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한글 초록: 본논문에서는유한종류인쌍곡곡면의타이히뮐러공간위에서의무작위행보를다룬다. 특히,

무작위 행보에 관한 극한 법칙 중 큰 수의 법칙, 중심극한정리, 측지선 따라감 등을 가장 일반적인 모멘트

조건 하에서 확립한다. 이 결과들의 응용으로서 일반적인 사상류의 성질을 탐구하는데, 그 일례로 특정 생성

집합을기준으로사상류군에서유사-아나사브사상류가지수함수적으로일반적임을보인다. 또,타이히뮐러

공간과비슷한성질을공유하는다른공간에서의무작위행보에대해서도같은이론을적용해극한법칙들을

도출한다.

핵심 낱말: 무작위 행보, 타이히뮐러 공간, 유사-아나사브 사상류, 큰 수의 법칙, 중심극한정리, 측지선

따라가기

Abstract: We study random walks on the Teichmüller space of a hyperbolic surface of finite type. In

particular, we establish limit laws on random walks including the laws of large numbers, central limit

theorem and geodesic tracking under the optimal moment conditions. As an application, we investigate

the property of a generic mapping class. In particular, we show that pseudo-Anosov mappings are

exponentially generic in the mapping class group with respect to certain generating sets. Finally, we

deduce analogous limit laws for random walks on other spaces that share a similar geometric property

with Teichmüller space.

Keywords: Random walk, Teichmüller space, Pseudo-Anosov mapping class, Law of large numbers,

Central limit theorem, Geodesic tracking
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Chapter 1. Introduction

Throughout, we fix a hyperbolic surface of finite type Σ. The space of our interest is the Teichmüller

space T (Σ) of Σ, which consists of equivalence classes of marked hyperbolic structures (or conformal

structures) on Σ. Here, two structures are equivalent if they are homotopic relative to the marking.

T (Σ) is equipped with two canonical metrics, namely, the Teichmüller metric dT and the Weil-Petersson

metric dWP .

The group associated with T (Σ) is the mapping class group Mod(Σ) of Σ, the collection of orientation-

preserving self-homeomorphisms of Σ up to homotopy. Mapping classes of Σ naturally act on T (Σ) as

isometries with respect to both dT and dWP . Moreover, the action of a mapping class ϕ on T (Σ) reveals

its dynamical property on Σ. In particular, the celebrated Nielsen-Thurston’s theorem classifies mapping

classes into three categories, i.e., periodic, reducible and pseudo-Anosov mapping classes, based on the

dynamics of their actions on the Thurston compactifiaction of T (Σ). Among three categories, pseudo-

Anosov mapping classes exhibit the most complicated dynamics. Thanks to many pioneering results,

Teichmüller space and the mapping class group have become central objects in low-dimensional topology

and geometry, playing a key role in 3-manifold theory, hyperbolic geometry and geometric group theory.

Combining the author’s contributions in [BCK21], [Cho21a], [Cho21b] and [Cho22], this dissertation

aims to present a systematic study of random walks on Teichmüller space and its analogues. More

precisely, we consider i.i.d.s g1, g2, . . . on Mod(Σ) and investigate the asymptotic behavior of the n-th

step mapping class ωn := g1g2 · · · gn. Each mapping class g ∈ Mod(Σ) is associated with two dynamical

quantities, the displacement d(o, go) of o by g and the translation length τ(g) := limn
1
nd(o, gno) of g.

We establish various limit laws for these quantities, including strong laws of large numbers (SLLNs),

central limit theorems (CLTs) and laws of the iterated logarithm (LILs).

This systematic study leads to a fruitful geometric understanding of the mapping class group and

its action on Teichmüller space. In particular, we establish the geodesic tracking of random walks and

the genericity of pseudo-Anosov mapping classes. Let us emphasize the importance of the latter result

in particular. We have several recipes for pseudo-Anosov mapping classes and the presence of pseudo-

Anosovs led to a deeper understanding of the group structure of Mod(Σ), including Tits alternative and

the rigidity theorems. It was then further conjectured that pseudo-Anosov mapping classes are generic

in the mapping class group. There are two possible ways to formulate this genericity: one is to observe

the asymptotics of random walks, and the other is to pick an element from the ball of radius n in the

Cayley graph.

Together with Hyungryul Baik and Dongryul M. Kim, we proved in [BCK21] that non-elementary

random walks on the mapping class group eventually become pseudo-Anosov almost surely. This result

generalizes the previuos ones by Joseph Maher. Namely, Maher proved that random walks become

pseudo-Anosov in probability in [Mah11]. Moreover, random walks with bounded support on the curve

complex become pseudo-Anosov almost surely [Mah12]. The methodology explained in this dissertation

also has some new flavor. We deduce the genericity of pseudo-Anosov mapping classes via Teichmüller

geometry, whereas all previously known arguments rely on either the geometry of the curve complex or

the homology representation of the mapping class group [Riv08].

Further, in [Cho21b], we also proved that pseudo-Anosovs predominate large balls in the Cayley

graph for particular choices of generating set. This answers a version of a long-standing conjecture by
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Benson Farb [Far06]. The methodology involved here also applies to the outer automorphism group and

CAT(0) groups; this is outlined in [Cho22].

Our main results follow.

Theorem A (SLLN). Let ω be the random walk on Mod(Σ) generated by a non-elementary measure µ.

Then there exists a constant λ = λ(µ) ∈ (0,+∞] such that

lim
n

1

n
d(o, ωn o) = lim

n

1

n
τ(ωn) = λ (1.0.1)

for almost every ω. Moreover, λ(µ) is finite if and only if µ has finite first moment.

We call λ(µ) in Theorem A the escape rate of µ.

Theorem B. Let ω be the random walk on Mod(Σ) generated by a non-elementary measure µ. If µ has

finite first moment, then there exists K > 0 such that

lim sup
n→∞

1

log n
|d(o, ωn o)− τ(ωn)| ≤ K a.s.

Theorem C (CLT and LIL). Let ω be the random walk on Mod(Σ) generated by a non-elementary

measure µ. If µ has finite second moment, then there exists a Gaussian law with variance σ(µ)2 to

which 1√
n

(d(o, ωn o) − nλ) and 1√
n

(τ(ωn) − nλ) converge in law. Here, σ(µ) > 0 if and only if µ is

non-arithmetic. Moreover, we have

lim sup
n→∞

±d(o, ωn o)− λn√
2n log log n

= lim sup
n→∞

± τ(ωn)− λn√
2n log log n

= σ(µ) almost surely.

Conversely, suppose that µ has infinite second moment. Then for any sequence (cn)n, both 1√
n

(d(o, ωn o)−
cn) and 1√

n
(τ(ωn)− cn) do not converge in law.

Theorem D (Genericity of pseudo-Anosovs I). Let ω be the random walk on Mod(Σ) generated by a

non-elementary measure µ. Let λ = λ(µ) be the escape rate of µ and 0 < L < λ. Then there exists

K > 0 such that

P
(
ωn is a pseudo-Anosov with τ(ωn) ≥ Ln

)
≥ 1−Ke−n/K

holds for all n.

Theorem E (Geodesic tracking). Let ω be the random walk on Mod(Σ) generated by a non-elementary

measure µ.

1. Suppose that µ has finite p-th moment for some p > 0. Then for almost every path ω = (ωn)n,

there exists a quasigeodesic γ such that

lim
n

1

n1/2p
d(ωn o, γ) = 0.

2. Suppose that µ has finite exponential moment. Then there exists K < ∞ satisfying the following:

for almost every path ω = (ωn)n, there exists a quasigeodesic γ such that

lim sup
n

1

log n
d(ωn o, γ) < K.

Theorem F (Genericity of pseudo-Anosovs II). Let G be a finitely generated non-elementary subgroup of

Mod(Σ). Then there exists a finite generating set S ⊆ G such that the proportion of non-pseudo-Anosov

mapping classes in the ball BS(n) decays exponentially as n→∞.

These results have been partially observed by other authors. The point of this dissertation is to

weaken the assumptions by employing a method that applies to a wide range of spaces. We now explain

previous results in detail.
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1.1 Previous works and our contributions

The first systematic study of random walks on Teichmüller space is due to Vadim Kaimanovich and

Howard Masur [KM96]. They considered the mapping class group Mod(Σ) as a natural generalization

of SL(2,Z) and compared it with another one, namely, lattices in semi-simple Lie groups. Among many

results, they established the escape to infinity of random walks on Teichmüller space T (Σ) and proved

that the Thurston boundary of T (Σ) serves as the Poisson boundary for those random walks.

Despite Kaimanovich and Masur’s pioneering work, random walks on Teichmüller space are hard

to investigate due to the delicate geometric properties of the space. In particular, it is widely known

that T (Σ) has different large-scale geometry than negatively curved manifolds. Meanwhile, William J.

Harvey suggested a simplicial complex on which Mod(Σ) acts simplicially and named it the complex of

curves on Σ [Har79]. A monumental work by Howard Masur and Yair Minsky shows that this curve

complex C(Σ) is Gromov hyperbolic [MM99]. Their approach is to carefully investigate the relationship

between T (Σ) and C(Σ). For instance, there exists a coarse projection π : T (Σ) → C(Σ) from T (Σ) to

C(Σ), and they share the automorphism group Mod(Σ) (up to finite index). Hence, C(Σ) can be chosen

as an alternative choice for studying random walks on Mod(Σ).

However, the curve complex has pros and cons: it is Gromov hyperbolic but not locally finite nor

proper. The traditional approaches to random walks on Gromov hyperbolic spaces, e.g. [Kai00], begin by

finding a µ-invariant measure on the boundary of the space using functional analysis on compact spaces.

However, it is hard to implement such a strategy on C(Σ) due to its non-properness. Hence, we need to

mix theories for proper, non-hyperbolic T (Σ) and non-proper, hyperbolic C(Σ) in a suitable way. Joseph

Maher pursued this strategy to obtain the limiting behavior of Mod(Σ) [Mah11]. Subsequent works

by Maher ([Mah10a], [Mah10b], [Mah12]) suggested that many limiting behaviors of random walks on

Gromov hyperbolic spaces follow from the escape to infinity and the non-atomness of the hitting measure.

These observations led to a comprehensive theory for random walks on (possibly non-proper) Gromov

hyperbolic spaces by Maher and Giulio Tiozzo [MT18]. Maher and Tiozzo consider the horofunction

compactification of the space, where one can appeal to the traditional arguments using compactness.

Then they compare the horoboundary and the Gromov boundary to deduce results in the language of

the Gromov boundary.

Later, Yves Benoist and Jean-François Quint suggested the martingale approach to random walks

on linear groups and Gromov hyperbolic spaces ([BQ16b], [BQ16a]). Benoist and Quint modified random

walks into martingales of cocycles at the cost of bounded errors. Once suitably centered, these martingales

are subject to standard limit theorems. By approximating the displacement function with suitable

cocycles, we arrive at the limit laws for displacement. The centering process here often requires solving

a cohomological equation, hence a boundary structure. The interplay between T (Σ) and C(Σ) comes in

again: Maher-Tiozzo’s theory furnishes the required concentration inequality on C(Σ), and this can be

lifted to T (Σ) to implement Benoist-Quint’s strategy. Using this procedure, Camille Horbez deduced the

CLT on T (σ) [Hor18]. It also led to the SLLN on T (Σ) in the work of François Dahmani and Camille

Horbez [DH18].

Pierre Mathieu and Alessandro Sisto pursued a completely different strategy in [MS20]. Mathieu and

Sisto deduced that independent random isometries of Gromov hyperbolic spaces make ‘almost aligned’

progresses, which add up to the total displacement just as in random walks on R. As a result, the

proofs for classical limit laws apply directly. This strategy requires a control of the defect arising from

the addition, which we call the deviation inequality. Mathieu and Sisto impose a probabilistic condition

3



(that the random walk has finite exponential moment) and a geometric condition (the acylindricality of

the action) to establish strong enough deviation inequality. Recent developments including [BMSS22]

and [Gou21] suggest that these conditions can be removed in many cases.

Let us explain the recent result by Sébastien Gouëzel [Gou21]. Traditionally, exponentially decaying

(summable, resp.) bounds for the escape to infinity deduced from the exponential (summable, resp.)

decay of the harmonic measure of random walks, which required the boundedness of the support (finite

second moment, resp.). In contrast, Gouëzel proved the result without any moment condition by devising

an ingenious measurable function called the set of pivotal times. The construction of pivotal times gives

rise to a partition of random paths and leads to an accurate deviation rate from below.

All of the strategies above rely on the Gromov hyperbolicity of the ambient space. Our contribution

here is to remove the reliance on the Gromov hyperbolicity and broaden the theory to more general

spaces. Namely, our research initially utilized the hyperbolicity along thick geodesics in T (Σ). This

enabled us to argue only on T (Σ) without reference to C(Σ). Later, we generalized this strategy and

suggested a general theory using the contracting property of certain isometries. This gives not only a

concrete control of the stretch factor of a random mapping class (as opposed to the translation length on

the curve complex) but also opens the possibility to study random walks on Teichmüller space, CAT(0)

spaces and Outer space in a unified way.

We now elaborate on each result. Theorem A describes SLLNs for displacement and translation

length. When µ has finite first moment, the SLLN for displacement is a consequence of the subadditive

ergodic theorem and the non-amenability of the mapping class group. When the random walk is on the

curve complex and µ has infinite first moment, Joseph Maher and Giulio Tiozzo observed that there

exists K > 0 such that

lim inf
n

1

n
d(o, ωn o) > K

for almost every ω = (ωn)n. By applying Sébastien Gouëzel’s pivotal time construction, we prove that

K can be chosen as large as we want.

The SLLN for translation length is considerably trickier than the one for displacement. This is

because the translation lengths of mapping classes are not subadditive, whereas the displacements are

subadditive. In [MT18], Joseph Maher and Giulio Tiozzo established the SLLN for translation length on

C(Σ) when the random walk has bounded support. Their strategy works when the random walk has finite

second moment, as François Dahmani and Camille Horbez remarked in [DH18]. Dahmani and Horbez

also established the SLLN for translation length on T (Σ) under the finite second moment assumption

by lifting the deviation inequality on C(Σ) to T (Σ).

Our contribution here is removing the moment assumption and providing a precise dichotomy be-

tween finite and infinite first moment. The first step was made by Hyungryul Baik, Dongryul M. Kim

and myself in [BCK]. There, we focused on the stabilizer of a Teichmüller curve in Teichmüller space,

which is an isometrically embedded copy of a Poincaré disc. For random walks supported on such a sta-

bilizer (which frequently arises from Thurston’s construction), the theory of random walks on Gromov

hyperbolic spaces applies immediately. Moreover, since the stabilizer obtained from a typical Thurston’s

construction is virtually cyclic, we can abelianize the stabilizer and apply the theory of random walk

on a Euclidean grid. By doing so, we deduced the linear growth of the translation length in the almost

sure sense. The restriction of the subgroup structure was removed in [BCK21] using the so-called piv-

oting technique. The complete version was proved in [Cho21a] by combining Baik-Choi-Kim’s idea with

Sébastien Gouëzel’s pivotal time construction in [Gou21].

Theorem B has been partially observed by many authors. In [MT18], Joseph Maher and Giulio
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Tiozzo observed that for random walks ω on Gromov hyperbolic spaces with bounded support,

P[d(o, ωn o)− τ(ωn) ≥ εn]

is exponentially decaying and hence summable for each ε > 0. François Dahmani and Camille Horbez

further elaborated that the above probability is summable for random walks on Teichmüller space with

finite second moment [DH18]. We provide a more delicate estimate on the scale of log n instead of the

linear scale in Theorem B.

Let us now discuss Theorem C. Several independent approaches to the CLT for displacement have

been suggested. First, Yves Benoist and Jean-François Quint established the CLT for centerable cocycles

on compact G-spaces. This theory serves as a common probabilistic ingredient for Benoist-Quint’s

CLT for linear groups [BQ16b] and proper Gromov hyperbolic spaces [BQ16a] and Camille Horbez’s

CLT for Teichmüller space [Hor18]. All of these results are under the optimal finite second moment

condition. Meanwhile, an independent approach via the theory of defected adapted cocycles (DAC) was

suggested by Pierre Mathieu and Alessandro Sisto. Using this theory, they proved a CLT for acylindrical

intermediates under the finite exponential moment condition [MS20]. Yet another approach is given by

Sébastien Gouëzel in [Gou17]. We provide an independent proof of Horbez’s CLT on Teichmüller space

by combining the pivoting technique with Mathieu-Sisto’s theory of DAC.

Meanwhile, the CLT for translation length has not been discussed previously. We prove this by

combining the CLT for displacement with Theorem B. Also proved is a more delicate LIL using the

deviation inequalities established in Chapter 5. Finally, the converses of CLTs have not been observed

before and are parts of our contributions.

Theorem D for displacement is the main result of Sébastien Gouëzel’s recent paper [Gou21]. Also,

it is implicitly explained in [Cho21b] that translation length grows linearly outside a set of exponentially

decaying probability. We argue here that the growth rate of the translation length can be as close to the

escape rate as we want.

The exponential genericity of BGIP elements in non-elementary simple random walks was discussed

by Alessandro Sisto in [Sis18] under the assumption that the action of G on X is WPD. We generalize

this result to all non-elementary random walks while removing the WPD assumption.

Theorem E originates from a question of Vadim Kaimanovich in [Kai00]. Kaimanovich suggested

two criteria, namely the ray approximation and the strip approximation, for a µ-boundary to be maximal.

The ray approximation criterion is guaranteed if the random walk exhibits sublinear geodesic tracking.

Kaimanovich and Howard Masur modeled the Poisson boundary of Teichmüller space on its Thurston

boundary using the strip approximation criterion. Kaimanovich then asked whether random walks on

Teichmüller space satisfy the ray approximation criterion also.

This question was partially answered by Moon Duchin [Duc05] by descending to subsequences, and

fully answered by Giulio Tiozzo [Tio15]. Tiozzo’s approach is general and covers many other interesting

settings, including Gromov hyperbolic spaces and CAT(0) spaces. See also [Hor18] for the related

deviation inequalities in Teichmüller space and Outer space. Here, our contribution is to obtain a finer

rate of tracking, namely, o(
√
n)-tracking for random walks with finite first moment.

Meanwhile, sublogarithmic tracking requires stronger moment conditions. Pierre Mathieu and

Alessandro Sisto established sublogarithmic tracking of random walks with finite exponential moments

on acylindrically hyperbolic groups [MS20]. Joseph Maher and Giulio Tiozzo also obtained the same re-

sult for random walks with finite support on weakly hyperbolic groups [MT18]; see also [Led01], [BHM11]

and [Sis17] for related results. We recover their results with an independent approach.
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Theorem F answers a version of Benson Farb’s conjecture in [Far06], asking whether pseudo-Anosovs

are generic in the Cayley graph of the mapping class group. Traditionally, counting problems on discrete

graphs have been studied using either thermodynamic formalism ([PS98], [Can21]) or the geodesic comb-

ing structure ([GTT18], [GTT20b], [GTT20a]). Both approaches require a strong geometric property

on the ambient group G, such as Gromov hyperbolicity. Although mapping class groups are known to

be automatic, it is not known whether they possess a geodesic combing structure. We suggest a new

approach to counting problems and obtain the exponential genericity of pseudo-Anosovs with respect to

certain generating sets. In fact, we have better control of the candidates for these generating sets: see

Theorem 8.0.1.

1.2 Structure of the article

In Chapter 2 we review the preliminaries. We define the bounded geodesic image property (BGIP)

and present lemmata regarding BGIP, whose proofs appear in Chapter 9. We also review the theory of

Teichmüller space and random walks. Chapter 3 concerns the alignment and the concatenation lemmata

for BGIP axes. These lemmata will be crucial for constructing Schottky sets and the pivoting process.

After these preparations, we define the set of pivotal times and the pivoting process in Chapter 4.

