respect to {ϕio}i, then we employ the contracting property of γ+ to
conclude. If it progresses in the backward direction, then we employ the
contracting property of γ− to conclude. �

We now explain more details on the classification of fully irreducible outer
automorphisms. Coulbois and Hilion classified fully irreducibles into the
following mutually distinct categories in [CH12]:

(1) geometric automorphisms that have geometric attracting and re-
pelling trees,

(2) parageometric automorphisms that have geometric attracting tree
and non-geometric attracting tree,

(3) inverses of parageometric automorphisms that have geometric re-
pelling tree and non-geometric attracting tree, and

(4) pseudo-Levitt automorphisms that have non-geometric attracting
and repelling trees.

Sometimes, automorphisms of category (3) and (4) are together called ageo-
metric automorphisms.

In Theorem A we are concerned with fully irreducibles whose expansion
factors differ from that of their inverses. Examples of such automorphisms
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are given in [HM07b]: parageometric fully irreducibles have expansion fac-
tors that are larger than the expansion factors of their inverses. Mean-
while, geometric fully irreducibles and their inverses have the same expan-
sion factor, due to the analogous fact for pseudo-Anosov mapping classes.
For pseudo-Levitt automorphisms, both situations can happen ([HM07b],
[CH12]).

As mentioned before, fully irreducibles in Out(F2) are always geometric.
In contrast, [JL08] provides an example of parageometric automorphism for
each N ≥ 3. Moreover, when N ≥ 3, if a non-elementary random walk ω
on Out(FN ) has bounded support that generates a semigroup containing a
principal fully irreducible and an inverse of a principal fully irreducible, then
the probability that ωn is pseudo-Levitt tends to 1 as n → ∞ [KMPT22].
Hence, the above property of parageometric automorphisms does not im-
ply that a generic automorphism and its inverse have different expansion
factors. Despite this, we will observe in Theorem A that, for example, if
the support of a non-elementary random walk ω on Out(FN ) generates a
semigroup containing a geometric and a parageometric automorphism, then
the probability that τ(ωn) = τ(ω−1

n ) tends to 0 as n→∞.

4. Limit laws

4.1. Limit laws and deviation inequalities. In [Cho22b] and [Cho22c],
we have established several limit laws using the pivoting technique and the
existence of Schottky sets. The usage of Schottky sets were guided by the
alignment lemmata for contracting axes, which are now phrased in terms of
BGIP. Hence, the exactly same proofs as in [Cho22b] and [Cho22c] guarantee
the following limit laws.

Proposition 4.1 ([Cho22b, Proposition 5.5]). Let (X,G, o) be as in Con-
vention 1.1 and µ be a non-elementary probability measure on G. Suppose
that µ has finite p-moment for some p > 0. Then there exists K > 0 such
that for any x ∈ X, we have

E

[
sup
n,n′≥0

(ω̌n′o, ωn o)
p
o

]
< K.

If µ̌ also has finite p-moment, then there exists K > 0 such that for any
x ∈ X, we have

E
[
sup
n≥0

(x, ωn o)
p
o

]
< K, E

[
sup
n,n′≥0

(ω̌n′o, ωn o)
2p
o

]
< K.

Note that there is a slight difference between the originally stated version
in [Cho22b]. This difference comes from the asymmetry of the metric. In
order to establish the latter estimate with doubled exponent, we defined
υ(ω̌, ω) in [Cho22b, Lemma 5.3] to be the minimal k such that:

(1) α := (gi+1, . . . , gi+M0) is a Schottky sequence;
(2) (o, ωi Γ(α), ωn o) is D1-aligned for all n ≥ k, and
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(3) (ω̌n′ o, ωi Γ(α)) is D2-aligned for all n′ ≥ 0.

We then proved that the υ(ω̌, ω) has finite exponential moment. Similarly,
we defined its dual υ̌(ω̌, ω) and observed that (ω̌n′o, ωn o)o ≤ min{d(o, ωυ o), d(o, ω̌υ̌o)}
to prove Proposition 4.1.

Meanwhile, this time (ω̌n′o, ωn o)o is not bounded by d(o, ωυ o) but by
1
2d

sym(o, ωυ o). This quantity can be controlled only when Eµ[dsym(o, go)p]
is finite, or in other words, when µ and µ̌ have finite p-moment. Similarly,
it is impossible to control (x, ωn o)

p
o using d(o, ως o).

Still, it is true that (ω̌n′o, ωn o)o is bounded by

1

2
[d(ω̌υ̌o, o) + d(o, ωυ o)].

The p-th power of this quantity can be controlled using the finite p-th mo-
ment of µ and the finite exponential moments of υ and υ̌, even without a
moment condition for µ̌. Hence, we obtain the first estimate in Proposition
4.1.

Meanwhile, Gouëzel’s results in [Gou21] only concerns the summation
of forward progresses

∑
i d(o, gn(i)o) for a choice {n(i)}i. Hence, by realiz-

ing Gouëzel’s strategy using the BGIP and the concatenation lemmata in
[Cho22b], we obtain the following:

Theorem B (SLLN). Let (X,G, o) be as in Convention 1.1, and ω be the
random walk generated by a non-elementary measure µ on G. Then there
exists a constant λ = λ(ω) ∈ (0,+∞] such that

(4.1) lim
n

1

n
d(o, ωn o) = λ

for almost every ω. Moreover, λ(µ) is finite if and only if µ has finite first
moment.

In particular, we recover Horbez’ SLLN on Outer space for non-elementary
random walks ([Hor16a, Corollary 5.25]).

Theorem C (Exponential bound from below). Let (X,G, o) be as in Con-
vention 1.1, and ω be the random walk generated by a non-elementary mea-
sure µ on G. Then for any 0 < L < λ(µ), there exists K > 0 such that

P[d(o, ωn o) ≤ Ln] ≤ Ke−n/K

holds.

As pointed out in [Cho22b], Theorem C leads to the following corollary:

Corollary 4.2 (Large deviation principle). Let (X,G, o) be as in Conven-
tion 1.1, and ω be the random walk generated by a non-elementary measure
µ on G. If µ has finite exponential moment, then {d(o, ωn o)/n}n satisfies
a large deviation principle with a proper convex rate function I : [0,+∞)→
[0,+∞] which vanishes only at λ = λ(µ).

This is a generalization of Boulanger-Mathieu-Sert-Sisto’s LDP on Gro-
mov hyperbolic spaces.
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Theorem D (CLT and its converse). Let (X,G, o) be as in Convention
1.1, and ω be the random walk generated by a non-elementary measure µ
on G. If µ has finite second moment, then there exists a Gaussian law with
variance σ(µ)2 to which 1√

n
(d(o, ωn o) − nλ) converges in law. Here, λ is

the escape rate of ω. Moreover, σ(µ) > 0 if and only if µ is non-arithmetic.
If µ has finite third moment or µ, µ̌ have finite second moment, then

lim sup
n→∞

±d(o, ωn o)− λn√
2n log log n

= σ(µ) almost surely.

Conversely, suppose that µ has infinite second moment. Then for any se-
quence (cn)n, both 1√

n
(d(o, ωn o)− cn) and 1√

n
(τ(ωn)− cn) do not converge

in law.

The CLT for displacement on Outer space has been discussed by Horbez in
[Hor18] based on Benoist-Quint’s CLT for cocycles. Meanwhile, the CLT for
translation length has not been discussed previously. The converses of these
CLTs also seem new. The following theorem also improves the previously
known results deduced from Horbez’ deviation inequalities in [Hor18].

Theorem E (Geodesic tracking). Let (X,G, o) be as in Convention 1.1 and
ω be the random walk generated by a non-elementary measure µ on G.

(1) Suppose that µ, µ̌ have finite p-th moment for some p > 0. Then
for almost every path ω = (ωn)n, there exists a quasigeodesic γ such
that

lim
n

1

n1/2p
dsym(ωn o, γ) = 0.

(2) Suppose that µ, µ̌ have finite exponential moment. Then there exists
K < ∞ satisfying the following: for almost every path ω = (ωn)n,
there exists a quasigeodesic γ such that

lim sup
n

1

log n
dsym(ωn o, γ) < K.