We first discuss the pivoting method in the basic setting where only the Schottky choices are modified

and the isometries between Schottky slots are unchanged. We also explain two other variations of the

original pivoting for later purposes. We then incorporate the pivoting method with random walks and

establish the escape to infinity with exponentially decaying error probability.

Chapter 5 deals with the deviation inequalities. After investigating the pivoting process for pairs of

independent paths, we define persistent progress that separates the forward and the backward sample

paths. By controlling the location of persistent progress, we arrive at the optimal deviation inequalities.

In Chapter 6, we prove CLT and related results for displacement. CLT and LIL directly follow from

the deviation inequality, while the converse of the CLT or the nondegeneracy of the limiting Gaussian

distribution follow from a more delicate investigation that refers to the pivotal times. Finally, we establish

the geodesic tracking of random walks using persistent progress.

In Chapter 7, we establish the limit laws for translation length. We introduce two approaches,

one relying on the persistent progress and the other directly using the pivotal times. Using the latter

approach, we also establish the exponential bounds for the escape rate from below.

Chapter 8 concernes the exponential genericity of pseudo-Anosovs in a Cayley graph of Mod(Σ). In

Chapter 9, we explore other spaces having BGIP isometries. In particular, we prove that fully irreducible

outer automorphisms of a free group of finite rank have BGIP in Outer space.
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Chapter 2. Preliminaries

2.1 Metric spaces and paths

Let (X, d) be a metric space. For later use, let us employ the notation dsym(x, y) := d(x, y)+d(y, x).

We define the Gromov product of y and z based at x by

(y, z)x :=
1

2

(
d(y, x) + d(x, z)− d(y, z)

)
.

The diameter of a set A ⊆ X is defined by

diam(A) := sup{d(x, y) : x, y ∈ A},

and the (directed) distances between sets A,B ⊆ X are defined by

d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B},

dsym(A,B) := inf{dsym(x, y) : x ∈ A, y ∈ B}.

For R > 0, the R-neighborhood of a set A ⊆ X is defined by

NR(A) := {x : dsym(x,A) < R}.

The Hausdorff distance between A,B ⊆ X is defined by

dH(A,B) := inf{R > 0 : A ⊆ NR(B) and B ⊆ NR(A)}.

An isometry g of X is a bijection from X to X that satisfies d(gx, gy) = d(x, y) for all x, y ∈ X.

Definition 2.1.1 (Geodesics). A path on X is a map γ : I → X from an interval I or a set of consecutive

integers I to X. When I has its minimum and maximum, we call γ(min I) and γ(max I) the endpoints

of γ and say that γ connects γ(min I) to γ(max I). We also define the reverse γ̄ of a path γ by the

composition of γ with the inversion t 7→ −t.
A subpath or a subsegment of γ : I → X is its restriction γ|I∩J : I ∩ J → X to a nonempty

intersection of I with some interval J .

A path γ : I → X from an interval I ⊆ R is called a geodesic if d(γ(s), γ(t)) = t − s holds for all

s, t ∈ I such that s < t.

A path γ : I → X is called a K-quasigeodesic if

1

K
|t− s| −K ≤ d(γ(s), γ(t)) ≤ K|t− s|+K (2.1.1)

holds for all s, t ∈ I such that s < t. If Inequality 2.1.1 holds for all s, t ∈ I, we say that γ is a

K-bi-quasigeodesic.

A metric space X is said to be geodesic if every ordered pair of points can be connected by a geodesic,

i.e., for every x, y ∈ X there exists a geodesic γ : [a, b]→ X such that γ(a) = x and γ(b) = y.

We will frequently use Inequality 2.1.1 in the following form. For any points p, q on a K-bi-

quasigeodesic γ, we have

diam
(
γ−1(p) ∪ γ−1(q)

)
≤ Kd(p, q) +K2 (2.1.2)

and

d(q, p) ≤ K diam
(
γ−1(p) ∪ γ−1(q)

)
+K ≤ K2d(p, q) +K3 +K. (2.1.3)
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2.2 Contracting sets and bounded geodesic image property

We introduce the notion of contracting sets. Intuitively, metric balls disjoint from these sets are

seen as small.

Definition 2.2.1 (contracting sets). For a subset A ⊆ X of a metric space X and ε > 0, we define the

closest point projection of x ∈ X to A by

πA(x) :=
{
a ∈ A : dX(x, a) = dX(x,A)

}
.

A is said to be K-contracting if:

1. πA(z) 6= ∅ for all z ∈ X and

2. for all x, y ∈ X such that dX(x, y) ≤ dX(x,A)−K we have

diamX

(
πA(x) ∪ πA(y)

)
≤ K.

A K-contracting K-quasigeodesic is called a K-contracting axis.

Definition 2.2.2 (Bounded geodesic image property). A subset A ⊆ X of a geodesic metric space X is

said to satisfy the K-bounded geodesic image property, or K-BGIP in short, if the following hold:

1. for any z ∈ X, πA(z) 6= ∅;

2. for any geodesic η such that η ∩NK(A) = ∅, we have diam(πA(η)) ≤ K.

A K-quasigeodesic that satisfies K-BGIP is called a K-BGIP axis.

We quote a lemma of Goulnara Arzhantseva, Christopher Cashen and Jing Tao.

Lemma 2.2.3 (Lemma 2.4, [ACT15]). Let X be a geodesic space. Then a quasigeodesic in X is con-

tracting if and only if it has BGIP.

Let us now collect some properties of contracting axes.

Lemma 2.2.4 (Continuity of the projection). Let γ be a K-BGIP axis and x, y ∈ X. Then πγ({x, y})
has diameter at most K + dsym(x, y).

Lemma 2.2.5 (Large projections are nearby). For each K > 1 there exists a constant K ′ = K ′(K) that

satisfies the following property.

Let γ : I → X be a K-BGIP axis and η : J → X be a geodesic such that diam(πγ(η)) > K ′. Then

for

m := inf γ−1πγ(η), M := sup γ−1πγ(η),

γ([m,M ] ∩ I) is within Hausdorff distance K ′ from a subsegment of η that contains entire η ∩NK(γ).

Lemma 2.2.6 (Restrictions and nearby sets). For each K > 1 there exists a constant K ′ = K ′(K) such

that any subsegment of a K-BGIP axis is a K ′-BGIP axis.

Moreover, if a set A is within Hausdorff distance K from a K-BGIP axis and πA(z) 6= ∅ for any

z ∈ X, then A has K ′-BGIP.
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Lemma 2.2.7 (No backtracking). For each K > 1 there exists a constant K ′ = K ′(K) that satisfies the

following property.

Let γ : I → X be a K-BGIP axis, η : J → X be a geodesic and αi ∈ J be such that α1 ≤ α2 ≤ α3.

Let also a1, a2, a3 ∈ I be such that γ(ai) ∈ πγη(αi). Then a1 and a3 cannot both belong to (−∞, a2−K ′]
nor [a2 +K ′,+∞).

Lemma 2.2.8 (Fellow traveling). For each K > 1 there exists a constant K ′ = K ′(K) that satisfies the

following property.

Let γ : I → X be a K-quasigeodesic and η1 : [0, L1]→ X, η2 : [0, L2]→ X be geodesics such that

dH(γ, η1), dH(γ, η2) < K, and d(η1(0), η2(0)) < K.

Then |L1 − L2| < K ′, and η1 and η2 K
′-fellow travel on the interval [0,min{L1, L2}].

These are well-known to experts in this field. Nonetheless, we discuss their proofs for a more general

setting in Chapter 9.

Definition 2.2.9 (Isometries with contracting properties). Let K > 0. An isometry g of X is said to be

K-contracting (K-BGIP, resp.) if the orbit n ∈ Z 7→ gno ∈ X is a K-contracting axis (K-BGIP axis,

resp.).

Definition 2.2.10 (Translation length). For g ∈ G, the (asymptotic) translation length of g is defined

by

τ(g) := lim inf
n→∞

1

n
d(o, gno).

An isometry has positive translation length if and only if its orbit n 7→ gno is a quasigeodesic.

Definition 2.2.11 ([BF09, Definition 5.8]). Bi-infinite paths κ = (xi)i∈Z, η = (yi)i∈Z are said to be

independent if the map (n,m) 7→ d(xn, ym) is proper, i.e., for any M > 0, {(n,m) : d(xn, ym) < M} is

bounded.

Isometries g, h of X are said to be independent if their orbits are independent.

Definition 2.2.12. A subgroup of Isom(X) is said to be non-elementary if it contains two independent

BGIP isometries.

Note that for a, b ∈ Isom(X) and n,m ∈ Z \{0}, an and bm are independent BGIP isometries if and

only if a and b are so.

2.3 Teichmüller space and the mapping class group

The Teichmüller space X = T (Σ) of a hyperbolic surface Σ is the space of equivalence classes

[(f,Σ′)] of an orientation-preserving homeomorphism f : Σ → Σ′ from Σ to a hyperbolic surface Σ′

(Riemann surface Σ′, resp.) of the same type with Σ. Here, (f,Σ1) and (g,Σ2) are equivalent if they are

homotopic, i.e., if there exists an isometry (conformal mapping, resp.) i : Σ1 → Σ2 such that i ◦ f ' g.

For each pair of points ([(f,Σ1)], [(g,Σ2)]), there exists a unique representative h in the homotopy

class of g ◦ f−1 : Σ1 → Σ2, called the Teichmüller mapping, that attains the minimum of the dilatation

Kh. Using this, we define the Teichmüller metric

dT
(
[(f,Σ1)], [(g,Σ2)]

)
:=

1

2
logKh =

1

2
inf
{

logKϕ : ϕ ' g ◦ f−1
}
.
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This metric is Finsler but not Riemannian in general. By modulating the dilatation of the Teichmüller

mapping, we get a continuous family of surfaces from [(f,Σ1)] to [(g,Σ2)]. This is the unique geodesic

connecting two points and is called the Teichmüller geodesic.

Let us digress to the discussion on Gromov hyperbolic spaces. In [Gro87], Mikhael Gromov suggested

the notion of Gromov hyperbolic spaces in order to embrace negatively curved manifolds, their isometry

groups and simplicial trees. Since its definition does not rely on the local structure, one can discuss the

Gromov hyperbolicity on Teichmüller space. Nonetheless, (T (Σ), dT ) is not Gromov hyperbolic unless

Σ is a one-punctured torus or a sphere with at most 4 punctures ([MW95], [Iva02], [Min96a]). Moreover,

(T (Σ), dWP ) is not Gromov hyperbolic unless Σ is a torus with at most two punctures or a sphere with

at most 5 punctures [BF06]. Hence, the theory of Gromov hyperbolic spaces does not apply in most

cases.

Another generalization of negatively curved manifolds is the category of CAT(0) spaces (see Chapter

9 for details). (T (Σ), dT ) is also known to be not CAT(0) unless Σ is a one-punctured torus or a sphere

with at most four punctures ([Mas75], [BR18]). Hence, the general theory for CAT(0) spaces also does

not apply.

There exists another canonical metric on Teichmüller space, namely, the Weil-Petersson metric

dWP . This is induced from the inner product on the tangent space to Teichmüller space

〈q1, q2〉 =

∫
X

λ2q̄1q2 (q1, q2 ∈ B(R)),

where λ is the hyperbolic metric on the surface R. This metric is known to be CAT(0) (cf. [Tro86],

[Wol87]) but is not geodesically complete [Wol75].

The mapping class group G = Mod(Σ) of Σ consists of mapping classes of Σ, i.e., equivalence

classes of self-homeomorphisms on Σ up to homotopy. Mod(Σ) naturally acts on T (Σ) as isometries

with respect to both metrics. Halsey Royden’s theorem [Roy71] and an analogous result by Howard

Masur and Michael Wolf [MW02] assert that the isometry groups of (T (Σ), dT ) and (T (Σ), dWP ) are

the extended mapping class group Mod±(Σ) that contains Mod(Σ) as an index 2 subgroup. Taking the

quotient of T (Σ) by the action of Mod(Σ) amounts to forgetting the marking, which yields the moduli

space M(Σ) of Σ.

The celebrated Nielsen-Thurston classification asserts that mapping classes are either (i) periodic

(finite order), (ii) reducible (i.e., those fixing a multicurve), or (iii) pseudo-Anosov. William Thurston

established this classification (see [Thu88] or [FLP79]) by observing the topological dynamics of a map-

ping class on the so-called Thurston compactification T̄ (Σ) = T (Σ)∪PMF(Σ). Lipman Bers later came

up with another argument using the Teichmüller geometry as follows [Ber78]. Given a mapping class ϕ,

we define the minimal translation length

mT (ϕ) := inf{dT (x, ϕx) : x ∈ T (Σ)}

and see whether mT (ϕ) is achieved at a point or not. We then have the following cases.

1. mT (ϕ) = 0 and is realized at a point x ∈ T (Σ): then ϕ belongs to the finite stabilizer of x, and ϕ

is periodic.

2. mT (ϕ) is not realized: then ϕ is fixing a multicurve and is said to be reducible.

3. mT (ϕ) > 0 and is realized at a point x ∈ T (Σ): then ϕ is said to be pseudo-Anosov and the

concatenation of [ϕi−1x, ϕix] is an infinite precompact geodesic on T (Σ). This is actually the
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Figure 2.1: A mapping class φ on a surface Σ of genus 2 with 5 punctures. φ preserves the red curve

and the orange multicurve, and its restrictions to two subsurfaces (the head and the body) are pseudo-

Anosov. These restrictions preserve mutually transverse measured foliations (blue and pink lines). Also,

the green curve on the body subsurface is transformed into a more complicated light green curve by an

iteration of φ.

unique Teichmüller geodesic that is invariant under the action of ϕ; we call this the invariant

geodesics Γϕ of ϕ.

Among these, pseudo-Anosovs are considered to have the most interesting dynamics, which have lots

of consequences in 3-manifold theory, hyperbolic geometry and the group structure of the mapping class

group. For a pseudo-Anosov mapping class ϕ, its minimal translation length mT (ϕ) and its (aymptotic)

translation length τX(ϕ) are equal. Moreover, there exists a unique representative f and two measured

foliations (F±, µ±) such that

f(F+, µ+) = (F+, λµ+), f(F−, µ−) =

(
F−, 1

λ
µ−
)

hold for some λ > 1. We call this λ the stretch factor of ϕ. These foliations can be realized as the

horizontal and the vertical foliations of a quadratic differential defined on a point x ∈ T (Σ) that attains

the minimal translation length, and f is the Teichmüller mapping between x and ϕ · x. λ is a key

dynamical quantity that describes the following phenomena:
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1. the maximal dilatation of f equals λ2, and τX(ϕ) = log λ;

2. f is ergodic and Bernoulli with respect to the measure µ = µ+ × µ−, and the minimal topological

entropy in the equivalence class ϕ is achieved by f as log λ;

3. for any (f,Σ′) ∈ T (Σ) and a simple closed curve C on Σ′, we have

lim
n→+∞

n
√
lΣ′([ϕn(C)]) = λ.

Hence, studying the translation lengths of mapping classes on Teichmüller space reveals their dynamical

properties on the surface Σ.

The Nielsen-Thurston classification can also be explained with an analogous minimization problem

for the Weil-Petersson metric. In [DW03], Georgios Daskalopoulos and Richard Wentworth considered

the minimal translation length

mWP (ϕ) := inf {dWP (x, ϕx) : x ∈ T (Σ)}

and obtained the same trichotomy as in the case of the Teichmüller metric. In particular, a pseudo-

Anosov mapping class ϕ has a unique ϕ-invariant complete Weil-Petersson geodesic. The translation

length τWP (ϕ) with respect to the Weil-Petersson metric also possesses a geometric meaning. More

explicitly, Jeffrey Brock proved in [Bro03] that τWP (ϕ) is coarsely related to the hyperbolic volume of

the mapping torus made with ϕ. Hence, investigating the asymptotic behavior of τWP (ϕ) leads to some

understanding of the volume of a random mapping torus or Heegaard splitting. We refer to Gabriele

Viaggi’s article [Via21] for another take on this perspective.

Another importance of pseudo-Anosov mapping classes comes from the fact that their invariant

geodesics (with respect to either metric) are strongly contracting. Yair Minsky proved that any ε-thick

geodesics are K(ε)-contracting with respect to the Teichmüller metric [Min96b]. For the Weil-Petersson

metric, Jason Behrstock established the BGIP of the WP-invariant geodesics of pseudo-Anosov mapping

classes using Masur-Minsky’s machinery for the curve complex ([Beh06, Theorem 6.5]). For a different

approach with the flavor of differential geometry, we refer to [BF09, Proposition 8.1] and [Ham10, Lemma

3.2].

As declared in the introduction, our aim is to establish various limit laws for random walks on

Mod(Σ) using the contracting property of pseudo-Anosov mapping classes. Moreover, we will also prove

that pseudo-Anosovs predominate in mapping class groups in certain sense. All these results are derived

from a single assumption that the random walk sees two independent pseudo-Anosov mapping classes.

Hence, we first need a concrete example of a pseudo-Anosov mapping class. For this purpose, William

Thurston suggested a recipe (now known as Thurston’s construction) to generate pseudo-Anosov mapping

classes out of Dehn twists along filling multicurves [Thu88]. Robert Penner later generalized this recipe

in [Pen88] to accommodate partial twists along multicurves.

By the work of John McCarthy and Athanase Papadopoulos [MP89], subgroups of Mod(Σ) are

either:

• finite;

• reducible, i.e., preserving a multicurve;

• virtually cyclic, or

• non-elementary, i.e., containing two independent pseudo-Anosovs.

12



If a random walk on Mod(Σ) is supported on a subgroup that falls into the first three categories, then the

asymptotic behavior of random walk virtually boils down to random walks on {1}, {Z} or the mapping

class groups of subsurfaces of Σ. This justifies our convention to focus on the non-elementary cases only.

Here, the independence of two pseudo-Anosovs means the disjointness of their fixed point set on PMF ,

but this is equivalent to our Definition 2.2.11.

Let us mention yet another asymmetric metric on Teichmüller space called the Thurston metric or

Lipschitz metric dL. This metric has been introduced by Thurston [Thu89] from an optimization problem

for the lengths of curves on hyperbolic surfaces. Despite its asymmetry, the asymptotic behavior of a

random walk on Mod(Σ) with respect to dL and dT is essentially the same, because dL(x, y) and dT (x, y)

differ by a bounded additive error for x, y ∈ Go [CR07]. This draws a striking contrast with an analogous

metric on Outer space that appears in Chapter 9.

2.4 Random walk

For an extensive theory of random walks infinite groups and graphs, we refer to the classic volume

by Wolfgang Woess [Woe00].

Let µ be a probability measure on a discrete group G. We consider the step space (GZ, µZ), the

product space of G equipped with the product measure of µ. Each element (gn)n of the step space is

called a step path, and there is a corresponding sample path (ωn)n under the correspondence

ωn =


g1 · · · gn n > 0

id n = 0

g−1
0 · · · g

−1
n+1 n < 0.

This structure constitutes a random walk with transition probability µ. We also introduce the notation

ǧn := g−1
−n+1 and ω̌n := ω−n.

We define the support of µ, denoted by suppµ, as the set of elements in G that are assigned nonzero

values of µ. 〈suppµ〉 and 〈〈 suppµ 〉〉 denote the subgroup and the subsemigroup generated by the support

of µ, respectively. In other words, we define

〈suppµ〉 := {g1 · · · gn : n ∈ Z≥0, gi ∈ (suppµ) ∪ (suppµ)−1},

〈〈 suppµ 〉〉 := {g1 · · · gn : n ∈ Z≥0, gi ∈ suppµ}.

We denote by µN the product measure of N copies of µ, and by µ∗N the N -th convolution measure

of µ. A measure µ is said to be non-elementary if 〈〈 suppµ 〉〉 contains two independent contracting

isometries. Note that by taking suitable powers if necessary, we may assume that two independent

contracting isometries belong to the same suppµ∗N for some N > 0. µ is said to be non-arithmetic if

there exist N > 0 and g, h ∈ suppµ∗N such that τ(g) 6= τ(h). The random walk ω generated by µ is

said to be admissible (non-elementary or non-arithmetic, resp.) if µ is admissible (non-elementary or

non-arithmetic, resp.).

For each p ≥ 0, we define the p-th moment of the probability measure µ on G by

Eµ[d(o, go)p] :=

∫
d(o, go)pdµ.
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Figure 2.2: A random walk on Teichmüller space.
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Chapter 3. Concatenation of BGIP axes

The goal of this chapter is to formulate and prove the following. Let (κi)i be a sequence of BGIP

axes that begin at xi and terminate at yi, respectively. Suppose that consecutive axes are well aligned:

κi (κi+1, resp.) projects onto κi+1 (κi, resp.) near xi+1 (yi, resp.). Then we have global alignment: κi

projects onto κj near xj or yj , depending on whether i < j or j > i.

The above statement will be crucial when defining the pivotal times for random walks. In random

walks, the desired BGIP axes appear intermittently and the progress in between need not exhibit BGIP.

In such a situation, the concatenation lemmata help characterize when [o, ωn o] is witnessed by some

of the BGIP progresses made at intermediate steps. Note that similar observations were made by

Mladen Bestvina and KojiFujiwara to construct nontrivial quasimorphisms for WPD actions on Gromov

hyperbolic spaces and CAT(0) spaces (see [BF02], [BF09]).

We note that Wenyuan Yang has previously suggested the prototypes of these concatenation lem-

mata. In particular, Proposition 3.1.5 and Lemma 3.1.7 were observed earlier in [Yan14, Section 3], and

Lemma 3.1.6 follows from [Yan19, Proposition 2.9]. Nonetheless, we include their proofs as applications

of Proposition 3.1.4.

3.1 Concatenation lemmata

Definition 3.1.1 (Alignment). We say that a sequence (κ1, η) of two paths κ, η is aligned if κ projects

onto η near the beginning point of η and η projects onto κ near the terminating point of κ.

More precisely, given paths κ from x to x′ and η from y′ to y, we say that (κ, η) is C-aligned if

diam (x′ ∪ πκ(η)) < C, diam (y′ ∪ πη(κ)) < C.

In general, given paths κi from xi to x′i for each i = 1, . . . , n, we say that (κ1, . . . , κn) is C-aligned

if

diam (x′i ∪ πκi(κi+1)) < C, diam
(
xi+1 ∪ πκi+1

(κi)
)
< C.

hold for i = 1, . . . , n− 1.

We can also put points in place of paths in the above definition; in that case, we regard points as

degenerate paths that are endpoints of themselves. For example, given y ∈ X and a path κ connecting

x and x′, we say that (κ, y) is C-aligned if diam (x′ ∪ πκ(y)) < C.

x x′ y′ y
κ η

Figure 3.1: Schematics for an aligned sequence of paths.
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Note that if sequences (κi, . . . , κj) and (κj , . . . , κk) are C-aligned, then the entire (κi, . . . , κj , . . . , κk)

is also C-aligned.

Our first lemma states that the projections of endpoints of two BGIP axes onto each other govern

the projections of the entire axes.

Lemma 3.1.2. For each C > 0 and K > 1, there exists D = D(K,C) > C that satisfies the following

property.

Let κ, η be K-BGIP axes whose beginning and terminating points are x, x′ and y′, y, respectively.

Suppose further that (κ, y′) and (x, η) are C-aligned. Then (κ, η) is D-aligned.

One cannot expect similar consequences from the assumption that (κ, y′) and (x′, η) are aligned:

imagine a long and thin isosceles triangle in the hyperbolic plane. Moreover, the assumption that (κ, y)

and (x, η) are aligned also cannot guarantee the desired conclusion.

Proof. We let:

• K1 = K ′(K) be as in Lemma 2.2.4;

• K2 = K ′(K) be as in Lemma 2.2.5;

• K3 = K ′(K) be as in Lemma 2.2.7, and

• D = 16K10(K1 +K2 +K3 + C + 1).

If the length L of the domain of κ is smaller than K(2K + C) +K2, then we have

diam(x′ ∪ πκ(η)) ≤ diam(κ) ≤ KL+K2 ≤ D

diam(y′ ∪ πη(κ)) ≤ diam (y′ ∪ πη(x)) + diam (πη(κ))

≤ C + [K1 + 4 diam(κ)]

≤ C +K1 + 4KL+ 4K2 ≤ D.

The inequality in the third line here is due to Lemma 2.2.4. The desired conclusion follows similarly

when the domain of η is shorter than K(2K + C) +K2. Hence, we may assume that the domains of κ,

η are longer than K(2K + C) +K2.

The desired conclusion will follow once we show that x′ projects onto η near y′ and y projects onto

κ near x′. More precisely, we claim that the conclusion follows from the inqualities

diam (y′ ∪ πη(x′)) < 10K8(K1 +K2 +K3 + C + 1), (3.1.1)

diam (x′ ∪ πκ(y)) < 10K8(K1 +K2 +K3 + C + 1). (3.1.2)

For example, suppose that Inequality 3.1.2 holds. Recall also that diam(x′∪πκ(y′)) < C by the assump-

tion. Then Inequality 2.1.2 implies

κ−1(πκ(y′)), κ−1(πκ(y)) > max(J)− [10K9(K1 +K2 +K3 + C + 1) +K2],

where J denotes the domain of κ. Now Lemma 2.2.7 implies

κ−1(πκ([y, y′])) > max(J)− [10K9(K1 +K2 +K3 + C + 1) +K2 +K2].

Since κ is a K-bi-quasigeodesic, this implies that x′ ∪ πκ([y, y′]) has diameter at most

K[10K9(K1 +K2 +K3 + C + 1) +K2 +K2] +K ≤ 13K10(K1 +K2 +K3 + C + 1).
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x x′

y′ y

κ

η

z

κ(s)κ(t)

Figure 3.2: Schematics for Lemma 3.1.2

Finally, note that [y, y′] and η are within Hausdorff distance K2 by Lemma 2.2.5 (since η is long enough).

Hence, Lemma 2.2.4 implies that x′∪πκ(η) has diameter at most 14K10(K1 +K2 +K3 +C+ 1). Similar

argument deduces a bound on the diameter of y′∪πη(κ) from the bound on the diameter of y′∪πη({x, x′}).
Let us now show that πη(x′) is near y′. If diam (y′ ∪ πη(x′)) > 2K + C, then we have

diam (πη(x) ∪ πη(x′)) ≥ diam (y′ ∪ πη(x) ∪ πη(x′))− diam (y′ ∪ πη(x))

≥ (2K + C)− C > K.

Then Lemma 2.2.5 asserts that there exists a point p ∈ [x, x′] such that dsym(p, y′) ≤ K2 +2C. Moreover,

since κ is long enough, diam(πκ{x, x′}) = diam({x, x′}) > K holds. Again, Lemma 2.2.5 implies that

dH(κ, [x, x′]) ≤ K2 and there exists q ∈ κ such that dsym(q, p) ≤ K2. Now for any q′ ∈ πκ(y′),

d(y′, q′) ≤ d(y′, q) ≤ 2K2 + 2C and d(q, y′) ≤ 2K2 + 2C so d(q, q′) ≤ 4K2 + 4C. This implies

d(y′, x′) ≤ d(y′, q′) + diam (x′ ∪ πκ(y′)) ≤ 2K2 + 3C,

d(x′, y′) ≤ diam (x′ ∪ πκ(y′)) + d(q′, q) + d(q, y′)

≤ C + (4K2(K2 + C) +K3 +K) + 2K2.

Then for any p′ ∈ πη(x′), we have

d(y′, p′) ≤ d(y′, x′) + d(x′, p′) ≤ dsym(y′, x′) = 4C + (4K2(4K2 + C) +K3 +K) + 4K2

Since η is a K-bi-quasigeodesic, this implies that y′ ∪ πη(x′) has bounded diameter.

We next show that πκ(y) is near x′. Note that

diam (πη([x, y])) ≥ diam (y′ ∪ πη(x) ∪ πη(y))− diam (y′ ∪ πη(x))

≥ (2K + C)− C > K.

By K-BGIP of η, we then have a point z ∈ [x, y] that belongs to NK2 (πη(x)). Since diam (y′ ∪ πη(x)) <

C, we deduce dsym(z, y′) < K2 + 2C. Now Lemma 2.2.4 implies

diam(πκ(y′) ∪ πκ(x)) < K1 + 2K2 + 4C.

Let J be the domain of κ, and s, t ∈ J be such that κ(s) ∈ πκ(z), κ(t) ∈ πκ(y). Recall that

κ(min J) = x and κ(max J) = x′. Since diam(x′∪πκ(y′)) < C and diam(πκ(y′)∪πκ(z)) < K1+2K2+4C,

we have
max J − s ≤ K diam(x′ ∪ κ(s)) +K

≤ K[diam(x′ ∪ πκ(y′)) + diam(πκ(y′) ∪ πκ(z))] +K

≤ K(K1 + 2K2 + 5C + 1).
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Note here that min J , s, t belong to κ−1πκ(x), κ−1πκ(z) and κ−1πκ(y), respectively. By Lemma 2.2.7,

we have either min J ≥ s−K3 or t ≥ s−K3. In the former case, we have

diam (x′ ∪ πκ(y)) ≤ K|J |+K

= K[(s−min J) + (max J − s)] +K

≤ K[K3 +K(K1 + 2K2 + 5C + 1)] +K.

In the latter case, we have

diam(x′ ∪ πκ(y)) ≤ diam(x′ ∪ κ(t)) + diam(πκ(y))

≤ K(max J − t) +K +K1

≤ K(max J − s+K3) +K +K1

≤ K(K3 +K(K1 + 2K2 + 5C + 1)) +K +K1.

In the previous lemma, we deduced that the projection of y onto κ favors x′ over x since [x, y] has

a large projection on η and passes through y′. We can put an arbitrary point p in place of y and expect

the same phenomenon, given that the projection of p onto η does not favor y′ over y. In other words, p

either favors y′ over y or favors x′ over x. The following lemma captures this:

Lemma 3.1.3 (cf. [BF09, Lemma 5.6]). For each C > 0 and K > 1, there exists D = D(K,C) > C

that satisfies the following property.

Let κ, η be K-BGIP axes whose endpoints are x, x′ and y′, y, respectively. Suppose that (κ, η) is

C-aligned. Then for any p ∈ X, diam(πη(p) ∪ y′) ≥ D and diam(πκ(p) ∪ x′) ≥ D cannot happen

simultaneously. Moreover, diam(πη(p) ∪ y′) ≥ D implies d(p, κ) ≥ d(p, η) +K.

In other words, at least one of the following hold:

• (p, η) is D-aligned;

• (κ, p) is D-aligned.

Moreover, if the first item is not the case, then d(p, κ) ≥ d(p, η) + K. Symmetrically, if the second

item is not the case, then d(p, η) ≥ d(p, κ) +K.

Proof. Let K1, K2, K3 and D be as in the proof of Lemma 3.1.2, and assume diam (πη(p) ∪ y′) ≥ D.

Since
diam (πη([p, x])) ≥ diam (πη(p) ∪ πη(x))

≥ diam(πη(p) ∪ y′)− diam(πη(x) ∪ y′)

≥ D − C > K,

we know that there exists z ∈ [p, x] such that dsym (z, πη(x)) < K2. Then the proof of Lemma 3.1.2

(after putting p in place of y with p) asserts that diam(x′ ∪ πκ(p)) ≤ D.

Let us now pick q′ ∈ πη(p) such that

max{d(y′, q′), d(q′, y′)} ≥ diam (y′ ∪ πη(p))− 1 ≥ D − 1.

Since η is a K-bi-quasigeodesic, we deduce min{d(y′, q′), d(q′, y′)} ≥ 1
K2 (D−1−K)−K ≥ 10(K+K2+C).

Now take any q ∈ κ. Note that

diam (πη([p, q])) ,diam (πη([p, y′])) ≥ diam (πη(p) ∪ y′)− diam (πη(q) ∪ y′)

≥ D − C > K.

18



Then Lemma 2.2.5 asserts that there exists z1 ∈ [p, q] such that dsym (z1, πη(q)) < K2, and z2 ∈ [p, y′]

such that dsym(q′, z2) < K2. We then observe

d(p, q) = d(p, z1) + d(z1, q)

≥ d(p, y′)− d(z1, y
′)

≥ d(p, z2) + d(z2, y
′)− d(z1, y

′)

≥ d(p, q′) + d(q′, y′)− dsym(q′, z2)− d(z1, y
′)

≥ d(p, η) + 10(K +K2 + C)− 2K2 − C ≥ d(p, η) +K.

Similarly, we can pick z1 ∈ [q, p] and z2 ∈ [y′, p] that satisfy the same conditions. We then conclude

d(q, p) ≥ d(q′, p) +K ≥ d(η, p) +K for any q ∈ κ. Now dsym(p, q) ≥ dsym(p, q′) + 2K ≥ dsym(p, η) +K

follows.

We are now ready to prove the main result of this section.

Proposition 3.1.4. For each C > 0 and K > 1, there exist D = D(K,C) > C and L = L(K,C) > C

that satisfies the following.

Let J be a nonempty set of consecutive integers, and p, {xi, yi}i∈J are points in X. For each i ∈ J ,

let κi be a K-BGIP axis connecting xi and yi whose domain is longer than L. Suppose also that (κi)i∈J

is C-aligned. Then we have the following:

1. the statements

(κi, p) is D-aligned, (p, κi) is D-aligned

cannot hold simultaneously;

2. the set

J0 = J0

(
p; (κi)i∈J , D

)
:=

{
j ∈ J :

(κi, p) is D-aligned for i ∈ J such that i < j,

(p, κi) is D-aligned for i ∈ J such that i > j

}

=

{
j ∈ J :

diam(yi ∪ πκi(p)) < D for i ∈ J such that i < j,

diam(xi ∪ πκi(p)) < D for i ∈ J such that i > j

}
consists of either a single integer or two consecutive integers;

3. π∪iκi(p) is nonempty and is contained in
⋃
{πκj (p) : j ∈ J0}; and

4. (κl, κm) is D-aligned for any l,m ∈ J such that l < m.

Proof. Let D = D(K,C) be as in Lemma 3.1.2 and 3.1.3. For the first item, we take large enough L

such that diam(xi∪πκi(p)) < D and diam(yi∪πκi(p)) < D cannot happen simultaneously. For example,

L = K(2D + 2K) will do. This choices will guarantee the following for each i ∈ J :

diam(xi ∪ πκi(p)) < D ⇒ diam(yi ∪ πκi(p)) ≥ D,

diam(yi ∪ πκi(p)) < D ⇒ diam(xi ∪ πκi(p)) ≥ D.
(3.1.3)

This implies that J0 cannot contain two elements of J that are separated by more than 1. Hence, it

suffices to show that J0 is nonempty.

Suppose, say, there exists m such that (κi, p) is D-aligned for all i ≥ m (which also subsumes that

J is not bounded above). Then Inequality 3.1.3 says that (p, κi) is not D-aligned for i ≥ m, and Lemma
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3.1.3 asserts that d(p, κm+n) < d(p, κm)−nK for all n ≥ 0; this violates the nonnegativity of the metric.

Hence, such m cannot exist and

{i ∈ J : (κi, p) is D-aligned}

cannot contain an infinite increasing sequence of consecutive integers. In other words, J is bounded

above unless

S := {j ∈ J : (κj , p) is not D-aligned}

is nonempty. If S is empty and J is bounded above, then max J ∈ J0 clearly holds. Now suppose that

S is nonempty and let j ∈ S. Then (κj , p) is not D-aligned, which implies that (p, κj+1) is D-aligned

and (κj+1, p) is not D-aligned if j + 1 ∈ J . The induction goes on: (p, κi) is D-aligned and (κi, p) is not

D-aligned for all i ∈ J such that i > j. (∗) Note also that for any k ≤ inf S, (κi, p) is D-aligned for all

i ∈ J such that i < k. This implies that minS ∈ J0 if exists.

The remaining case is that S is nonempty and minS does not exists: that means, both J and S is

not bounded below. Then (∗) implies that (κi, p) is not D-aligned for all i ∈ J . By Lemma 3.1.3, we

then have d(p, κi) < d(p, κj)−K(j− i) for all i, j ∈ J such that i < j. Fixing j and taking small enough

i, we obtain a contradiction with the nonnegativity of the metric. Hence, this case does not happen and

the second item is established.

We now observe the third and the fourth items. First suppose that J0 is a singleton {j}. By

definition and Inequality 3.1.3, we have:

diam(xi ∪ πκi(p)) < D, diam(yi ∪ πκi(p)) > D (i ∈ J such that i > j),

diam(yi ∪ πκi(p)) < D, diam(xi ∪ πκi(p)) > D (i ∈ J such that i < j).
(3.1.4)

At the moment, if diam(yj ∪πκj (p)) < D holds then j+ 1 also belongs to J0, a contradiction. Hence, we

have diam(yi∪πκi(p)) ≥ D for i ∈ J such that i ≥ j. (Note also that j 6= inf J .) Then Lemma 3.1.3 tells

us that d(y, κi+1) > d(y, κi) for i ∈ J \ sup J such that i ≥ j. By a similar reason, d(y, κi−1) > d(y, κi)

for i ∈ J \ inf J such that i ≤ j. Hence we conclude π∪iκi(p) = πκj (p).

When J0 = {j, j + 1}, we similarly deduce π∪iκi(p) ⊆ πκj (p) ∪ πκj+1
(p).

Let us now take l,m ∈ J such that l < m. We want to show that (κl, κm) is D-aligned, or

equivalently, diam(yl ∪ πκl(p)) < D for any p ∈ κm and diam(xm ∪ πκm(p)) < D for any p ∈ κl. Both

directly follow from the assumption if l = m− 1. When l < m− 1, J0 = J0(p) for p ∈ κm must contain

m because of the second item. Then the first item implies that l < J0(p) and diam(yl ∪ πκl(p)) < D as

desired. Similarly, p ∈ κl implies J0(p) < m and diam(xm ∪ πκm(p)) < D as desired.

Proposition 3.1.5. For each C > 0 and K > 1, there exist E = E(K,C) > C and L = L(K,C) > C

that satisfy the following. Let x, y ∈ X and κ1, . . . , κN be K-BGIP axes whose domains are longer than

L.

If (x, κ1, . . . , κN , y) is C-aligned, then (x, κi, y) is E-witnessed for each i = 1, . . . , N . Moreover,

p ∈ NE([x, y]) and (x, y)p < E for any p ∈ κi.

Proof. Proposition 3.1.4 and Lemma 2.2.5 guarantee that the following statements hold for suitable

choices of E1, E2 and L.

First, (x, κ1) is E1-aligned and hence (κ1, x) is not E1-aligned. This prevents J0

(
x; (κi)i, E1

)
from containing elements larger than 1, i.e., J0

(
x; (κi)i, E1

)
= {1}. By a similar reason, we have

J0

(
y; (κi)i, E1

)
= {N}. Consequently we have that (x, κi, y) is E1-aligned for each i = 1, . . . , N . Since

κi is a long enough K-BGIP axis, there exists a subsegment [x′, y′] of [x, y] that is within Hausdorff

distance E2 from κi.
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We next discuss the contracting of the concatenation of an aligned sequence of contracting axes.

Lemma 3.1.6. For each C,M > 0 and K > 1, there exist K ′ = K ′(K,C,M) > C and L = L(K,C) > C

that satisfies the following.

Let J be a nonempty set of consecutive integers and {xi, yi}i∈J be points in X. For each i ∈ J ,

let κi be a K-BGIP axis connecting xi and yi whose domain is longer than L. Suppose that (κi)i∈J is

C-aligned and d(yi, xi+1) < M for i ∈ J \ sup J . Then ∪iκi is a K ′-BGIP axis.

Proof. We take E = E(K,C) and L1 = L(K,C) be as in Proposition 3.1.4, and L = L1 +K(2E +K).