We now discuss the exponential genericity of fully irreducible outer auto-
morphisms with linearly increasing translation length.

Theorem F. Let (X,G, o) be as in Convention 1.1, and ω be the random
walk generated by a non-elementary measure µ on G. Let λ(ω) be the escape
rate of ω. Then for any 0 < L < λ(ω), there exists K > 0 such that

P (ωn has BGIP and τ(ωn) ≥ Ln) ≥ 1−Ke−n/K

holds.

Recently, Kapovich, Maher, Pfaff and Taylor discussed the genericity
of ageometric triangular fully irreducible outer automorphisms for random
walks on Out(FN ) that involve a principal fully irreducible automorphism
ϕ. A crucial step there was as follows:
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Lemma 4.3 ([KMPT22, Corollary 5.14]). Let γ be the lone axis of ϕ in CVN
and ε ≥ 0. Then there exists R ≥ 1 such that, if ψ is a fully irreducible outer
automorphism with an axis γ′ such that a fraction of γ′ and a translate of γ
fellow travel for more than length R, then ψ is a triangular fully irreducible
automorphism.

Meanwhile, we will later observe in Subsection 4.3 that:

Proposition 4.4. For each non-elementary probability measure µ on Out(FN ),
there exists K1 > 0 such that the following holds. Let g ∈ 〈〈 suppµ 〉〉 and
M > 0. Then there exists K2 > 0 such that the following holds except for an
exponentially decaying probability. For a random path ω = (ωi)

∞
i=1, we have

0 < i(1) < . . . < i(K2n) < n such that ωi(1) o, ωi(1) g
Mo, . . . , ωi(K2n) o, ωi(K2n) g

Mo
are all within K1-neighborhood of [o, ωn o] and the axis of ωn, in order from
nearest to farthest from o.

In particular, if g was chosen to be a fully irreducible automorphism,
which has BGIP, we can further argue that the axis of ωn and a translate
of the axis of g K3-fellow travelled for long enough; here, K3 is a constant
that depends on the nature of g and µ but not on M . Note that we do not
assume any moment condition here. Using this observation, we deduce the
following strengthening of Kapovich-Maher-Pfaff-Taylor’s theorem:

Theorem G (cf. [KMPT22, Theorem A]). Let N ≥ 3 and let µ be a non-
elementary probability measure on Out(FN ) such that 〈〈 supp(µ) 〉〉 contains
the inverse of a principal fully irreducible automorphism. Then outside a set
of exponentially decaying probability, ωn is an ageometric triangular fully
irreducible outer automorphism.

Theorem H. Let (X,G, o) be as in Convention 1.1, and ω be the random
walk generated by a non-elementary measure µ on G.

(1) If µ has finite p-th moment for some p > 0, then

lim
n→∞

1

n1/p
[d(o, ωn o)− τ(ωn)] = 0 a.s.

(2) If µ, µ̌ have finite p-th moment for some p > 0, then

lim
n→∞

1

n1/2p
[d(o, ωn o)− τ(ωn)] = 0 a.s.

(3) If µ, µ̌ have finite first moment, then there exists K > 0 such that

lim sup
n→∞

1

log n
[d(o, ωn o)− τ(ωn)] ≤ K a.s.

Again, the estimate in (1) without doubled exponent is due to the lack
of moment conditions for µ̌; we bound the discrepancy with 1

2 [d(ω̌υ̌o, o) +
d(o, ωυ o)], not min{d(o, ωυ o), d(o, ω̌υ̌o)}.
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Theorem I. Let (X,G, o) be as in Convention 1.1 and suppose that G is
finitely generated. Then for each k > 0, there exists a finite generating set
S of G such that

#

{
(g1, . . . , gk) :

g1, . . . , gk ∈ Bn(e), 〈g1, . . . , gk〉 is q.i. embedded
into a quasi-convex subset of X

}
(#Bn(e))k

converges to 1 exponentially fast.

Theorem J. Let (X,G, o) be as in Convention 1.1, and ω(1), . . . , ω(k) be k
independent random walk generated by a non-elementary measure µ on G.
Then there exists K > 0 such that

P
[
〈ω(1)

n , . . . , ω(k)
n 〉 is q.i. embedded into a quasi-convex subset of X

]
≥ 1−Ke−n/K .