To show that ∪iκi has BGIP, pick x, y ∈ X. If diam(πκi(x) ∪ πκi(y)) > K for some i, then [x, y]

passes through the K-neighborhood of κi. If not, i.e., if the projections of x and y onto each κi are close

to each other, we claim that their projections onto ∪iκi are also close to each other.

Let D = D(K,C) > K be as in Proposition 3.1.4 and let j ∈ J0 = J0(x; (κi)i, D). Then we have

the following cases:

1. πκj (x) is distant from both xj and yj : then so is πκj (y), and it follows that J0(y; (κi)i, D) = {j}
also. Hence the projections of x and y onto ∪iκi are those onto κj , which are close to each other.

2. πκj (x) is close to xj : then J0(x; (κi)i, D) ⊆ {j − 1, j}, and πκi(x) is far from xi for i 6= j. Since

πκi(x) and πκi(y) are close to each other, the same conclusion holds for πκi(y)’s. In other words,

J0(y; (κi)i, D) ⊆ {j − 1, j}. In this case,

diam (π∪iκi({x, y})) ≤ diam
(
πκj ({x, y}) ∪ πκj−1({x, y})

)
≤ diam

(
πκj ({x, y}) ∪ xj

)
+ diam(xj ∪ yj−1)

+ diam
(
yj−1 ∪ πκj−1(x)

)
+ diam

(
πκj−1({x, y})

)
is bounded. Here, the first and the last term are bounded thanks to the assumption. The second

term is at most M , and the third term is also bounded since j ∈ J0(x; (κi)i, D) so (κj−1, x) is

D-aligned.

3. πκi(x) is close to xj+1: a similar argument works.

We now show that ∪iκi is a quasigeodesic. Note that for any i < j < k and x ∈ κi, y ∈ κj and

z ∈ κk, then (x, κi+1, . . . , κj , . . . , κk−1, z) is C-aligned and (x, z)y < E due to Proposition 3.1.5. In fact,

(x, z)y is also when x ∈ κi, z ∈ κi+1 and y = xi+1. Indeed, (x, κ′, z) is C-aligned for the restriction κ′ of

κi+1 between y and z, so Proposition 3.1.5 tells us that (x, z)y < E if d(y, z) > E; if not (x, z)y ≤ d(y, z)

is clearly bounded by E.

These bounds on the Gromov products imply the following. For i < j, x ∈ κi and y ∈ κj , we have

d(x, y) ≥ d(x, yi) + d(xi+1, yi+1) + . . .+ d(xj , y)− |j − i|E

≥ 1

2
[d(x, yi) + d(xi+1, yi+1) + . . .+ d(xj , y)]− E.

Here, we used the fact that d(xk, yk) ≥ L
K −K ≥ 2E for each k. Since each κi is a K-quasigeodesic, we

can conclude that ∪iκi is also a quasigeodesic. A symmetric argument shows that the reverse of ∪iκi is

also a quasigeodesic; hence ∪iκi is a bi-quasigeodesic.

The latter part of the previous proof still works even when d(yi, xi+1) is not uniformly bounded,

given that the intermediate segments are included. Hence, we obtain the following:
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Lemma 3.1.7. For each C > 0 and K > 1, there exist K ′ = K ′(K,C) > C and L = L(K,C) > C that

satisfy the following.

Let J be a nonempty set of consecutive integers and {xi, yi}i∈J be points in X. For each i ∈
J , let κi be a K-BGIP axis connecting xi and yi whose domains are longer than L. Suppose that

(κi)i∈J is C-aligned. Then the concatenation Γ of (. . . , [xi−1, yi−1], [yi−1, xi], [xi, yi], [yi, xi+1], . . .) is a

K ′-quasigeodesic.

3.2 Schottky set

Using the previous concatenation lemmata, we can construct arbitrarily many independent directions

out of two independent BGIP isometries.

Lemma 3.2.1. Let K > 1 and κ = (xi)i∈Z, η = (yi)i∈Z be independent K-BGIP axes. Then κ projects

onto η small. More precisely, there exists K ′ > 0 such that

diam (x0 ∪ πκ(η)) < K ′.

Moreover, the projection of the forward half of γ onto its backward half is also small. More precisely,

K ′ can be chosen so that

diam
(
x0 ∪ π{xi}i≥0

({xi}i≤0)
)
< K ′.

Proof. Let K1 = K ′(K) be as in Lemma 2.2.5. Let l ∈ Z be such that xl ∈ πκ(y0). For the first assertion,

suppose to the contrary and let ni,mi ∈ Z be such that |mi| ≥ i and xmi ∈ πκ(yni). Note that |ni|
escapes to infinity, as ∪|k|≤Mπκ(yk) is finite for each M . Moreover, since κ, η are K-quasigeodesics,

we have d(xl, xmi), d(y0, yni) > K for large enough i. For those i’s, Lemma 2.2.5 implies that xmi

is contained in the K1-neighborhood of [y0, yni ], which is contained in the K1-neighborhood of η. In

particular, we have d(xmi , yn′i) < 2K1 for some n′i ∈ Z. This contradicts the independence of κ and η,

and we are led to the conclusion.

The second assertion can be deduced in a similar way, using the fact that the forward and the

backward half-paths diverge from each other.

In practice, we employ the restrictions of κ and η on various sets J of consecutive integers. This

necessitates the following modification.

Lemma 3.2.2. Let K > 1 and κ = (xi)i∈Z, η = (yi)i∈Z be independent K-BGIP axes. Then there exists

K ′ > 0 such that the following hold:

1. κ|J := (xi)i∈J , η|J := (yi)i∈J are K ′-BGIP axes for any set J of consecutive integers;

2. for any set J of consecutive integers that contains 0, we have

diam
(
x0 ∪ πκ|J (η)

)
< K ′;

3. for any positive integer M we have

diam
(
x0 ∪ π{x0,...,xM}({xi : i ≤ 0})

)
< K ′

Proof. The first item is a part of Lemma 2.2.6; let K1 = K ′(K) be as in Lemma 2.2.6 and K2 = K ′(K1)

be as in Lemma 2.2.5. Let also l ∈ Z be such that yl ∈ πη(x0) and let d(x0, yl) = D.
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Figure 3.3: Axes associated with a sequence of isometries s = (φ1, φ2, φ3, φ4). Points inside the darker

shadow constitute Γ(s), and those inside the lighter shadow constitute Γ2(s). Points inside the dashed

region constitute Γ−1(s).

The proof for the second item is almost identical to the proof of the previous lemma. First suppose

to the contrary; we take ni,mi ∈ Z and sets of consecutive integers Ji containing 0 such that |mi| ≥ i

and xmi belongs to the projection of yni onto κ|Ji . Again, for each M we have⋃
|i|≤M, 0∈J⊆Z

π{xj :j∈J}(yi) ⊆
⋃
|i|≤M

{xj : d(yi, xj) ≤ d(yi, x0)}

⊆
⋃
|i|≤M

{xj : d(x0, xj) ≤ dsym(x0, yi)}

⊆ {xj : d(x0, xj) ≤ D + 2KM + 2K},

which is a finite set. Hence, |ni| necessarily escapes to infinity. Moreover, since κ, η are K-quasigeodesics,

we have d(x0, xmi), d(yl, yni) > K for large enough i. Moreover, κ|Ji have the K1-contracting for all

i. Lemma 2.2.5 then asserts that xmi is within the K2-neighborhood of [x0, yni ], since it has large

projection on π|Ji . Moreover, it is contained in the (2K2 + D)-neighborhood of η. We thus have

d(xmi , yn′i) < 3K2 +D for some n′i, which contradicts the independence of κ and η. Hence we are led to

the conclusion. Similar trick works for the third item.

We often construct a path from a sequence of isometries by applying them to the reference point o.

Given a sequence s = (φi)
k
i=1 of isometries of X, we denote the product of its entries φ1 · · ·φk by Π(s).

We also define the reversal of s by s−1 := (φ−1
k−i+1)ki=1, i.e.,

s = (φ1, . . . , φk) ⇔ s−1 = (φ−1
k , . . . , φ−1

1 ).

Now let

xnk+i := Π(s)nφ1 · · ·φio = (φ1 · · ·φk)nφ1 · · ·φio

for each n ∈ Z and i = 0, . . . , k − 1. We let Γm(s) := (x0, x1, . . . , xmk) when m ≥ 0 and Γm(s) :=

(x0, x−1, . . . , xmk) when m < 0. When m = 1, we usually omit the superscript and write Γ(s) =

(x0, . . . , xk). Finally, let Γ±∞(s) = (xi)i∈Z. Note that Γ−m(s) = Γm(s−1), and Γm(s) is a concatenation

of |m| translates of Γ(s) or its reverse.

We now introduce the notion of Schottky sets. These sets are inspired by the ping-pong dynamics

exhibited by classical Schottky Fuchsian groups. Although the idea of Schottky set has appeared in

geometric group theory for numerous times, we refer to the versions in [BMSS22] and [Gou21] and adapt

them to the current setting.

Definition 3.2.3 (cf. [Gou21, Definition 3.11]). Let K > 0 and S ⊆ GM be a set of sequences of M

isometries. We say that S is K-Schottky if the following hold:
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1. Γm(s) is a K-BGIP axis for all s ∈ S and m ∈ Z;

2. for each x ∈ X, all element s ∈ S except at most 1 satisfies that (x,Γn(s)) is K-aligned for all

n ∈ Z;

3. for each x ∈ X and s ∈ S, if (x,Γn(s)) is not K-aligned for some n > 0 (n < 0, resp.) then

(x,Γm(s)) is K-aligned for all m ≤ 0 (m ≥ 0, resp.).

An intuitive example of a Schottky set is the set S of all sequences of length n in F2 = 〈a, b〉 that

consists of letters a and b (not involving a−1 and b−1). For any infinite ray on F2, there exists at most

1 element s ∈ S that matches the direction. Moreover, s and s−1 diverge early for any s ∈ S. Note also

that the set of the self-concatenations of these sequences also satisfy the same property. This means that

we can make the directions made by two sequences in S to diverge early (compared to their lengths).

This model will help understand the following proposition.

Proposition 3.2.4 (cf. [Gou21, Proposition 3.12]). For each integer N0 > 0, there exists a K-Schottky

set of cardinality N0 in (suppµ)m for some m and K.

Proof. Since µ is a non-elementary measure, there exist independent BGIP isometries a, b ∈ 〈〈 suppµ 〉〉.
By taking suitable powers if necessary, we may assume that a = Π(α), b = Π(β) for some sequences

α, β ∈ (suppµ)N for some N . Then Γ±∞(α), Γ±∞(β) are independent contracting axes.

Let:

• K1 = K ′ be as in Lemma 3.2.2 for Γ±∞(α),Γ±∞(β);

• K2 = D(K1), L2 = L′(K1) be as in Proposition 3.1.4;

• K3 = K ′(K1), L3 = L′(K1) be as in Lemma 3.1.6.

Note here that Γ±∞(α), Γ±∞(β) are unchanged after replacing α, β with their self-concatenations.

Hence, by self-concatenating α and β if necessary, we may assume that N > max(L2, L3). This choice

forces the following: for any x ∈ X, the statements(
x,Γ(α)

)
is K2-aligned,

(
Γ(α), x

)
is K2-aligned

are mutually exclusive. Analogous statements for β are also mutually exclusive. Let us now pick an

integer M such that 2M > N0. Since any subset of a Schottky set is again Schottky, we aim to make a

Schottky set of cardinality 2M .

We will consider the set S′ of sequences of MN isometries that are concatenations of α’s and β’s,

i.e.,

S′ :=
{

(φi)
MN
i=1 ∈ GMN : (φN(k−1)+1, . . . , φNk) ∈ {α, β} for k = 1, . . . ,M

}
.

Given s = (φi)
MN
i=1 ∈ S′, we have defined

xnMN+i(s) = (φ1 · · ·φMN )nφ1 · · ·φio

for n ∈ Z and i = 0, . . . ,MN − 1. We temporarily define sub-axes of the main axis Γ(s), namely,

Γk(s) :=
(
xN(k−1)(s), . . . , xNk(s)

)
,

Γ−k(s) :=
(
x−N(k−1)(s), . . . , x−Nk(s)

)
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for k = 1, . . . ,M . Then for each m, Γm(s) is a concatenation of the translates of Γ(α) and Γ(β). These

translates are K1-BGIP axes whose domains are longer than L2. Moreover, Lemma 3.2.2 implies that:(
Γ−1(γ),Γ(γ′)

)
is K1-aligned for γ, γ′ ∈ {α, α−1, β, β−1} such that γ 6= γ−1. (3.2.1)

Lemma 3.1.6 then implies that Γm(s) is a K3-BGIP axis.

We now fix x ∈ X. Let us first consider the condition:(
x,ΓM (s)

)
is K2-aligned. (3.2.2)

We claim that if an element s ∈ S′ satisfies this condition, then πΓn(s)(x)’s are uniformly bounded for

n ≥ 0. For each n, note that Γn(s) is a concatenation of K1-BGIP axes

(κi)
MN
i=1 =

(
Γ1(s), . . . , ΓM (s), Π(s)Γ1(s), . . . , Π(s)ΓM (s), . . . , Π(s)n−1ΓM (s)

)
.

Thanks to the result in Display 3.2.1, we can apply Proposition 3.1.4. Note that Condition 3.2.2 implies

that
(
ΓM (s), x

)
is not K2-aligned. This means that J0 = J0 (x; (κi)i,K2) and {M + 1, . . . ,MN} are

disjoint. Therefore, πΓn(s)(x) is contained in Γ1(s) ∪ . . . ∪ ΓM (s) = Γ(s) and

diam
(
πΓn(s)(x) ∪ o

)
≤ diam(Γ(s)) ≤ K3MN +K3.

By a similar reason, the condition(
x,Γ−M (s)

)
is K2-aligned (3.2.3)

implies diam
(
πΓn(s)(x) ∪ o

)
≤ diam

(
Γ−1(s)

)
≤ K3MN + K3 for all n ≤ 0. These can be summarized

as follows.

Observation 3.2.5. If an element s ∈ S′ satisfies Condition 3.2.2 and 3.2.3, then

diam
(
πΓn(s)(x) ∪ o

)
< K3MN +K3

holds for all n ∈ Z.

We now consider the case that an element of S′ violates these conditions.

Observation 3.2.6. If an element s = (φi)
MN
i=1 ∈ S′ violates Condition 3.2.2, then all the other elements

s′ = (φ′i)
MN
i=1 ∈ S′ satisfy Condition 3.2.2.

To show this, let k be the first index such that (φN(k−1)+1, . . . , φNk) and (φ′N(k−1)+1, . . . , φ
′
Nk) differ.

By switching the roles of α and β if necessary, we may assume that

(φN(k−1)+1, . . . , φNk) = α, (φ′N(k−1)+1, . . . , φ
′
Nk) = β.

Let us denote xi(s) by xi and xi(s
′) by x′i.

Note that the path(
xMN , xMN−1, . . . , x(k−1)N = x′(k−1)N , x

′
(k−1)N+1, . . . , x

′
kN

)
is the concatenation of K1-BGIP axes

(ηi)
M−k+2
i=1 :=

(
Γ̄M (s), Γ̄M−1(s), . . . , Γ̄k(s),Γk(s′)

)
.
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Figure 3.4: Schematics for Lemma 3.2.4. Three solid lines represent Γ(s), Γ(s′) and Γ−1(s′) in the

clockwise order. The upper dashed line represents the concatenation of Γ̄M (s), . . . , Γ̄1(s) and Γ̄−1(s′).

The lower dashed line represents the concatenation of Γ̄M , . . . , Γ̄k(s) and Γk(s′).

(See the lower dashed line in Figure 3.4.) Each pair of consecutive axes are of the form
(
gΓ̄−1(γ), gΓ(γ′)

)
for some γ, γ′ ∈ {α, β, α−1, β−1} such that γ 6= γ′. Lemma 3.2.2 implies that such pair is K1-aligned,

which allows us to apply Proposition 3.1.4.

In particular, since we are assuming that
(
Γ̄M (s), x

)
is not K2-aligned, J0 = J0(x; (ηi)i,K2) = {1}

and (x, ηM−k+2) = (x,Γk(s′)) is K2-aligned. We then apply Proposition 3.1.4 to Γn(s′), a concatenation

of K1-BGIP axes

(κ′i)
MN
i=1 =

(
Γ1(s′), . . . , ΓM (s′), Π(s′)Γ1(s′), . . . , Π(s′)ΓM (s′), . . . , Π(s′)n−1ΓM (s′)

)
.

Then J ′0 = J0(x; (κ′i)i,K2) and {k + 1, . . . ,MN} are disjoint, which implies Condition 3.2.2 for s′ and

πΓn(s′)(x) ∈ Γ1(s′) ∪ · · · ∪ Γk(s′) ⊆ Γ(s′),

diam
(
πΓn(s′)(x) ∪ o

)
≤ diam(Γ(s′)) ≤ K3MN +K3

for all n ≥ 0.

A similar argument leads to the following.

Observation 3.2.7. If s ∈ S′ violates Condition 3.2.3, then all the other elements in S′ satisfy Condition

3.2.3.

Our next claim concerns the third item.

Observation 3.2.8. If s = (φi)
MN
i=1 ∈ S′ violates Condition 3.2.2, then all elements s′ = (φ′i)

MN
i=1 ∈ S′

(including s′ = s) satisfy Condition 3.2.3.

To show this, observe that the path(
xMN , xMN−1, . . . , x0 = o, x′−1, . . . , x

′
−N
)
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is the concatenation of K0-BGIP axes Γ̄M (s), . . ., Γ̄1(s) and Γ̄−1(s′). (See the upper dashed line in

Figure 3.4.) This sequence is again K1-aligned, even in the case s = s′, by Lemma 3.2.2. As before, we

can apply Proposition 3.1.4 and deduce that πΓ−1(s′)(x)∪ o has diameter less than K2. Now Proposition

3.1.4 in turn implies

πΓ−n(s′)(x) ∈ Γ−1(s′), diam(πΓ−n(s′)(x) ∪ o) ≤ diam(Γ−1(s′)) ≤ K3N +K3

for all n ≥ 0.

An analogous statement follows.

Observation 3.2.9. If s = (φi)
MN
i=1 ∈ S′ violates Condition 3.2.3, then all elements s′ = (φ′i)

MN
i=1 ∈ S′

(including s′ = s) satisfy Condition 3.2.2.

Let us summarize the observations and finish the proof. We take K = K3MN +K3. The first item

was established before. The second item is equivalent to saying that both Condition 3.2.2 and Condition

3.2.3 are satisfied by all but at most 1 element of S′. The third item is equivalent to saying that Condition

3.2.2, 3.2.3 cannot be violated at the same time by any element of S′. We have the following 4 cases.

• Every s ∈ S′ satisfies Condition 3.2.2 and Condition 3.2.3: then clearly the second and the third

items hold.

• Some s ∈ S′ violates Condition 3.2.2: then Condition 3.2.2 is satisfied by all the other elements of

S′ and Condition 3.2.3 is satisfied by all elements of S′:

• Some s ∈ S′ violates Condition 3.2.3: then Condition 3.2.3 is satisfied by all the other elements of

S′ and Condition 3.2.2 is satisfied by all elements of S′.

• Some s ∈ S′ simultaneously violates Condition 3.2.2 and 3.2.3; this case is ruled out by the previous

2 cases.

In all cases, we conclude that the second and the third items hold.

The following property is immediate.

Lemma 3.2.10. Let S be a K-Schottky set in Gm for m > 2K2. Then for any s, s′ ∈ S, we have

diam
(
πΓ−1(s′)(Π(s)o) ∪ o

)
< K, diam

(
πΓ(s)(Π(s′)−1o) ∪ o

)
< K. (3.2.4)

Proof. For the first inequality, we observe that

diam
(
πΓ(s)(Π(s)o) ∪ o

)
= diam (Π(s)o ∪ o) ≥ m/K −K > K.

Hence, we observe that

diam
(
πΓn(s′)(Π(s)o) ∪ o

)
≤ K

holds for all n if s 6= s′ (Property (2)), and for n ≤ 0 if s = s′ (Property (3)); hence the first inequality.

We can analogously deduce the second inequality.

We will use Schottky sets to guarantee alignments. In order to fully utilize the previous alignment

lemmata, it is important to prepare Schottky sets whose elements have sufficiently long domains.

From now on we fix an integer N0 > 410. Let K0 := K(N0) be as in Proposition 3.2.4, and

27



• K1 := K ′(K0) be as in Lemma 2.2.4,

• K2 := K ′(K0) be as in Lemma 2.2.5,

• K3 := K ′(K0) be as in Lemma 2.2.7,

• D0 := D(K0,K0 +K1 +K2 +K3) be as in Lemma 3.1.2 and 3.1.3;

• for i = 1, 2, Di := D(K0, Di−1), Li := L(K0, Di−1) be as in Lemma 3.1.2, 3.1.3 and

Proposition 3.1.4;

• E0 := E(K0, D2), L3 := L(C0, D2) be as in Proposition 3.1.5.

Let us now fix a K0-Schottky set S ⊆ (suppµ)M0 of cardinality at least N0. Note that

the n-self-concatenations of elements of S also comprise a K0-Schottky set. Hence, we may

assume that

M0 > L1 + L2 + L3 + 20K0(K0 + E0). (3.2.5)

From now on, K0-BGIP axes of the form Γm(s) for s ∈ S and m 6= 0 are called Schottky axes.
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Chapter 4. Pivotal times and pivoting

4.1 Pivotal times

We adapt Gouëzel’s pivotal time construction in [Gou21] to our setting. The original versions of the

lemmata here are proved in [Gou21]; see also [Cho21a].

Let (wi)
∞
i=0, (vi)

∞
i=1 be isometries in G. Now given a sequence

s = (α1, β1, γ1, δ1, . . . , αn, βn, γn, δn) ∈ S4n,

we first define

ai := Π(αi), bi := Π(βi) ci := Π(γi), di := Π(δi). (4.1.1)

We then consider isometries that are subwords of

w0a1b1v1c1d1w1 · · · akbkvkckdkwk · · · .

More precisely, we set the initial case w+
−1,2 := id and define

w−i,2 := w+
i−1,2wi−1, w−i,1 := w−i,2ai, w−i,0 := w−i,2aibi,

w+
i,0 := w−i,2aibivi, w+

i,1 := w−i,2aibivici, w+
i,2 := w−i,2aibivicidi

and the translates y±i,t = w±i,to of o by them. We also employ notations

Υ(αi) := w−i,2Γ(αi), Υ(βi) := w−i,1Γ(βi),

Υ(γi) := w+
i,0Γ(γi), Υ(δi) := w+

i,1Γ(δi).

for simplicity. We will later consider modified versions of a given sequence s such as s̃ = (α̃i, β̃i, γ̃i, δ̃i)
n
i=1

or s̄ = (ᾱi, β̄i, γ̄i, δ̄i)
n
i=1. We also employ notations analogous to the above for these choices, i.e., ãi, . . .,

d̃i, āi, . . ., d̄i, w̃
±
i,j , w̄

±
i,j and Υ(α̃i), . . ., Υ(δ̃i), Υ(ᾱi), . . ., Υ(δ̄i).

We now define the set of pivotal times Pn = Pn (s, (wi)
n
i=0, (vi)

n
i=1) and an auxiliary moving point

zn = zn (s, (wi)
n
i=0, (vi)

n
i=1) inductively. First set P0 = ∅ and z0 = o. Now given Pn−1 ⊆ {1, . . . , n − 1}

and zn−1 ∈ X, Pn and zn are determined as follows.

(A) When (zn−1,Υ(αn)),
(
Υ(βn), y+

n,1

)
,
(
y−n,0,Υ(γn)

)
and

(
Υ(δn), y−n+1,2

)
are K0-aligned, then we set

Pn = Pn−1 ∪ {n} and zn = y+
n,1.

y−i,2

y−i,1 y−i,0

y+
i,0 y+

i,1

y+
i,2

ai bi

vi

ci
di

wi

Figure 4.1: y±i,k inside a trajectory.
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(B) Otherwise, we seek sequences {i(1) < · · · < i(N)} ⊆ Pn−1 (N > 1) such that(
Υ(δi(1)),Υ(αi(2)),Υ(βi(2)), . . . ,Υ(αi(N)),Υ(βi(N))

)
is D0-aligned and

(
Υ(βi(N)), y

−
n+1,2

)
is K0-aligned.

If exists, let {i(1) < · · · < i(N)} be such a sequence with maximal i(1); we set Pn = Pn−1 ∩
{1, . . . , i(1)} and zn = y−i(N),1. If such a sequence does not exist, then we set Pn = ∅ and zn = o.1

One reason for defining Pn is that it records the Schottky axes aligned along [o, ωn o]. More precisely,

we have:

Lemma 4.1.1. Let Pn = {i(1) < . . . < i(m)}. Then(
o,Υ(αi(1)),Υ(βi(1)),Υ(γi(1)),Υ(δi(1)), . . . , Υ(αi(m)),Υ(βi(m)),Υ(γi(m)),Υ(δi(m)), y

−
n+1,2

)
is a subsequence of a D0-aligned sequence of Schottky axes. In particular, it is D1-aligned.

This is originally from [Gou21, Lemma 5.3]. We first need the following observation:

Observation 4.1.2. For any s ∈ S4n and 1 ≤ i ≤ n, (Υ(αi),Υ(βi)) and (Υ(γi),Υ(δi)) are D0-aligned.

Lemma 4.1.3. Let l < m be consecutive elements in Pk, i.e., l,m ∈ Pk and l = max(Pk∩{1, . . . ,m−1}).

Then there exists a sequence {l = i(1) < . . . < i(M) = m} ⊆ Pk with cardinality M ≥ 2 such that(
Υ(δl),Υ(αi(2)),Υ(βi(2)), . . . ,Υ(αi(M−1)),Υ(βi(M−1)),Υ(αm)

)
is D0-aligned.

Proof. l,m ∈ Pn implies that l ∈ Pl and l,m ∈ Pm. In particular, l (m, resp.) is newly chosen at step l

(m, resp.) by fulfilling Criterion (A). Hence, (Υ(δl), y
−
l+1,2) and (zm−1,Υ(αm)) are K0-aligned (∗), and

zl = y+
l,1. Moreover, we have Pm = Pm−1 ∪ {m} and l = maxPm−1.

If l = m− 1 and m was newly chosen at step m = l+ 1, then zm−1 = zl = y+
l,1 holds. Then Lemma

3.1.2 and (∗) imply that (Υ(δl),Υ(αm)) is D0-aligned.

If l < m − 1, then l = maxPm−1 has survived at step m − 1 by fulfilling Criterion (B); there exist

l = i(1) < . . . < i(M − 1) in Pm−2 (with M − 1 ≥ 2) such that:

•
(
Υ(δi(1)),Υ(αi(2)),Υ(βi(2)), . . . ,Υ(αi(M−1)),Υ(βi(M−1))

)
is D0-aligned;

•
(
Υ(βi(M−1)), y

−
n+1,2

)
is K0-aligned, and

• zm−1 equals y−i(M−1),1, the beginning point of Υ(βi(M−1)).

We have also observed that (zm−1,Υ(αm)) isK0-aligned (∗). Then Lemma 3.1.2 asserts that
(
Υ(βi(M−1)),Υ(αm)

)
is D0-aligned as desired.

Proof of Lemma 4.1.1. Considering the previous lemma, it suffices to prove the following:

•
(
o,Υ(αi(1))

)
is K0-aligned;

• for each 1 ≤ t ≤ m,
(
Υ(αi(t)),Υ(βi(t)),Υ(γi(t)),Υ(δi(t))

)
is D0-aligned;

1When there are several sequences that realize maximal i(1), we choose the maximum in the lexicographic order on the

length of sequences and i(2), i(3), . . ..
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• there exist finitely many Schottky axes Υ(δi(m)) = Υ1, . . . ,ΥM such that
(
Υ1, . . . ,ΥM , y

−
n+1,2

)
is

D0-aligned.

Note that for each t = 1, . . . ,m, i(t) is newly chosen as a pivotal time at step i(t) by fulfilling

Criterion (A). In particular, we have that:

• (Υ(αn),Υ(βn)) is D0-aligned (Observation 4.1.2);

• (Υ(βn),Υ(γn)) is D0-aligned since
(
Υ(βn), y+

n,1

)
and

(
y−n,0,Υ(γn)

)
are K0-aligned (Lemma 3.1.2),

and

• (Υ(γn),Υ(δn)) is D0-aligned (Observation 4.1.2).

This guarantees the second item.

We also note that Pi(1)−1 = ∅. Indeed, any j in Pi(1)−1 is smaller than i(1) and would have survived

in Pi(1) (since what happened at step i(1) was an addition of an element, not a deletion). Since i(1) was

not deleted at any later step, such j would also not be deleted till the end and should have appeared in

Pn. Since i(1) is the earliest pivotal time in Pn, no such j exists. Hence, zi(1)−1 = o and Criterion (A)

for i(1) leads to the first item.

We now observe how i(m) survived in Pn. If i(m) = n, then it was newly chosen at step n by

fulfilling Criterion (A). In particular, (Υ(δn), y−n+1,2) is K0-aligned as desired.

If i(m) 6= n, then it has survived at step n as the last pivotal time by fulfilling Criterion (B). In

particular, there exist {i(m) = j(1) < . . . < j(k)} ⊆ Pn−1 (k > 1) such that

(κi)
2k−1
i=1 =

(
Υ(δj(1)),Υ(αj(2)),Υ(βj(2)), . . . ,Υ(αj(k)),Υ(βj(k))

)
is D0-aligned and

(
Υ(βj(k)), y

−
n+1,2

)
is K0-aligned.

From now on, let us endow the Schottky set S with the uniform measure and consider the product

measure on S4n. In other words, we assume that αi, βi, γi, δi are drawn from S independently. We

now discuss when a new pivotal time is added to the set of pivotal times; this tells us how to pivot the

direction at a pivotal time without affecting the set of pivotal times.

Lemma 4.1.4. For 1 ≤ k ≤ n, s ∈ S4(k−1), we have

P
(

#Pk(s, αk, βk, γk, δk) = #Pk−1(s) + 1
)
≥ 1− 4/N0.

Proof. Recall Criterion (A) for #Pk = #Pk−1 + 1. We will examine the required conditions one-by-one.

First, the condition

diam
(
πΥ(γk)(y

−
k,0) ∪ y+

k,0

)
= diam

(
πΓ(γk)(v

−1
k o) ∪ o

)
< K0 (4.1.2)

depends only on γk. This holds for at least (#S − 1) choices in S.

Similarly, the condition

diam
(
πΥ(δk)(y

−
k+1,2) ∪ y+

k,2

)
= diam

(
πΓ−1(δk)(wko) ∪ o

)
< K0 (4.1.3)

depends only on δk, and holds for at least (#S − 1) choices in S.

Now fixing the choice of γk, the condition

diam
(
πΥ(βk)(y

+
k,1) ∪ y−k,0

)
= diam

(
πΓ−1(βk)(vkcko) ∪ o

)
< K0 (4.1.4)
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Figure 4.2: Schematics for Criteria 4.1.2, 4.1.3, 4.1.4 and 4.1.5.

depends only on βk. This holds for at least (#S − 1) choices in S.

This time, let us fix the choice of s = (α1, β1, γ1, δ1, . . . , αk−1, βk−1, γk−1, δk−1); in particular, w−k,2

and zk−1 are now determined. Then the condition

diam
(
πΥ(αk)(zk−1) ∪ y−k,2

)
= diam

(
πΓ(αk)

(
(w−k,2)−1zk−1

)
∪ o
)
< K0 (4.1.5)

depends on αk. This holds for at least (#S − 1) choices of αk.

In summary, the probability that Criterion (A) holds is at least

#S − 1

#S
· #S − 1

#S
· #S − 1

#S
· #S − 1

#S
≥ 1− 4

N0

Given α1, β1, γ1, δ1, . . ., αk−1, βk−1, γk−1, δk−1, we define the set S̃k of triples (αk, βk, γk) in S3 that

satisfy Condition 4.1.2, 4.1.4 and 4.1.5. Note that S̃k takes up large portion of S3: in the previous proof

we observed that #
[
S3 \ S̃k

]
≤ 3(#S)2. Moreover, for (αk, βk, γk) ∈ S̃k, {(αk, β′k, γk) ∈ S̃k : βk ∈ S}

has at least #S − 1 elements. In addition, S̃k is the set of allowed choices for pivoting:

Lemma 4.1.5 ([Gou21, Lemma 5.7]). Let i ∈ Pk(s) for a choice s = (α1, β1, γ1, δ1, . . . , αn, βn, γn, δn),

and s̄ be obtained from s by replacing (αi, βi, γi) with

(ᾱi, β̄i, γ̄i) ∈ S̃i(α1, β1, γ1, δ1, . . . , αi−1, βi−1, γi−1, δi−1).

Then Pl(s) = Pl(s̄) and S̃l(s) = S̃l(s̄) for each 1 ≤ l ≤ k.

Proof. Since α1, β1, γ1, δ1, . . . , αi−1, βi−1, γi−1, δi−1 are intact, Pl(s) = Pl(s̄) and S̃′l(s) = S̃′l(s̄) hold for

l = 0, . . . , i− 1. At step i, δi satisfies Condition 4.1.3 (since i ∈ Pk(s)) and (ᾱi, β̄i, γ̄i) satisfies Condition

4.1.2, 4.1.4 and 4.1.5. Hence, i is newly added in Pi(s̄) and

Pi(s̄) = Pi−1(s̄) ∪ {i} = Pi−1(s) ∪ {i} = Pi(s).

We also have S̃i(s) = S̃i(s̄) as zi−1, w−i,2 are not affected. Meanwhile, zi is modified into z̄i = ȳ+
i,1 =

gy+
i,1 = gzi, where g := w−i,2āib̄ivic̄i(w

−
i,2aibivici)

−1. More generally, we have

w−l,t = gw−l,t (t ∈ {0, 1, 2}, l > i),

w+
l,0 = gw+

l,0 (l > i),

w+
l,t = gw+

l,t (t ∈ {1, 2}, l ≥ i).

(4.1.6)

We now claim the following for i < l ≤ k:
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1. If s fulfills Criterion (A) at step l, then so does s̄.

2. If not and {i(1) < . . . < i(M)} ⊆ Pl−1(s) is the maximal sequence for s in Criterion (B) at step l,

then it is also the maximal one for s̄ at step l.

3. In both cases, we have Pl(s) = Pl(s̄) and z̄l = gzl.

Assuming the third item for l − 1: Pl−1(s) = Pl−1(s̄) and z̄l−1 = gzl−1, Equality 4.1.6 implies the first

item. In this case we also deduce Pl(s) = Pl−1(s)∪{l} = Pl−1(s̄)∪{l} = Pl(s̄) and z̄l = ȳ+
l,1 = gy+

l,1 = gzl,

the third item for l.

Furthermore, Equality 4.1.6 implies that a sequence {i(1) < . . . < i(M)} in Pl−1(s)∩{i, . . . , l−1} =

Pl−1(s̄) ∩ {i, . . . , l − 1} works for s in Criterion (B) if and only if it works for s̄. Note that i ∈ Pl(s)
since i ∈ Pk(s) and l ≤ k; hence, such sequences exist and the maximal sequence is chosen among

them. Therefore, the maximal sequence {i(1) < . . . < i(M)} for s is also maximal for s̄. We then deduce

Pl(s) = Pl−1(s)∩{1, . . . , i(1)} = Pl−1(s̄)∩{1, . . . , i(1)} = Pl(s̄) and z̄l = ȳ−i(M),1 = gy−i(M),1 = gzl (noting

that i(M) > i), the third item for l.

Since we have z̄i = gzi, induction shows that Pl(s) = Pl(s̄) for each i < l ≤ k. Moreover, Equality

4.1.6 and z̄l−1 = gzl−1 imply that S̃l(s) = S̃l(s̄).

Given 1 ≤ k ≤ n and a partial choice s = (α1, β1, γ1, δ1, . . . , αk, βk, γk, δk), we say that s̄ =

(ᾱ1, β̄1, γ̄1, δ̄1, . . . , ᾱk, β̄k, γ̄k, δ̄k) is pivoted from s if:

• δj = δ̄j for all 1 ≤ j ≤ k,

• (ᾱi, β̄i, γ̄i) ∈ S̃i(s) for each i ∈ Pk(s), and

• (αj , βj , γj) = (ᾱj , β̄j , γ̄j) for each j ∈ {1, . . . , k} \ Pk(s).

Lemma 4.1.5 then asserts that being pivoted from each other is an equivalence relation. For each s ∈ S4k,

let Ek(s) be the equivalence class of s. Our central estimation follows:

Lemma 4.1.6 ([Gou21, Lemma 5.8]). For 1 ≤ k ≤ n, j ≥ 0 and s ∈ S4(k−1), the probability

P
(

#Pk(s̃, αk, βk, γk, δk) < #Pk−1(s)− j
∣∣∣ s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4

)
is less than (4/N0)j+1.

Proof. Let us fix s = (α1, β1, γ1, δ1, . . . , αk−1, βk−1, γk−1, δk−1) ∈ S4(k−1) and

A :=
{

(αk, βk, γk, δk) ∈ S4 : #Pk(s, αk, βk, γk, δk) = #Pk−1(s) + 1
}
.

Then Lemma 4.1.4 implies that P(A |S4) ≥ 1 − 4/N0. Moreover, for (αk, βk, γk, δk) ∈ A we have

Pk−1(s) ⊆ Pk−1(s)∪{k} = Pk(s, αk, βk, γk, δk). Hence, (s̃, αk, βk, γk, δk) is pivoted from (s, αk, βk, γk, δk)

for any s̃ ∈ Ek−1(s). Lemma 4.1.5 then implies that Pk(s̃) = Pk(s) = Pk−1(s) ∪ {k} = Pk−1(s̃) ∪ {k},
and we have

P
(

#Pk(s̃, αk, βk, γk, δk) < #Pk−1(s̃)
∣∣∣ s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4

)
≤ 1− P(A|S4) ≤ 4/N0.

This settles the case j = 0.
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Now let j = 1. The event under discussion becomes void when #Pk−1(s) < 2. Excluding such cases,

let l < m be the last 2 elements of Pk−1(s). For each s̃ ∈ Ek−1(s) and A ⊆ S3 we define

E(s̃, A) :=

s̄ = (ᾱi, β̄i, γ̄i, δ̄i)
k−1
i=1 :

ᾱi = α̃i, γ̄i = γ̃i, δ̄i = δ̃i for all i,

β̄i = β̃i for i 6= m,

(α̃m, β̄m, γ̃m) ∈ A

 .

In other words, we only modify a single choice of β̃m in a way that the modified triple at step m belongs to

A. Then {E(s̃, S̃m(s)) : s̃ ∈ Ek−1(s)} partitions Ek−1(s) by Lemma 4.1.5. Note that for each s̃ ∈ Ek−1(s),

the size of E(s̃, S̃m(s)) is the number of β̄m ∈ S that satisfies Condition 4.1.4 (with γ̃m instead of γm

there); there are at least #S − 1 such choices.

We now fix (αk, βk, γk, δk) ∈ S4 and s̃ = (α̃i, β̃i, γ̃i, δ̃i)
k−1
i=1 ∈ Ek−1(s). Let Ã = Ã(s̃, αk, βk, γk, δk) ⊆

S̃m(s) be the collection of elements (α̃m, β̄m, γ̃m) in S̃m(s) such that β̄m satisfies

diam
(
πΓ−1(β̄m)((w̃

−
m,0)−1w̃−k−1,2akbkvkckdko) ∪ o

)
= diam

(
o ∪ πΓ−1(β̄m)(vmc̃md̃mwm · · · ãk−1b̃k−1vk−1c̃k−1d̃k−1wk−1 · akbkvkckdkwko)

)
< K0.