Having recalled these results, we now prepare the machinery of pivoting
technique to prove our main theorem.

4.2. Pivotal times and pivoting. In this subsection, we recall the pivot-
ing technique developed in [Gou21], [BCK21] and [Cho22b]. For a complete
proof, refer to Section 4 of [Cho22b].

Let (wi)
∞
i=0, (vi)

∞
i=1 be isometries in G. Now given a sequence

s = (α1, β1, γ1, δ1, . . . , αn, βn, γn, δn) ∈ S4n,

we first define

(4.2) ai := Π(αi), bi := Π(βi) ci := Π(γi), di := Π(δi).

We then consider isometries that are subwords of

w0a1b1v1c1d1w1 · · · akbkvkckdkwk · · · .
More precisely, we set the initial case w+

−1,2 := id and define

w−i,2 := w+
i−1,2wi−1, w−i,1 := w−i,2ai, w−i,0 := w−i,2aibi,

w+
i,0 := w−i,2aibivi, w+

i,1 := w−i,2aibivici, w+
i,2 := w−i,2aibivicidi.

We also employ notations

Υ(αi) := w−i,2Γ(αi), Υ(βi) := w−i,1Γ(βi),

Υ(γi) := w+
i,0Γ(γi), Υ(δi) := w+

i,1Γ(δi).

for simplicity.
We then defined the set Pn = Pn(s, (wi)i, (vi)i) ⊆ {1, . . . , n}. Our main

estimates were as follows.

Lemma 4.5 ([Cho22b, Lemma 4.1]). Let Pn = {i(1) < . . . < i(m)}. Then(
o,Υ(αi(1)),Υ(βi(1)),Υ(γi(1)),Υ(δi(1)), . . . ,Υ(αi(m)),Υ(βi(m)),Υ(γi(m)),Υ(δi(m)), y

−
n+1,2

)
is a subsequence of a D0-aligned sequence of Schottky axes. In particular, it
is D1-aligned.
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In [Cho22b], we have observed a sufficient condition for Pk = Pk−1 ∪ {k}
to hold. Namely, the conditions

diam
(
πΥ(γk)(y

−
k,0) ∪ y+

k,0

)
= diam

(
πΓ(γk)(v

−1
k o) ∪ o

)
< K0,

(4.3)

diam
(
πΥ(δk)(y

−
k+1,2) ∪ y+

k,2

)
= diam

(
πΓ−1(δk)(wko) ∪ o

)
< K0,

(4.4)

diam
(
πΥ(βk)(y

+
k,1) ∪ y−k,0

)
= diam

(
πΓ−1(βk)(vkcko) ∪ o

)
< K0,

(4.5)

diam
(
πΥ(αk)(zk−1) ∪ y−k,2

)
= diam

(
πΓ(αk)

(
(w−k,2)−1zk−1

)
∪ o
)
< K0.

(4.6)

guaranteed the addition of k to the set of pivotal times. Each condition
excluded at most one element out of the Schottky set S and we obtained:

Lemma 4.6 ([Cho22b, Lemma 4.2]). For 1 ≤ k ≤ n, s ∈ S4(k−1), we have

P
(

#Pk(s, αk, βk, γk, δk) = #Pk−1(s) + 1
)
≥ 1− 4/N0.

Given α1, β1, γ1, δ1, . . ., αk−1, βk−1, γk−1, δk−1, we define the set S̃k
of triples (αk, βk, γk) in S3 that satisfy Condition 4.3, 4.5 and 4.6. We

then observed that #
[
S3 \ S̃k

]
≤ 3(#S)2. Moreover, for (αk, βk, γk) ∈ S̃k,

{(αk, β′k, γk) ∈ S̃k : βk ∈ S} has at least #S − 1 elements. We finally had:

Lemma 4.7 ([Cho22b, Lemma 4.3]). Let i ∈ Pk(s) for a choice s =
(α1, β1, γ1, δ1, . . . , αn, βn, γn, δn), and s̄ be obtained from s by replacing (αi, βi, γi)
with

(ᾱi, β̄i, γ̄i) ∈ S̃i(α1, β1, γ1, δ1, . . . , αi−1, βi−1, γi−1, δi−1).

Then Pl(s) = Pl(s̄) and S̃l(s) = S̃l(s̄) for each 1 ≤ l ≤ k.

Given 1 ≤ k ≤ n and a partial choice s = (α1, β1, γ1, δ1, . . . , αk, βk, γk, δk),
we defined pivoting as follows: s̄ = (ᾱ1, β̄1, γ̄1, δ̄1, . . . , ᾱk, β̄k, γ̄k, δ̄k) is pivoted
from s if:

• δj = δ̄j for all 1 ≤ j ≤ k,

• (ᾱi, β̄i, γ̄i) ∈ S̃i(s) for each i ∈ Pk(s), and
• (αj , βj , γj) = (ᾱj , β̄j , γ̄j) for each j ∈ {1, . . . , k} \ Pk(s).

Lemma 4.7 then asserted that being pivoted from each other is an equiva-
lence relation.

Corollary 4.8. When s = (αi, βi, γi, δi)
n
i=1 is chosen from S4n with the

uniform measure, #Pn(s) is greater in distribution than the sum of n i.i.d.
Xi, whose distribution is given by

(4.7) P(Xi = j) =


(N0 − 4)/N0 if j = 1,

(N0 − 4)4−j/N−j+1
0 if j < 0,

0 otherwise.
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More generally, the distribution of #Pk+n(s)−#Pk(s) conditioned on the
choices of (αi, βi, γi, δi)

k
i=1 also dominates the sum of n i.i.d. Xi.

Moreover, we have P(#Pn(s) ≤ (1− 10/N0)n) ≤ e−Kn for some K > 0.

We now recall the pivoting for translation length in [Cho22c, Subsection
4.2]. We fix an equivalence class E ⊆ S4n made by pivoting. E has a well-
defined set of pivotal times Pn(E) = {i(1), . . . , i(M)}, and a choice s ∈ E is
determined by the choices (αi(l), βi(l), γi(l))

M
l=1. We also denote w−n+1,2(s) by

w for convenience.
Let

φk := (w−i(M−k+1),0)−1ww−i(k),2

= vi(M−k+1)ci(M−k+1)di(M−k+1)wi(M−k+1) · · · anbnvncndnwn
· w0a1b1v1c1d1w1 · · · ai(k)−1bi(k)−1vi(k)−1ci(k)−1di(k)−1wi(k)−1

for 1 ≤ k ≤ bM/2c and

S∗k(s) :=
{
αi(k) ∈ S :

(
w−1y−i(M−k+1),0, Υ(αi(k))

)
is K0-aligned

}
,

S∗M−k+1(s) :=
{
βi(M−k+1) ∈ S :

(
w−1 Υ(βi(M−k+1)), y

−
i(k),1

)
is K0-aligned

}
.

We observed that:

Lemma 4.9. Let 1 ≤ k ≤ M/2. Suppose that s = (αi(l), βi(l), γi(l))
M
l=1 ∈ En

satisfies
αi(k) ∈ S∗k(s), βi(M−k+1) ∈ S∗M−k+1(s).

Then w = w−n+1,2 is a contracting isometry. Moreover,(
. . . , w−1 Υ(βi(M−k+1)),Υ(αi(k)),Υ(βi(k)),Υ(γi(k)), . . . ,Υ(βi(M−k+1)), wΥ(αi(k)), . . .

)
is a subsequence of a D1-aligned sequence of Schottky axes.

Given a choice

s̄ = (ᾱi(l), β̄i(l), γ̄i(l))l=1,...,k−1,M−k+2...,M ∈ S̃i(1)×· · ·×S̃i(k−1)×S̃i(M−k+2)×· · ·×S̃i(M),

we define

S†k :=

 (αi(k), βi(k), γi(k), αi(M−k+1), βi(M−k+1), γi(M−k+1)) ∈ S̃i(k) × S̃i(M−k+1)

:
αi(k) ∈ S∗k(s̄, γM−k+1) and

βi(M−k+1) ∈ S∗M−k+1(s̄, αi(k), γi(M−k+1))


Then we proved the following:

Lemma 4.10. For each 1 ≤ k ≤ bM/2c, the cardinality of S̃†k is at least
(#S)6 − 8(#S)5.