(4.1.7)

The size of Ã is the number of β̄m ∈ S that satisfies Condition 4.1.4 plus Condition 4.1.7; there are at

least #S − 2 such choices.

We claim that #Pk(s̄, αk, βk, γk, δk) ≥ #Pk−1(s) − 1 for s̄ ∈ E(s̃, Ã). First, since l < m are

consecutive elements in Pk−1(s̄), Lemma 4.1.3 gives a sequence {l = i(1) < . . . < i(M) = m} ⊆ Pk−1

such that (
Υ(δ̄i(1)),Υ(ᾱi(2)),Υ(β̄i(2)), . . . ,Υ(ᾱi(M−1)),Υ(β̄i(M−1)),Υ(ᾱm)

)
is D0-aligned. Moreover, Observation 4.1.2 and Condition 4.1.7 imply that(

Υ(ᾱm),Υ(β̄m)
)
,
(

Υ(β̄m), ȳ−k+1,2

)
are D0-aligned and K0-aligned, respectively. In summary, {l = i(1) < · · · < i(M)} ⊆ Pk−1(s̄) works

for (s̄, αk, βk, γk, δk) in Criterion (B) at step k. This implies Pk(s̄, αk, βk, γk, δk) ⊇ Pk−1(s̄) ∩ {1, . . . , l},
hence the claim.

As a result, for each s̃ ∈ Ek−1(s) we have

P
(

#Pk(s̄, αk, βk, γk, δk) < #Pk−1(s)− 1
∣∣∣ s̄ ∈ E(s̃, S̃m)

)
≤

#
[
E(s̃, S̃m) \ E(s̃, Ã)

]
#E(s̃, S̃m)

≤ 2

#S − 1
≤ 3

N0
.

Since E(s̃, S̄m)’s for s̃ ∈ Ek−1(s) partition Ek−1(s), we deduce

P
(

#Pk(s̃, αk, βk, γk, δk) < #Pk−1(s)− 1
∣∣∣ s̃ ∈ Ek−1(s)

)
≤ 3

N0
.

Moreover, the above probability vanishes when (αk, βk, γk, δk) ∈ A. Since P(A |S4) ≥ 1 − 4/N0, we

deduce that

P
(

#Pk(s̃, αk, βk, γk, δk) < #Pk−1(s)− 1
∣∣∣ s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4

)
≤ 4

N0
· 3

N0
≤
(

4

N0

)2

.
(4.1.8)
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Now let j = 2. We similarly discuss only for s such that #Pk−1(s) ≥ 3; let l′ < l < m be the last 3

elements. For (ᾱm, β̄m, γ̄m) ∈ S3 we define

s′(ᾱm, β̄m, γ̄m) := (α1, β1, γ1, δ1, . . . , ᾱm, β̄m, γ̄m, δm, . . . , αk−1, βk−1, γk−1, δk−1).

In other words, s′(ᾱm, β̄m, γ̄m) is obtained from s by replacing αm with ᾱm, βm with β̄m and γm with

γ̄m. We then define

A1 :=

{(
ᾱm, β̄m, γ̄m,

αk, βk, γk, δk

)
∈ S̃m(s)× S4 : #Pk

(
s′(ᾱm, β̄m, γ̄m), αk, βk, γk, δk

)
≥ #Pk−1(s)− 1

}
.

Equivalently, we are requiring

Pk−1(s) ∩ {1, . . . , l} ⊆ Pk (s′, αk, βk, γk, δk) .

(This equivalence relies on the fact Pk−1(s′) = Pk−1(s) due to Lemma 4.1.5.)

Observation 4.1.7. Let

s̃ = (α̃i, β̃i, γ̃i, δ̃i)
k−1
i=1 ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4.

Then (α̃m, β̃m, γ̃m, αk, βk, γk, δk) ∈ A1 if and only if #Pk(s̃, αk, βk, γk, δk) ≥ #Pk−1(s)− 1.

To see this, suppose first that (α̃m, β̃m, γ̃m, αk, βk, γk, δk) ∈ A1. Then (s̃, αk, βk, γk, δk) is pivoted

from
(
s′(α̃m, β̃m, γ̃m), αk, βk, γk, δk

)
, as the former choice differs from the latter choice only at entries

(αi, βi, γi)’s for i ∈ Pk−1(s) ∩ {1, . . . , l} ⊆ Pk (s′, αk, βk, γk, δk). Lemma 4.1.5 then implies that

Pk−1(s) ∩ {1, . . . , l} ⊆ Pk(s′, αk, βk, γk, δk) = Pk(s̃, αk, βk, γk, δk)

and #Pk(s̃, αk, βk, γk, δk) ≥ #Pk−1(s)− 1.

Conversely, suppose #Pk(s̃, αk, βk, γk, δk) ≥ #Pk−1(s)− 1. This amounts to saying

Pk−1(s) ∩ {1, . . . , l} ⊆ Pk(s̃, αk, βk, γk, δk).

Then
(
s′(α̃m, β̃m, γ̃m), αk, βk, γk, δk

)
is pivoted from (s̃, αk, βk, γk, δk), as the former choice differs from

the latter choice only at entries (α̃i, β̃i, γ̃i)’s for i ∈ Pk−1(s) ∩ {1, . . . , l} ⊆ Pk (s̃, αk, βk, γk, δk). Lemma

4.1.5 then implies that

Pk−1(s) ∩ {1, . . . , l} ⊆ Pk(s̃, αk, βk, γk, δk) = Pk(s′, αk, βk, γk, δk)

and (α̃m, β̃m, γ̃m, αk, βk, γk, δk) ∈ A1.

Combining Observation 4.1.7 and Inequality 4.1.8, we deduce

P(A1 | S̃′m(s)× S4)

= P
(

(α̃m, β̃m, γ̃m, αk, βk, γk, δk) ∈ A1 | s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4
)

= P
(

#Pk(s̃, αk, βk, γk, δk) ≥ #Pk−1(s)− 1
∣∣∣ s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4

)
≥ 1−

(
4

N0

)2

.

We now define for s̃ ∈ Ek−1(s) and A ⊆ S3

E1(s̃, A) :=

s̄ = (ᾱi, β̄i, γ̄i, δ̄i)
k−1
i=1 :

ᾱi = α̃i, γ̄i = γ̃i, δ̄i = δ̃i for all i,

β̄i = β̃i for i 6= l,

(α̃l, β̄l, γ̃l) ∈ A

 .
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Then {E1(s̃, S̃l(s)) : s̃ ∈ Ek−1(s)} partitions Ek−1(s) by Lemma 4.1.5. Moreover, for each s̃ ∈ Ek−1(s) we

have #E(s̃, S̃l(s)) ≥ #S − 1.

Now fixing (αk, βk, γk, δk) ∈ S4 and s̃ = (α̃i, β̃i, γ̃i, δ̃i)
k−1
i=1 ∈ Ek−1(s), let Ã1 = Ã1(s̃, αk, βk, γk, δk) ⊆

S̃l(s) be the collection of elements (α̃l, β̄l, γ̃l) that satisfies

diam
(
πΓ−1(β̄l)((w̃

−
l,0)−1w̃−k−1,2akbkvkckdko) ∪ o

)
< K0. (4.1.9)

As before, the size of Ã1 is at least #S − 2.

We now claim that #Pk(s̄, αk, βk, γk, δk) ≥ #Pk−1(s) − 2 for s̄ ∈ E1(s̃, Ã1). First, since l′ < l are

consecutive elements in Pk−1(s̄), Lemma 4.1.3 gives a sequence {l′ = i(1) < . . . < i(M) = l} ⊆ Pk−1

such that (
Υ(δ̄i(1)),Υ(ᾱi(2)),Υ(β̄i(2)), . . . ,Υ(ᾱi(M−1)),Υ(β̄i(M−1)),Υ(ᾱl)

)
is D0-aligned. Moreover, Observation 4.1.2 and Condition 4.1.7 imply that(

Υ(ᾱl),Υ(β̄l)
)
,
(

Υ(β̄l), ȳ
−
k+1,2

)
is D0-aligned and K0-aligned, respectively. In summary, {l′ = i(1) < · · · < i(M)} ⊆ Pk−1(s̄) works

for (s̄, αk, βk, γk, δk) in Criterion (B) at step k. This implies Pk(s̄, αk, βk, γk, δk) ⊇ Pk−1(s̄) ∩ {1, . . . , l′},
hence the claim.

As a result, for each s̃ ∈ Ek−1(s) we have

P
(

#Pk(s̄, αk, βk, γk, δk) < #Pk−1(s)− 2
∣∣∣ s̄ ∈ E1(s̃, S̃l)

)
≤

#
[
E(s̃, S̃l) \ E(s̃, Ã1)

]
#E(s̃, S̃′l)

≤ 2

#S − 1
≤ 3

N0
.

Moreover, Observation 4.1.7 asserts that the above probability vanishes for s̃ and (αk, βk, γk, δk) such

that (α̃m, β̃m, γ̃m, αk, βk, γk, δk) ∈ A1. Since

P
[⋃
{E1(s̃, S̃l)× (αk, βk, γk, δk) : (α̃m, β̃m, γ̃m, αk, βk, γk, δk) /∈ A1}

∣∣∣ Ek−1(s)× S4
]

= P
[
(α̃m, β̃m, γ̃m, αk, βk, γk, δk) /∈ A1

∣∣∣ S̃m(s)× S4
]
≤ (4/N0)2,

we sum up the conditional probabilities to obtain

P
(

#Pk(s̃, αk, βk, γk, δk) < #Pk−1(s)− 2
∣∣∣ s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4

)
≤
(

4

N0

)2

× 3

N0
≤
(

4

N0

)3

.
(4.1.10)

We repeat this procedure to cover all j < #Pk−1(s). The case j ≥ #Pk−1(s) is void.

Corollary 4.1.8 ([Gou21, Lemma 5.9, Proposition 5.10]). When s = (αi, βi, γi, δi)
n
i=1 is chosen from

S4n with the uniform measure, #Pn(s) is greater in distribution than the sum of n i.i.d. Xi, whose

distribution is given by

P(Xi = j) =


(N0 − 4)/N0 if j = 1,

(N0 − 4)4−j/N−j+1
0 if j < 0,

0 otherwise.

(4.1.11)

More generally, the distribution of #Pk+n(s)−#Pk(s) conditioned on the choices of (αi, βi, γi, δi)
k
i=1

also dominates the sum of n i.i.d. Xi.

Moreover, we have P(#Pn(s) ≤ (1− 10/N0)n) ≤ e−Kn for some K > 0.
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Proof. Let {Xi}i be the family of i.i.d. as in Equation 4.1.11 that is also assumed to be independent

from the choice s. Lemma 4.1.4 and Lemma 4.1.6 imply the following: for 0 ≤ k < n and any i,

P
(

#Pk+1(s) ≥ i+ j
∣∣∣#Pk(s) = i

)
≥

 1− 4
N0

if j = 1,

1−
(

4
N0

)−j+1

if j < 0.
(4.1.12)

Hence, there exists a nonnegative RV Uk such that #Pk+1 − Uk and #Pk +Xk+1 have the same distri-

bution.

For each 1 ≤ k ≤ n, we claim that P(#Pk ≥ i) ≥ P(X1 + · · · + Xk ≥ i) for each i. For k = 1, we

have #Pk−1 = 0 always and the claim follows from Inequality 4.1.12. Given the claim for k, we have

P(#Pk+1 ≥ i) ≥ P(#Pk +Xk+1 ≥ i) =
∑
j

P(#Pk ≥ j)P(Xk+1 = i− j)

≥
∑
j

P(X1 + · · ·+Xk ≥ j)P(Xk+1 = i− j)

= P(X1 + · · ·+Xk +Xk+1 ≥ i).

The second assertion follows from a similar induction on {#Pk+l −#Pk}l≥0.

The final assertion holds since Xi’s have finite exponential moments and expectation greater than

1− 9/N0.

4.2 Variations on the pivotal time construction

In this section, we explain two variants of the pivotal times we defined in Section 4.1.

4.2.1 First variation

We fix subsets S1, S2 ⊆ S of cardinality at least N0/4, and a subset A ⊆ G. We then assume that

for each s1 ∈ S1, s2 ∈ S2 and v ∈ A, the two sequences(
v−1o,Γ(s2)

)
,
(
vΠ(s2)o,Γ−1(s1)

)
(4.2.1)

are K0-aligned.

As in Section 4.1, we consider the subwords of

w0a1b1v1c1d1 · · · anbnvncndnwn · · ·

and define w±i,j , y
±
i,j analogously. This time, however, wi’s are chosen from G and vi’s are chosen from A.

Also, we will not fix the choice of (vi)i this time; only (wi)i is fixed. Also, αi, βi’s are chosen from S1 and

γi, δi’s are chosen from S2. In other words, a choice s = (α1, β1, . . . , γn, δn) is drawn from (S2
1 × S2

2)n.

Given a choice s, we construct the set of pivotal times Pn = Pn(s, (wi)i, (vi)i) (with an auxiliary

moving point zn) as in Section 4.1. Then all the lemmata in Section 4.1 are intact, except for some

probabilistic estimates. For example, in Lemma 4.1.4 we now have

P (#Pk(s, αk, βk, γk, δk) = #Pk−1(s) + 1) ≥ 1− 16/N0,

since the choices αk, βk, γk, δk are drawn from S1 or S2, not the entire S. This also affects Lemma 4.1.6

accordingly. Meanwhile, we have the following variant of Lemma 4.1.5:

37



Lemma 4.2.1. Let i ∈ Pk(s,v) for a choice s = (α1, . . . , δn) and v = (v1, . . . , vn). If v′ = (v′1, . . . , v
′
n)

is made from v by replacing vi with an element of A, then Pl(s,v) = Pl(s,v
′) and S̃l(s,v) = S̃l(s,v

′)

for each 1 ≤ l ≤ k.

Proof. Since v1, . . . , vi−1 are intact, Pl(s) = Pl(s̄) and S̃′l(s,v) = S̃′l(s,v
′) hold for l = 0, . . . , i − 1. At

step i, δi satisfies Condition 4.1.3 and ᾱi satisfies 4.1.5 since i ∈ Pk(s,v). Moreover, βi and γi still satisfy

Condition 4.1.2 and 4.1.4 after changing vi into any other element in A, since we assumed Condition

4.2.1. Hence, i is newly added in Pi(s,v
′) and

Pi(s,v
′) = Pi−1(s,v′) ∪ {i} = Pi−1(s,v) ∪ {i} = Pi(s,v

′).

We also have S̃i(s) = S̃i(s̄) as zi−1, w−i,2 are not affected, and Condition 4.1.2, 4.1.4 holds for all βi ∈ S1

and γi ∈ S2 thanks to Condition 4.2.1.

Meanwhile, zi is modified into z̄i = ȳ+
i,1 = gy+

i,1 = gzi, where g := w−i,2aibiv
′
i(w
−
i,2aibivi)

−1. More

generally, we have

w−l,t = gw−l,t (t ∈ {0, 1, 2}, l > i),

w+
l,0 = gw+

l,0 (l > i),

w+
l,t = gw+

l,t (t ∈ {1, 2}, l ≥ i).

(4.2.2)

Now the rest of the proof of Lemma 4.1.5 applies here.

Given a choice s = (α1, . . . , δn) ∈ (S2
1 × S2

2)n and v = (vi)
n
i=1 ∈ An, we say that (s,v′) is v-pivoted

from (s,v) if v′ differs from v only at the pivotal times for (s,v). Then Lemma 4.2.1 tells us that being

v-pivoted from each other is an equivalence relation that preserves the set of pivotal times.

4.2.2 Second variation

Again, we only fix (wi)i and allow (vi)i to vary together with (αi, βi, γi, δi)i. However, we do not

assume conditions on the candidates for βi, γi and vi’s; αi, βi, γi, δi’s are chosen from S and vi’s are

chosen from G.

We employ the same pivot selection rule as in Section 4.1. However, this time, we define the set S̃′k

of quadruples (αk, βk, γk, vk) in S3 ×G that satisfy Condition 4.1.2, 4.1.4 and 4.1.5. Then the proof of

Lemma 4.1.5 implies the following:

Lemma 4.2.2. Let i ∈ Pk(s) for a choice s = (αj , βj , γj , δj , vj)
k
j=1 and s̄ be obtained from s by replacing

(αi, βi, γi, vi) with

(ᾱi, β̄i, γ̄i, v̄i) ∈ S̃′i(αj , βj , γj , vj)i−1
j=1.

Then Pl(s) = Pl(s̄) and S̃′l(s) = S̃′l(s̄) for any 1 ≤ l ≤ k.

Thanks to this lemma, we can define the following pivoting. Given a choice s = (αl, βl, γl, δl, vl)
n
l=1,

we say that s̄ = (ᾱl, β̄l, γ̄l, δ̄l, v̄l)
n
l=1 is pivoted from s in the extended sense if:

• δj = δ̄j for all 1 ≤ j ≤ n,

• (ᾱi, β̄i, γ̄i, vi) ∈ S̃i(s)′ for each i ∈ Pn(s), and

• (αj , βj , γj , vj) = (ᾱj , β̄j , γ̄j , v̄j) for each j ∈ {1, . . . , n} \ Pn(s).

Lemma 4.2.2 then asserts that being pivoted from each other is an equivalence relation.
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4.3 Pivotal times in random walks

Let µS be the uniform measure on S. By taking suitably small α between 0 and 1, we can decompose

µ4M0 as

µ4M0 = αµ4
S + (1− α)ν

for some probability measure ν. We then consider:

• Bernoulli RVs ρi with P(ρi = 1) = α and P(ρi = 0) = 1− α,

• ηi with the law µ4
S , and

• νi with the law ν,

all independent, and define

(g4M0k+1, . . . , g4M0k+4M0
) =

{
νk when ρk = 0,

ηk when ρk = 1.

Then (gi)
∞
i=1 has the law µ∞. We now define Ω to be the ambient probability space on which the above

RVs are all measurable. We will denote an element of Ω by ω. We also fix

• ωk := g1 · · · gk,

• N (k) :=
∑k
i=0 ρi, i.e., the number of the Schottky slots till k, and

• ϑ(i) := min{j ≥ 0 : N (j) = i}, i.e., the i-th Schottky slot.

For each ω ∈ Ω and i ≥ 1 we define

wi−1 := g4M0[ϑ(i−1)+1]+1 · · · g4M0 ϑ(i),

αi := (g4M0 ϑ(i)+1, . . . , g4M0 ϑ(i)+M0
),

βi := (g4M0 ϑ(i)+M0+1, . . . , g4M0 ϑ(i)+2M0
),

γi := (g4M0 ϑ(i)+2M0+1, . . . , g4M0 ϑ(i)+3M0
),

δi := (g4M0 ϑ(i)+3M0+1, . . . , g4M0 ϑ(i)+4M0
).

In other words, ηϑ(i) corresponds to (αi, βi, γi, δi) (with M0 steps each) and wi corresponds to the

products of intermediate steps of νk’s in between ηϑ(i−1) and ηϑ(i). As in Section 4.1, we employ the

notation ai := Π(αi), bi := Π(δi) and so on.

In order to represent ωn for arbitrary n, we set n′ := bn/4M0c−1 and w(n) := g4M0[ϑ(N (n′))+1]+1 · · · gn.

We then have

ωn = w0a1b1c1d1w1 · · · aN (n′)bN (n′)cN (n′)dN (n′)w
(n) (4.3.1)

and we can bring the discussion in Section 4.1 here (with vi’s set as id). As before, we denote by s the

choices of αi, βi, γi, δi and define

P1(ω) = P1

(
(wi)

1
i=0, a1, b1, c1, d1

)
,

P2(ω) = P2

(
(wi)

2
i=0, (ai, bi, ci, di)

2
i=1

)
,

...