Let us finally mention a variant of the usual pivoting called v-pivoting.
We fix subsets S1, S2 ⊆ S of cardinality at least N0/4, and a subset A ⊆ G.
We then assume that for each s1 ∈ S1, s2 ∈ S2 and v ∈ A, the two sequences

(4.8)
(
v−1o,Γ(s2)

)
,
(
vΠ(s2)o,Γ−1(s1)

)
are K0-aligned.
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As in Subsection 4.2, we consider the subwords of

w0a1b1v1c1d1 · · · anbnvncndnwn · · ·
and define w±i,j , y

±
i,j analogously. This time, however, wi’s are chosen from

G and vi’s are chosen from A. Also, we will not fix the choice of (vi)i this
time; only (wi)i is fixed. Also, αi, βi’s are chosen from S1 and γi, δi’s are
chosen from S2. In other words, a choice s = (α1, β1, . . . , γn, δn) is drawn
from (S2

1 × S2
2)n. We could still define the set of pivotal times based on the

same criteria with Subsection 4.2, and observed:

Lemma 4.11. Let i ∈ Pk(s,v) for a choice s = (α1, . . . , δn) and v =
(v1, . . . , vn). If v′ = (v′1, . . . , v

′
n) is made from v by replacing vi with an

element of A, then Pl(s,v) = Pl(s,v
′) and S̃l(s,v) = S̃l(s,v

′) for each
1 ≤ l ≤ k.

Given a choice s = (α1, . . . , δn) ∈ (S2
1 × S2

2)n and v = (vi)
n
i=1 ∈ An, we

declared that (s,v′) is v-pivoted from (s,v) if v′ differs from v only at the
pivotal times for (s,v). Then Lemma 4.11 tells us that being v-pivoted from
each other is an equivalence relation that preserves the set of pivotal times.

4.3. Proof of Theorem A. We are now ready to prove Theorem A.

Proof. Let us first fix a positive integer n′. Since µ is asymptotically asym-
metric, we can take α = (φ1, . . . , φM ′), β = (ϕ1, . . . , ϕM ′) ∈ (suppµ)M

′
with

Π(α) = φ, Π(β) = ϕ such that

L :=
[
τ(φ)− τ(φ−1)

]
−
[
τ(ϕ)− τ(ϕ−1)

]
> 0.

Let also
L±1 := d(o, φ±1o), L±2 := d(o, ϕ±1o)

By taking self-concatenations of α and β if necessary, we may assume that
(L+

1 − L
−
1 )− (L+

2 − L
−
2 ) ≥ L/2 ≥ 8E0n

′.
At the moment, there exist at least N0 − 2 Schottky choices s2 ∈ S

such that (φ−1o,Γ(s2)) and (ϕ−1o,Γ(s2)) are K0-aligned. Choose N0/3

of them and label as s
(1)
2 , . . . , s

(N0/3)
2 . We now seek choices s1 ∈ S such

that (φΠ(s
(i)
2 )o,Γ−1(s1)) and (ϕΠ(s

(i)
2 )o,Γ−1(s1)) are K0-aligned for each

i = 1, . . . , N0/3. Since these are 2N0/3 conditions in total, there exist at
least N0/3 Schottky choices realizing them. In summary, there exist subsets
S1, S2 ⊆ S of cardinality N0/3 such that(
φ−1o,Γ(s2)

)
,
(
ϕ−1o,Γ(s2)

)
,
(

Γ(s1),Π(s1)φΠ(s
(i)
2 )o

)
,
(

Γ(s1),Π(s1)ϕΠ(s
(i)
2 )o

)
are K0-aligned for all s1 ∈ S1 and s2 ∈ S2.

Let µ′ be the measure assigning 1/2 to each of α and β. We then consider
the decomposition

µ4M0+M ′ = α
(
µ2
S1
× µ′ × µ2

S2

)
+ (1− α)ν

for some 0 < α < 1 and ν. Here, we perform the same procedure as in the
proof of Proposition 4.8 in [Cho22c]. We then consider:
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• Bernoulli RVs ρi with P(ρi = 1) = α and P(ρi = 0) = 1− α,
• ηi with the law µ2

S1
× µ′ × µ2

S2
, and

• νi with the law ν,

all independent, and define

(g(4M0+1)k+1, . . . , g(4M0+1)(k+1)) =

{
νk when ρk = 0,
ηk when ρk = 1.

Then (gi)
∞
i=1 has the law µ∞. We now define Ω to be the ambient probability

space on which the above RVs are all measurable. We will denote an element
of Ω by ω. We also fix

• ωk := g1 · · · gk,
• B(k) :=

∑k
i=0 ρi, i.e., the number of the Schottky slots till k, and

• ϑ(i) := min{j ≥ 0 : B(j) = i}, i.e., the i-th Schottky slot.

For each ω ∈ Ω and i ≥ 1 we define

wi−1 := g4M0[ϑ(i−1)+1]+1 · · · g4M0 ϑ(i),

αi := (g4M0 ϑ(i)+1, . . . , g4M0 ϑ(i)+M0
),

βi := (g4M0 ϑ(i)+M0+1, . . . , g4M0 ϑ(i)+2M0
),

vi := g4M0 ϑ(i)+2M0+1,

γi := (g4M0 ϑ(i)+2M0+2, . . . , g4M0 ϑ(i)+3M0+1),

δi := (g4M0 ϑ(i)+3M0+2, . . . , g4M0 ϑ(i)+4M0+1).

In other words, ηϑ(i) corresponds to (αi, βi, vi, γi, δi) and wi corresponds to
the products of intermediate steps νk’s in between ηϑ(i−1) and ηϑ(i). As in
Section 4.2, we employ the notation ai := Π(αi), bi := Π(δi) and so on.

In order to represent ωn for arbitrary n, we set n′ := bn/4M0c − 1 and

w(n) := g4M0[ϑ(B(n′))+1]+1 · · · gn. We then have

(4.9) ωn = w0a1b1v1c1d1w1 · · · aB(n′)bB(n′)cB(n′)dB(n′)w
(n)

Here, we first fix the choices of ρi’s and νi’s; this determines B(n′) and the

isometries (w0, . . . , w
(n)), (v1, . . . , vn). Then we consider the set of pivotal

times PB(n′)(s) for s ∈ (S
(2)
1 × S(2)

2 )n. After this process, we define

Pn(ω) :=
{

(4M0 + 1)ϑ(i) : i ∈ PB(n′)(s)
}
.

Note that B(n′) is a sum of i.i.d.s of Bernoulli distribution: it is linearly
increasing outside a set of exponential probability. Moreover, #PB(n′) is
linearly increasing with respect to B(n′) in the sense of Corollary 4.8. Hence,
there exists K > 0 such that Pn(ω) ≥ 10Kn outside a set of exponentially
decaying probability.

At the moment, we consider an equivalence class E of n-step paths with
M ≥ 2Kn + n′ pivotal times. Here, the equivalence relation is made by
the usual pivoting at the first and the last Kn pivotal times, and by the
v-pivoting at the (Kn + 1)-th, . . ., (Kn + n′)-th pivotal times. By the
previous observation, such equivalence classes take up all cases except a set
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of exponentially decaying probability. Moreover, most pivotal choices at the
first and the last Kn pivotal times will lead to αi(k) ∈ S∗k(ω), βi(M−k+1) ∈
S∗M−k+1(ω) for some 1 ≤ k ≤ Kn. We stick to such choices and give up a

set of probability (8/N0)Kn.
Now we are discussing the situation on a finer equivalence class E1 ⊆ E

made by v-pivoting at the (Kn + 1)-th, . . ., (Kn + n′)-th pivotal times.