(4.3.2)

and

P (n)(ω) = PN (n′)

((
w0, . . . , wN (n′)−1, w

(n)
)
, (ai, bi, ci, di)

N (n′)
i=1

)
.
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Note that P (n)(s) is built using the decomposition in Equation 4.3.1, and its partial sets of pivotal times

are P1(ω), . . ., PN (n′)−1(ω). We finally define

Pn(ω) :=
{

4M0 ϑ(i) : i ∈ P (n)(s)
}
.

Lemma 4.3.1. Let ω be a non-elementary random walk on G. Then Pn(ω) increases linearly outside a

set of exponentially decaying probability. More precisely, there exists K > 0 such that

P
(

#Pm(ω)−#Pm(ω) ≤ K(m− n)
)
≤ 1

K
e−K(m−n)

holds for all 0 ≤ n ≤ m.

Proof. We denote bm/4M0c by m′ and bn/4M0c by n′. Recall that the first model involves inde-

pendent RVs {ρi, ηi, νi}’s. We first draw choices of {ρi}mi=1 that determine the values of N (n′) and

{ϑ(1), . . . , ϑ(N (n′))}. Since ρi has uniform exponential moment and uniform positive expectation, N (n′)

increases linearly outside a set of exponentially decaying probability. More precisely, there exists K1 (in-

dependent of m, n) such that for any m,n,

P (N (m′)−N (n′) ≤ K1(m− n)) ≤ 1

K1
e−K1(m−n). (4.3.3)

Let us fix choices of {ρi}mi=1 that makes N (m′)−N (n′) > K1(m− n).

We then draw choices of {νi}mi=1 that determine the values of {wi−1}N (m′)
i=1 , w(n) and w(m). Now

the values of {αi, βi, γi, δi}N (m′)
i=1 are determined by the values of {ηϑ(1), . . . , ηϑ(N (m′))}, which follow the

law of µ
4N (n′)
S . Now Corollary 4.1.8 provides a constant K2 > 0 such that the following holds:

P
(

#Pm(ω)−#Pn(ω) ≤ K2(m− n)
)

≤ P
(

#P (m)(ω)−#PN (n′)−1(ω) ≤ K2(m− n) + 1
)

≤ 1

K2
e−K2(N (m′)−N (n′)) ≤ 1

K2
e−K2K1(m−n).

Here, the first inequality is due to the relationship

#Pn(ω) = #P (n)(ω) ≤ #PN (n′)−1(ω) + 1.

Combined with Inequality 4.3.3, this yields the desired conclusion.

We now arrive at the first description of the escape rate.

Corollary 4.3.2. Let ω be a non-elementary random walk on G. Then there exists K > 0 such that

P
(
d(o, ωn o) ≤ Kn

)
≤ 1

K
e−Kn.

Proof. Lemma 4.1.1 tells us that there exists a sequence of Schottky axes (κl)
M
l=1 with M > 4#Pn(ω)

such that (o, κ1, . . . , κM , ωn o) is D0-aligned. Proposition 3.1.5 then tells us that

d(o, ωn) ≥
[(

M0

K0
−K0

)
− 3E0

]
· (4#Pn(ω)) ≥ 4E0#Pn(ω).

By combining this with Lemma 4.3.1, we arrive at the desired conclusion.

Corollary 4.3.2 even implies

P (min{#Pk(ω) : k ≥ n} ≤ Kn) ≤ 1

K
e−Kn
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for some K > 0. We now claim that if #Pk(ω) ≥ Kn for all k ≥ n, then Pn(ω), Pn+1(ω), . . . all possess

the same first Kn− 1 pivotal times. Suppose to the contrary that for some k ≥ n, Pk(ω) does not start

with the first Kn− 1 pivotal times of Pn(ω).

Since the complete set of pivotal times P (n)(ω) has at least Kn elements, PN (n′)−1(ω) has at least

Kn− 1 elements. Let i1, . . . , idKn−1e be the first dKn− 1e elements of PN (n′)−1.

We now note that one of {PN (n′)(ω), . . . , PN (k′)−1(ω), P (k)(ω)} becomes a proper subset of {i1, . . . , idKn−1e};
otherwise all of i1, . . . , idKn−1e survives in P (k)(ω) and leads to a contradiction. If P (k) is so, then we have

a contradiction #Pk(ω) = #P (k)(ω) < Kn− 1. Now suppose that Pl(ω) is so for some N (n′) ≤ l < k.

Since Pl(ω) = P (4M0 ϑ(l))(ω), we have

#P4M0 ϑ(l)(ω) = #Pl < Kn− 1, (4.3.4)

#P4M0 ϑ(l+1)(ω) = #Pl+1 ≤ Pl(ω) + 1 < Kn. (4.3.5)

Note that 4M0 ϑ(l + 1) > n, since otherwise we have a contradiction, namely, N (bn/4M0c) ≥ l + 1 >

B(n′). However, Inequality 4.3.5 then also contradicts the assumption. Hence, the claim follows.

Having the argument above in mind, we define

Qn(ω) := ∩k≥n Pk(ω), Q(ω) := ∪nQn(ω) = lim inf Pn(ω)

; we call this the set of eventual pivotal times. We have proven:

Lemma 4.3.3.

P(#Qn(ω) ≤ Kn) ≤ 1

K
e−Kn (4.3.6)

holds for some K > 0.

Suppose now that #Qn(ω) = {i(1) < . . . < i(M)}. Let (κl)
4M
l=1 be the sequence of Schottky axes at

pivotal times in Qn(ω). Then for any k, k′ ≥ n,

(o, κ1, . . . , κ4M , ωk o), (o, κ1, . . . , κ4M , ωk′ o)

are subsequences of D0-aligned sequences; namely, they are D1-aligned. Then the terminating point

ωi(M)+4M0
o of the last axes κ4M is far from o and passed by [o, ωk o] and [o, ωk′ o]. More precisely, we

have

d(o, ωi(M)+4M0
o), d(ωi(M)+4M0

o, o) ≥
[(

M0

K0
−K0

)
− 3E0

]
· 4M ≥ 4E0M

and

d(ωi(M)+4M0
o, [ωk o, o]), d(ωi(M)+4M0

o, [o, ωk′ o]) ≤ E0.

This implies that the Gromov product (ωk o, ωk′ o)o is at least 4E0M − 4E0, and we have:

Corollary 4.3.4 ([Gou21, Proposition 4.13]). There exists K > 0 such that the following hold:

P
(

inf
k,k′≥n

(ωk o, ωk′ o)o ≤ Kn
)
≤ 1

K
e−n/K . (4.3.7)

4.4 Some other models

Later, we will use two other models. The first model uses the same framework but with a different

decomposition. Namely, first fix another probability measure µ′ such that 0 ≤ µ′ ≤ cµM ′ holds for some

c,M ′ > 0, and consider:

µ(4M0+M ′) = α(µ2
S × µ′ × µ2

S) + (1− α)ν
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for some 0 < α < 1 and ν. ρi, ηi, νi are defined analogously.

The second model begins with the decomposition

µ2M0 = α(µS × µS) + (1− α)ν (4.4.1)

for some 0 < α < 1 and non-elementary ν. This time we consider:

• Bernoulli RVs ρi with P(ρi = 1) = α and P(ρi = 0) = 1− α,

• ηi with the law of µ2
S ,

• νi with the law of ν, and

• ξi with the law of µ2M0 ,

all independent. Fixing a large constant Ksleep > 0, we define a family {tj , t′j}∞j=1 of RVs as follows. t1

is the first time i with ρi = 1, and t′1 := min{i > t1 +Ksleep : ρi = 1}. Inductively, we define

tk := min{i > t′k−1 : ρi = 1}, t′k := min{i > tk +Ksleep : ρi = 1}.

We then define

(g2M0k+1, . . . , g2M0k+2M0
) :=


ηk when k ∈ {tj , t′j}∞j=1

ξk when tj + 1 ≤ k ≤ tj +Ksleep for some j

νk otherwise.

Then (gi)
∞
i=1 has the law of µ∞ [Gou21, Claim 5.11]. We also set ωk := g1 · · · gk. This time, however,

we define

N (k) := #{j ≥ 1 : t′j < k}.
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Chapter 5. Deviation inequalities

In this chapter, we establish deviation inequalities. In order to derive deviation inequalities, we seek

an (eventual) pivotal time at which the Schottky segment will witness two sides of the triangle made by

points. This will make the triangle ‘thin’ and guarantee that the Gromov product is bounded by the

progress made till the pivotal time. Such a pivotal time will appear before the n-th step outside a set of

exponentially decaying probability. Using this exponential bound, we will estimate the p-moment and

the 2p-moment of the Gromov product.

5.1 Pivoting for a pair of independent paths

In this section, together with the K0-Schottky set S, we consider its reflection

Š := {s−1 : s ∈ S} = {(φ−1
M0
, . . . , φ−1

1 ) : (φ1, . . . , φM0
) ∈ S}.

As in Section 4.1, we fix isometries (wj)
∞
j=0, (vj)

∞
j=1, (w̌j)

∞
j=0 and (v̌j)

∞
j=1. We then draw choices s =

(αj , βj , γj , δj)
n
j=1 ∈ S4n and š = (α̌j , β̌j , γ̌j , δ̌j)

n
j=1 ∈ Š4n, and construct the set of pivotal times on the

words
w = w0a1b1v1c1d1 · · · anbnvncndnwn,

w̌ = w̌0ǎ1b̌1v̌1č1ď1 · · · ǎnb̌nv̌nčnďnw̌n

separately. Here, recall the notations w±i,j and Υ(αj), . . . ,Υ(δj); analogous notations are employed for

the path ω̌, e.g., Υ(α̌1) = w̌0Γ(α1), Υ(β̌1) = w̌0ǎ1Γ(β1), etc.

Let E , Ě be equivalence classes made by the pivoting for ω and ω̌, respectively. Let also

P (E) = {i(1) < i(2) < . . .}, P (Ě) = {̌i(1) < ǐ(2) < . . .}.

We will now construct

S∗1 (š, s) := S∗1 ,

Š∗1 (š, s) := Š∗1 (αǐ(1)),

S∗2 (š, s) := Š∗2 (α̌i(1), β̌ǐ(1), γ̌ǐ(1), αi(1), βi(1), γi(1)),

Š∗2 (š, s) := Š∗2 (α̌ǐ(1), β̌ǐ(1), γ̌ǐ(1), αi(1), βi(1), γi(1), αi(2)),

...

for 1 ≤ k ≤M . We first consider

φk := (w̌−
ǐ(k),2

)−1w−i(k),2 = w̌−1
ǐ(k)

ď−1
ǐ(k)−1

č−1
ǐ(k)−1

· · · w̌−1
0 · w0a1b1v1c1d1 . . . wi(k).

Then S∗k(š, s) and Š∗k(š, s) are defined as follows.

S∗k(š, s) :=
{
αi(k) ∈ S :

(
φ−1
k o,Γ(αi(k))

)
is K0-aligned

}
:=
{
αi(k) ∈ S :

(
y̌−
ǐ(k),2

,Υ(αi(k))
)

is K0-aligned
}
,

Š∗k(š, s) :=
{
α̌ǐ(k) ∈ S :

(
φkai(k)o,Γ(α̌i(k))

)
is K0-aligned

}
:=
{
α̌ǐ(k) ∈ S :

(
y−i(k),1,Υ(α̌ǐ(k))

)
is K0-aligned

}
.
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o

y−i(1),2

y−i(2),2

φ1

φ2

w′0

vi(1)

w′1

vi(2)

αi(1)

βi(1)

αi(2)

βi(1)

y̌−i(1),2

y̌−i(2),2

w̌′0

v̌i(1)

w̌′1

v̌i(2)

α̌i(1)

β̌i(1)

α̌i(2)

β̌i(1)

w′0 := w−i(1),2

w′1 :=
(
w+
i(1),2

)−1

w−i(2),2

...

Figure 5.1: Defining φk’s used in the pivoting for a pair of independent paths.

Then the property of Schottky sets imply that S\S∗k , S\Š∗k ’s consist of at most 1 element each. Moreover,

Lemma 3.1.2 says that
(

Ῡ(α̌ǐ(k)),Υ(αi(k))
)

is D0-aligned when αi(k) ∈ S∗k and α̌ǐ(k) ∈ Š∗k . Note also

that S∗k(š, s), Š∗k(š, s) depend only on the pivotal choices at the first k−1 pivotal times and independent

from the pivoting later.

We now estimate the probability that αi(k) ∈ S∗k and α̌ǐ(k) ∈ Š∗k . Given s = (αi(l), βi(l), γi(l))l=1,...,k−1

and š = (α̌ǐ(l), β̌ǐ(l), γ̌ǐ(l))l=1,...,k−1, we define

S†k :=

{
(αi(k), βi(k), γi(k), α̌ǐ(k), β̌ǐ(k), γ̌ǐ(k)) ∈ Si(k)(E)× Šǐ(k)(Ě)

: αi(k) ∈ S∗k(š, s) and α̌ǐ(k) ∈ Š∗k(š, s, α̌ǐ(k))

}

Then we have the following:

Lemma 5.1.1. For each 1 ≤ k ≤ bM/2c, S†k has cardinality at least (#S)6 − 8(#S)5.

Proof. There are at least (#S − 1) choices of γi(k) and γ̌ǐ(k) that satisfy Inequality 4.1.2. Fixing those

choices, at least (#S − 1) choices of βi(k) and β̌ ˇi(k) in S satisfy Inequality 4.1.4. Fixing those choices,

there are at most 1 choice of αi(k) in S that violates Inequality 4.1.5 and at most 1 choice that lies

outside S∗k . If we choose αi(k) in S∗k that satisfies Inequality 4.1.5, now at least (#S − 2) choices of

α̌ǐ(k) satisfy Inequality 4.1.5 and belong to Š∗k . Overall, we conclude that S∗(k) has cardinality at least

(#S − 1)4(#S − 2)2 ≥ (#S)6 − 8(#S)5.

Corollary 5.1.2. If #Pn(E), #Pn(Ě) are greater than m, then we have

P
(
αi(k) ∈ S∗k(š, s), α̌ǐ(k) ∈ Š∗k(š, s) for some k ≤ m

∣∣∣ E × Ě) ≥ 1−
(

8

N0

)m
. (5.1.1)
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×

o
ωi o

ωi+M0
o

ωi Γ(α)

x

ως o

Figure 5.2: Persistent progress and ς. Here, o and x are on the left with respect to the persistent

progress ωi Γ(α), while the loci after ως o are all on the right. Note that we do not restrict the locations

of ω1 o, . . . , ωi−1 o and ωi+M0+1 o, . . . , ως −1 o.

5.2 Persistent progress

Given x ∈ X, we seek an index k such that there exists i ≤ k −M0 such that:

1. α := (gi+1, . . . , gi+M0
) is a Schottky sequence;

2. (o, ωi Γ(α), ωn o) is D1-aligned for all n ≥ k;

3. (x, ωi Γ(α)) is D1-aligned.

Let ς = ς(ω;x) be the minimal index k that satisfies the above. If such an index does not exist, then we

set ς = +∞.

For example, when x = o, ς(ω; o) will be smaller than or equal to n if Qn(ω) 6= ∅. We have previously

constructed the pivotal times in order to guarantee witnessing of [o, ωn o]. We will now perform additional

pivoting at the pivotal times to guarantee the witnessing of [x, ωn o] as well.

Lemma 5.2.1. There exists K,κ > 0 such that for any x ∈ X and gk+1 ∈ G, we have

P
(
ς(ω;x) ≥ k

∣∣ gk+1

)
≤ Ke−κk

for each k.

Proof. We first freeze the choices of g4M0bk/4M0c+1, . . . , g4M0(bk/4M0c+1) (or equivalently, the values of

ρbk/4M0c, νbk/4M0c and ηbk/4M0c) and exclude them from the potential pivotal time. We still have

P(#Qk ≤ κ1k) ≤ K1e
−κ1k.

Let us fix an equivalence class E made by pivoting the choice of βi’s at the first κ1k eventual pivotal

times that appeared before k. Let i(1) < . . . < i(κ1k) be the first κ1k eventual pivotal times in Qk(E),

and j(1) < . . . < j(κ1k) be be the corresponding indices in the fixed words model, i.e., 4M0 ϑ(j(l)) = i(l)

for l = 1, . . . , κ1k.
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Recall that ω ∈ E is then determined by the choices (βj(1), . . . , βj(κ1k), and at each l there are at

least N0 − 1 choices of βj(l) for the pivoting. For any ω ∈ E and l = 1, . . . , κ1k, we have:

• i(l) + 3M0 ≤ k −M0,

• βj(l) = (gi(l)+M0+1, . . . , gi(l)+2M0
) and γj(l) = (gi(l)+2M0+1, . . . , gi(l)+3M0

) are Schottky, and

• (o,Υ(βj(l)), ωn o), (o,Υ(γj(l)), ωn o) are D1-aligned for all n ≥ k by Lemma 4.1.1 and Proposition

3.1.4.

It now suffices to guarantee for most ω ∈ E that (x,Υ(βj(l))) or (x,Υ(γj(l))) is D1-aligned at some l.

Suppose that (x,Υ(γj(κ1k))) is not D1-aligned for some ω ∈ E (∗). Recall:(
Υ(αj(1)),Υ(βj(1)),Υ(γj(1)), . . . ,Υ(γj(κ1k))

)
is a subsequence of a D0-aligned Schottky axes. (∗) and Proposition 3.1.4 imply that (Υ(βj(l)), x) is

D1-aligned for l = 1, . . . , κ1k. In particular, (x,Υ(βj(l))) is not D1-aligned for l = 1, . . . , κ1k. Let us now

consider

ω̃ = (β̃j(1), . . . , β̃j(1)) ∈ E

that differs from ω. Let j(l) be the first index at which ω and ω̃ differ. Then ωi(l)+M0
= ω̃i(l)+M0

holds,

and (x,Υ(β̃j(l))) is K0-aligned by the property of the Schottky set S. Therefore, we have either:

• (x,Υ(γj(κ1k))) is D1-aligned for all ω ∈ E , or;

• (x,Υ(βj(l))) is K0-aligned at some l for all but one ω ∈ E .

In summary, we have

P
(
ς(ω;x) ≥ k

∣∣ E) ≤ 1

#E
≤
(

1

N0 − 1

)κ1k

≤
(

2

N0

)κ1k

.

These conditional probabilities and the probability P{#Qk(ω) ≤ κ1k} together take up an expo-

nentially decaying probability.

For ω ∈ Ω and n, k ≥ ς(ω;x), we have i such that

1. α := (gi+1, . . . , gi+M0) is a Schottky sequence;

2. (o, ωi Γ(α), ωn o) and (o, ωi Γ(α), ωk o) are D2-aligned, and

3. (x, ωi Γ(α)) is D2-aligned.

By Proposition 3.1.5, there exists q ∈ [x, ωn o] that are within d-distance E0 from ωi o. Hence, we have

(x, ωn o)o ≤
1

2

[
d(x, ωi o) + d(ωi o, o) + d(o, ωi o) + d(ωi o, ωn o)

−d(x, q)− d(q, ωn o)

]
≤ d(o, ωi o) + d(q, ωi o) < d(o, ωk o).

Here, the final inequality holds because [o, ωk o] is E0-witnessed by [ωi o, ωi+M0
o] whose length is at least

10E0.

For a similar reason, we have d(o, [x, ωn o]) ≤ d(o, ως o). Hence, we obtain:
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ωi o

ωi+M0
o

ωi Γ(α)

ως o

(ωn o)n

(ω̌no)n

Figure 5.3: Persistent progress and υ. Here, all of the backward loci (ω̌no)n≥0 are on the left of the

persistent progress ωi Γ(α), while the forward loci after ως o are all on the right.

Corollary 5.2.2. There exist κ,K > 0 such that for any x ∈ X and gk+1 ∈ G, we have

P
[

sup
n≥k

(x, ωn o)o ≥ d(o, ωk o)
∣∣∣gk+1

]
≤ Ke−κk,

P
[

sup
n≥k

d(o, [x, ωn o]) ≥ d(o, ωk o)
∣∣∣gk+1

]
≤ Ke−κk.

Let us now define another index for a persistent progress made by two independent paths (ω̌, ω).