Each choice in E1 can be recorded by ε = (εl)
n′
l=1 ∈ {0, 1}n

′
, where vi(l) = φ

if εl = 0 and vi(l) = ϕ if εl = 1. Let us now define

D+ :=

[
d
(
ω−1
n y+

i(Kn+n′),0, y
−
i(Kn+1),0

)
+
n′−1∑
l=1

d
(
y+
i(Kn+l),0, y

−
i(Kn+l+1,0),0

)]
,

D− :=

[
d
(
y−i(Kn+1),0, ω

−1
n y+

i(Kn+n′),0

)
+
n′−1∑
l=1

d
(
y−i(Kn+l+1,0),0, y

+
i(Kn+l),0

)]
.

Note that D+, D− do not depend on the choices {vi(l)}Kn+n′

l=Kn+1; these are
invariant across E1. Moreover, Lemma 4.9 and Corollary 2.20 guarantee
that:∣∣∣∣∣τ(ωn)−D+ − L+

1

(
n′ −

n′∑
l=1

εl

)
− L+

2

n′∑
l=1

εl

∣∣∣∣∣ =

∣∣∣∣∣τ(ωn)−D+ −
n′∑
l=1

d(o, vi(l)o)

∣∣∣∣∣ ≤ 2n′E0.

Similarly, we have∣∣∣∣∣τ(ω−1
n )−D− − L−1

(
n′ −

n′∑
l=1

εl

)
− L−2

n′∑
l=1

εl

∣∣∣∣∣ =

∣∣∣∣∣τ(ω−1
n )−D− −

n′∑
l=1

d(o, vi(l)o)

∣∣∣∣∣ ≤ 2n′E0.

These two implies that
(4.10)∣∣∣[τ(ωn)− τ(ω−1

n )
]
− (D+ −D−)− (L+

1 − L
−
1 )n′ + L

∑
ε
∣∣∣ ≤ 4n′E0.

At the moment, suppose that ω ∈ E1 satisfies |τ(ωn)−τ(ω−1
n )| < n′E0. Then

Equation 4.10 tells us that |τ(ω̃n) − τ(ω̃−1
n )| > n′E0 for any other ω̃ ∈ E1

such that
∑
ε(ω) 6=

∑
ε(ω̃). Note that on E1,

∑
ε follows the binomial

distribution: P(
∑
ε = k) = 2−n

′(n′
k

)
. Since maxk 2−n

′(n′
k

)
is O(1/

√
n′), the

conditional probability is controlled as

(4.11) P
(
|τ(ωn)− τ(ω−1

n )| < n′E0

∣∣∣ E1

)
< C/

√
n′

for some C > 0. We then sum up the conditional probabilities for these E1

and the remaining exponentially decaying probability to deduce

P
(
|τ(ωn)− τ(ω−1

n )| < n′E0

)
< 2C/

√
n′

for large enough n. We now send n′ to infinity to conclude. �

The previous proof also implies Proposition 4.4. One can pick some suit-
able M ′ and α = β ∈ (suppµ)M

′
such that gM = φ = Π(α) = ϕ = Φ(β).
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Then the linear growth of the set of pivotal times, Lemma 4.5 and Corollary
2.20 imply the desired conclusion.

5. Further questions

In contrast to the exponential genericity in Theorem G, Theorem A only
asserts that the unwanted probability converges to 0 and does not discuss
the decay rate. This is due to the nature of our argument in the proof:
Inequality 4.11 followed from the estimation of a single binomial coefficient,
which does not decay exponentially.

In principle, the proof of Proposition G relied on the appearance of a sin-
gle geodesic segment along the axis of a random isometry. In other words,
the triangularity of a random isometry was due to the stability of the lone
axis of a principal fully irreducible automorphism. In the proof of A, we ob-
served the opposite situation; regardless of what happened in the beginning
or the ending part of [o, ωn o], the v-pivotal choices made at the interme-
diate pivotal times can cause the asymmetry of the forward and backward
expansion factors. In other words, the stability of certain geodesic segments
cannot rescue the situation. Rather, the asymmetry arises from the cumu-
lative effect of two types of progresses that differ in the differences between
forward and backward distances.

Considering this, a refined argument may lead to the CLT for the differ-
ence between forward and backward expansion factors. For the moment, we
only content ourselves with the following question:

Question 5.1. Is the mismatch of forward and backward expansion factors
of an outer automorphism exponentially generic?
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