Given k, we seek an index i ≤ k −M0 such that:

1. α := (gi+1, . . . , gi+M0
) is a Schottky sequence;

2. (o, ωi Γ(α), ωn o) is D1-aligned for all n ≥ k, and

3. (ω̌n′ o, ωi Γ(α)) is D2-aligned for all n′ ≥ 0.

We define υ = υ(ω̌, ω) by the minimal index k such that the above index i ≤ k exists. In other words,

after index k, the forward path ω deviates forever from the directions made by each point in the backward

path ω̌. Moreover, this deviation is witnessed by some Schottky progress ωi Γ(α) made before index k.

Lemma 5.2.3. There exist κ,K > 0 such that the following estimate holds for all k:

P
(
υ(ω̌, ω) ≥ k

∣∣∣ gk+1, ǧ1, . . . , ǧk+1

)
≤ Ke−κk. (5.2.1)

Proof. We first freeze the choices of g4M0bk/4M0c+1, . . . , g4M0(bk/4M0c+1) and ǧ1, . . . , ǧ4M0d(k+1)/4M0e. We

still have P(#Qk(ω) ≤ κ1k) ≤ K1e
−κ1k and P(#Q2k(ω̌) ≤ κ1k) ≤ K1e

−κ1k.

Now for paths ω with Qk(ω) > κ1k, we pivot at the first κ1k pivotal times; let E be one equivalence

class made from this early pivoting. Let also Ě be an equivalence class of backward paths ω̌’s that have

#Q2k(ω̌) ≥ κ1k, made by pivoting at the first κ1k pivotal times. Note that the pivotal times for ω̌’s are
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always formed after k + 1 since we have frozen the first 4M0d(k + 1)/4M0e steps. Let

Qk(E) = {i(1) < . . . < i(κ1k) < . . .},

Q2k(Ě) = {̌i(1) < . . . < ǐ(κ1k) < . . .},

i(l) = 4M0 ϑ(j(l)), ǐ(l) = 4M0ϑ̌(ǰ(l)) (l = 1, . . . , κ1k).

Now on Ě × E , Corollary 5.1.2 implies that (Ῡ(α̌ǰ(l)),Υ(αj(l))) is K0-aligned for some l ≤ κ1k/2 for

probability at least 1− (8/N0)κ1k/2 on Ě × E . We now freeze the choices at the first κ1k/2 pivotal times

for ω and the entire pivotal times for ω̌ that make (Ῡ(α̌ǰ(l)),Υ(αj(l))) K0-aligned. Then E is divided

into finer equivalence classes E1 made by pivoting at the latter κ1k/2 pivotal times for ω.

Lemma 5.2.1 asserts that for each n′ = 1, 2, . . . , 2k, (ω̌n′ o,Υ(γj(κ1k))) is D1-aligned for all but at

most one choice in E1. Except at most 2k such bad choices, we now have the following:

• i(κ1k) + 4M0 ≤ k,

• (o,Υ(γj(κ1k)), ωn o) is D2-aligned for all n ≥ k,

•
(
ω̌n′ o, Ῡ(γ̌j(l)),Υ(αj(l)),Υ(γj(κ1k))

)
is a subsequence of a D1-aligned sequence for all n′ ≥ 2k, and

•
(
ω̌n′ o,Υ(γj(κ1k))

)
is D2-aligned for n′ = 1, . . . , 2k.

Then (ω̌n′o,Υ(γj(κ1k))) is D2-aligned for all n′ by Proposition 3.1.4, and i(κ1k) + 2M0 ≤ k −M0 works

for ω. Hence,

P
(
υ(ω̌, ω) ≥ k

∣∣∣ Ě × E) ≤ ( 8

N0

)κ1k/2

+ 2k ·
(

3

N0

)κ1k/2

.

We now sum up these conditional probabilities and the excluded probability to conclude.

As before, we deduce

(ω̌n′o, ωn o)o ≤ d(o, ωk o)

for all n′ ≥ 0 and n, k ≥ υ(ω̌, ω). Hence, we deduce:

Corollary 5.2.4. There exist κ,K > 0 such that for any gk+1, ǧ1, . . . , ǧk+1 ∈ G, we have

P

[
sup

n′≥0,n≥k
(ω̌n′o, ωn o)o ≥ d(o, ωk o)

∣∣∣∣∣ gk+1, ǧ1, . . . , ǧk+1

]
≤ Ke−κk.

We similarly define υ̌ = υ̌(ω̌, ω) as the minimal index k that are associated with another index i ≤ k
such that:

1. α̌ := (ǧi+1, . . . , ǧi+M0) is a Schottky sequence;

2. (o, ω̌iΓ(α̌), ω̌no) is D1-aligned for all n ≥ k, and

3. (ωn o, ω̌iΓ(α̌)) is D2-aligned for all n ≥ 0.

Then we similarly have

P
(
υ̌(ω̌, ω) ≥ k

∣∣∣ ǧk+1, g1, . . . , gk+1

)
≤ K2e

−κ2k. (5.2.2)

Note that Inequality 5.2.1 is proven using the pivoting at the first k steps of ω and eventual escape

to infinity of ω, ω̌. This enables us to fix ǧ1, . . . , ǧk+1 and gk+1 in prior: we do not use the randomness

of the initial trajectory of ω̌. Likewise, Inequality 5.2.2 does not rely on the pivoting at the initial k

steps of ω. This will lead to the exponent doubling for the geodesic tracking; roughly speaking, this is

a consequence of the fact that the minimum of two independent RVs with finite p-th moment has finite

2p-th moment.
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5.3 Deviation inequalities

Thanks to Corollary 5.2.2 and 5.2.4, we can establish the following deviation inequality.

Proposition 5.3.1. Suppose that µ has finite p-moments for some p > 0. Then there exists K > 0 such

that for any x ∈ X, we have

E
[
sup
n≥0

(x, ωn o)
p
o

]
, E

[
sup
n,n′≥0

(ω̌n′o, ωn o)
2p
o

]
< K.

Proof. We have observed that supn≥ς(ω;x)(x, ωn o)o is dominated by d(o, ως(ω;x) o). Moreover, for i =

1, . . . , ς(ω;x), (x, ωi o)o and (ωi o, x)o are bounded above by d(o, ωi o). Hence, we have

sup
n

(x, ωn o)
p
o ≤ max

1≤i≤ς(ω;x)
d(o, ωi o)

p

≤
∞∑
i=0

|d(o, ωi+1 o)
p − d(o, ωi o)

p| 1i<ς(ω;x).

Let us now recall that two simple inequalities: for t, s ≥ 0,

|tp − sp| ≤

{
|t− s|p p ≤ 1,

2p
(
|t− s|p + sp−1|t− s|

)
p > 1.

(5.3.1)

Moreover, for t1, . . . , tn ≥ 0 and p > 0, we have

(t1 + . . .+ tn)p ≤ (nmax
i
ti)

p ≤ np(tp1 + . . .+ tpn)

and

E[d(o, ωn o)
p] ≤ np+1 Eµ[d(o, go)p].

Hence, it suffices to show that

E

[ ∞∑
i=0

d(o, gi+1o)
p1i<ς(ω;x)

]
< K1

for some K1 that does not depend on x, and when p > 1, also

E

[ ∞∑
i=0

d(o, ωi o)
p−1d(o, gi+1o)1i<ς(ω;x)

]
< K2

for some K2 that does not depend on x.

The first summation is estimated based on Lemma 5.2.1. Let K3, κ3 be as in Lemma 5.2.1; recall

that K3, κ3 does not depend on x. Then we have

∞∑
i=0

E [d(o, gi+1o)
p1i<ς ] =

∞∑
i=0

E
[
d(o, gi+1o)

p · P
(
ς(ω;x) > i

∣∣ gi+1

)]
≤
∞∑
i=0

E
[
d(o, gi+1o)

p ·K3e
−κ3i

]
≤ 2p (Eµ[d(o, go)p] + Eµ̌[d(o, go)p]) ·K3

∑
i

e−κ3i =: K1

Similarly, for p > 1, we estimate based on a dichotomy. Note that for any gi+1 and c > 0, we have

E
[
d(o, ωi o)

p−11ς>i
∣∣ gi+1

]
≤ E

[
d(o, ωi o)

p−11ς>i1d(o,ωi o)≤c
∣∣ gi+1

]
+ E

[
d(o, ωi o)

p−11ς>i1d(o,ωi o)>c

∣∣ gi+1

]
≤ cp−1 P

(
ς > i

∣∣ gi+1

)
+ E

[
d(o, ωi o)

p · c−1|gi+1

]
≤ cp−1K3e

−κ3i + c−1ip+1 · Eµ[d(o, go)p].

(5.3.2)
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By setting c = eκ3i/2p, we deduce

∞∑
i=0

E
[
d(o, ωi o)

p−1d(o, gi+1o)1i<ς
]

=

∞∑
i=0

E
[
d(o, gi+1o)E

[
d(o, ωi o)

p1ς>i
∣∣ gi+1

]]
≤
∞∑
i=0

E
[
d(o, gi+1o) ·

(
K3e

−κ3i/2 + ip+1e−κ3i/2p Eµ[d(o, go)p]
)]

≤
(
K3 Eµ[d(o, go)p] + Eµ[d(o, go)p]2

)
·
∑
i

ip+1e−κi/2p =: K2.

Clearly, K1 and K2 do not depend on the choice of x.

We now investigate (ω̌n′o, ωn o)o. Let

Ďk :=

k∑
i=1

d(o, ǧio), Dk :=

k∑
i=1

d(o, gio).

It is clear that d(o, ωk o) < Dl for all k ≤ l.
We begin by claiming that

sup
n′,n≥0

(ω̌n′o, ωn o)
2p
o ≤

∞∑
i=0

|Ďp
i+1D

p
i+1 − Ď

p
iD

p
i |
(
1Ďi≥Di1i<υ + 1Ďi≤Di1i<υ̌

)
.

First, note that the RHS is at least Ďp
lD

p
l for

l := min
{
i : 1Ďi≥Di1i<υ + 1Ďi≤Di1i<υ̌ = 0

}
.

(If such minimum does not exist, then the RHS becomes infinity almost surely since Ďk, Dk tends to

infinity almost surely.) Note that either Ďl ≥ Dl or Ďl ≤ Dl holds.

In the first case l ≥ υ must hold. Then for n′ ≥ 0 and n ≥ l, we have

(ω̌n′o, ωn o)
2p
o ≤ d(o, ωl o)

2p ≤ D2p
l ≤ Ď

p
lD

p
l .

Moreover, for n′ ≥ 0 and n ≤ l, we have

(ω̌n′o, ωn o)
2p
o ≤ d(o, ωn o)

2p ≤ D2p
n ≤ D

2p
l ≤ Ď

p
lD

p
l .

In the second case l ≥ υ̌ must hold, and the argument as above implies that (ω̌n′o, ωn o)
2p
o is dominated

by Ďp
lD

p
l , as desired.

Note that for ti, si ≥ 0, we have

|tp1t
p
2 − s

p
1s
p
2| = |t

p
1(tp2 − s

p
2) + (tp1 − s

p
1)sp2|

≤ 2p+q
(
|t1 − s1|p + s

p−np
1 |t1 − s1|np + sp1

)(
|t2 − s2|p + s

p−np
2 |t2 − s2|np

)
+ 2p

(
|t1 − s1|p + s

p−np
1 |t1 − s1|np

)
sp2.(

np =

{
p 0 ≤ p ≤ 1

1 p > 1.

)

Considering this, it suffices to show

E
[
d(o, ǧi+1)n1d(o, gi+1)n2Ďp−n1

i Dp−n2

i

(
1Ďi≥Di1i<υ + 1Ďi≤Di1i<υ̌

)]
< K(i+ 1)2p+2e−κi
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for some K and κ, for 0 ≤ n1, n2 ≤ p such that n1 + n2 ≥ min(p, 1). We will discuss the case n2 > 0;

the other case can be handled in the same way.

Let us first fix ǧi+1 and gi+1. We then compute

E
[
Ďp−n1

i Dp−n2

i 1Ďi≥Di1i<υ
∣∣ ǧi+1, gi+1

]
≤ E

[
Ďp−n1

i Dp−n2

i 1Di>c1Ďi≥Di1i<υ
∣∣ ǧi+1, gi+1

]
+ E

[
Ďp−n1

i Dp−n2

i 1Di≤c1Ďi≥Di1i<υ
∣∣ ǧi+1, gi+1

]
≤ E

[
Ďp−n1

i Dp
i · c

−n2
∣∣ ǧi+1, gi+1

]
+ E

[
Ďp−n1

i · E
[
cp−n21i<υ

∣∣ ǧ1, . . . , ǧi+1, gi+1

]]
≤ E[Ďp−n1

i ] · E[Dp
i ] · c−n2 + E[Ďp−n1

i ] · cp−n2 P
[
υ > i

∣∣ ǧ1, . . . , ǧi+1, gi+1

]
≤ (i+ 1)p−n1+1 Eµ[d(o, go)p−n1 ] · (i+ 1)p+1 Eµ[d(o, go)p] · c−n2

+ (i+ 1)p−n1+1 Eµ[d(o, go)p−n1 ] · cp−n2 ·K3e
−κ3i.

We also observe

E
[
Ďp−n1

i Dp−n2

i 1Ďi≤Di1i<υ̌
∣∣ ǧi+1, gi+1

]
≤ E

[
Ďp−n1

i Dp−n2

i 1Ďi>c1Ďi≤Di1i<υ̌
∣∣ ǧi+1, gi+1

]
+ E

[
Ďp−n1

i Dp−n2

i 1Ďi≤c1Ďi≤Di1i<υ̌
∣∣ ǧi+1, gi+1

]
≤ E

[
Ďp−n1

i Dp−n2

i 1Di>c1i<υ̌
∣∣ ǧi+1, gi+1

]
+ E

[
Ďp−n1

i Dp−n2

i 1Ďi≤c1i<υ̌
∣∣ ǧi+1, gi+1

]
≤ E

[
Ďp−n1

i Dp
i · c

−n2
∣∣ ǧi+1, gi+1

]
+ E

[
Dp−n2

i · E
[
cp−n11i<υ̌

∣∣ ǧi+1, g1, . . . , gi+1

]]
≤ E[Ďp−n1

i ] · E[Dp
i ] · c−n2 + E[Dp−n2

i ] · cp−n1 P
[
υ̌ > i

∣∣ ǧi+1, g1 . . . , gi+1

]
≤ (i+ 1)p−n1+1 Eµ[d(o, go)p−n1 ] · (i+ 1)p+1 Eµ[d(o, go)p] · c−n2

+ (i+ 1)p−n2+1 Eµ[d(o, go)p−n2 ] · cp−n1 ·K3e
−κ3i.

Note that the trick

Ďp−n1

i Dp−n2

i 1Di>c < Ďp−n1

i Dp
i c
−n2

makes use of the fact n2 > 0; it cannot work on the side of Ďi since n1 may vanish in this case.

Throughout the first argument, the factor 1Ďi≥Di did not play any role (though it is necessary for the

case n1 > 0 and n2 = 0); the factor 1Ďi≤Di in the second argument played a role only once, namely,

switching Ďi and Di at the second step.

The proof ends by taking c = eκ3i/2p.

We now record a corollary for the geodesic tracking.

Corollary 5.3.2. Suppose that µ has finite p-moment for some p > 0. Then there exists K > 0 such

that

E
[
min{d(o, ωυ o), d(o, ω̌υ̌o)}2p

]
< K.

Proof. In view of the second half of the previous proof, it suffices to check

min{d(o, ωυ o), d(o, ω̌υ̌o)}2p ≤
∞∑
i=0

|Ďp
i+1D

p
i+1 − Ď

p
iD

p
i |
(
1Ďi≥Di1i<υ + 1Ďi≤Di1i<υ̌

)
.

The RHS is at least Ďp
lD

p
l for l = min{i : 1Ďi≥Di1i<υ + 1Ďi≤Di1i<υ̌ = 0}. Note that either Ďl ≥ Dl or

Ďl ≤ Dl holds. In the first case, we are forced to have l ≥ υ; then

min{d(o, ωυ o), d(o, ω̌υ̌o)}2p ≤ d(o, ωυ o)
2p ≤ D2p

υ ≤ D
2p
l ≤ Ď

p
lD

p
l .

In the second case, we are forced to have l ≥ υ̌; then

min{d(o, ωυ o), d(o, ω̌υ̌o)}2p ≤ d(o, ω̌υ̌o)
2p ≤ Ď2p

υ̌ ≤ Ď
2p
l ≤ Ď

p
lD

p
l

as desired.
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We also discuss the case of finite exponential moment.

Proposition 5.3.3. Suppose that µ has finite exponential moment. Then there exist κ,K > 0 such that

E
[

sup
n,n′≥0

eκ(x,ωn o)o

]
< K, E

[
sup
n,n′≥0

eκ(ω̌n′o,ωn o)o

]
< K.

Proof. We explain the latter inequality; the former one follows from the same argument by replacing the

role of υ with ς.

Note that (ω̌′no, ωn o)o ≤ d(o, ωυ o) for n′ ≥ 0 and n ≥ υ(ω̌, ω), and (ω̌n′o, ωn o)o ≤ d(o, ωn o) ≤ Dυ

for 0 ≤ n ≤ υ(ω̌, ω). This implies

sup
n,n′≥0

eκ(ω̌n′o,ωn o)o ≤ eκDυ ≤
∞∑
i=0

eκDi1i<υ.

Let us estimate the expectation of the summand. Fixing ω = (ǧ1, ǧ2, . . .) and gi+1, we observe

E
[
eκDi1i<υ

]
= E

[
eκDi1Di<c1i<υ

]
+ E

[
eκDi1Di≥c1i<υ

]
≤ E [eκc1i<υ] + E

[
e(A+1)κDie−Aκc

]
≤ eκc ·K3e

−κ3i + e−Aκc Eµ
[
e(A+1)κd(o,go)

]i
.

(5.3.3)

By the assumption, E[emd(o,go)] < M for some m,M > 0. We first take c = c1i for each i, where c1 is

large enough so that ec1m ≥ M4. We then take κ small enough so that 11κ < m and κc1 < κ3/4, and

(A+ 1)κ = m. Then the RHS of Inequality 5.3.3 decays exponentially as desired.

Having established the deviation inequalities, we now observe their consequences.
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Chapter 6. Central limit theorem and geodesic tracking

In this chapter, we prove the part of Theorem C regarding displacement. We begin with the following

proposition.

6.1 Central limit theorem

Proposition 6.1.1. Let ω be the random walk on Mod(Σ) generated by a non-elementary measure µ. If µ

has finite second moment, then there exists a Gaussian law with variance σ(µ)2 to which 1√
n

(d(o, ωn o)−
nλ) converges in law.

Proof. Since µ has finite second moment, Proposition 5.3.1 gives the uniform fourth-moment deviation

inequality. Then Theorem 4.2 of [MS20] asserts that [d(o, ωn o) − λn]/
√
n converges to a Gaussian law

in distribution. For completeness, we explain this result in detail.

We first fix M > 0 and consider the random variables

Yk,i = d(ω2kM(i−1) o, ω2kMi o), bk,i = (ω2kM(i−1) o, ω2kM(i+1) o)ω2kMi
o

(see Figure 6.1) and their balanced versions

Ȳk,i = Yk,i − E[Yk,i], b̄k,i = bk,i − E[bk,i].

Observe the following:

1. each of {Yk,i}i∈Z, {bk,i}i∈2Z+1, {bk,i}i∈2Z is a family of i.i.d;

2. there exists K > 0 such that E[b2k,i] < K;

3. E[b̄2k,i] ≤ E(|bk,i|+ E |bk,i|)2 ≤ 4E[b2k,i] ≤ 4K, and

4. Yk+1,i = Yk,2i−1 + Yk,2i − 2bk,2i−1 for each k, i.

We first show that 1√
n

[E[d(o, ωn o)]− nλ]→ 0 as n→∞. Observe that

1

2kM
E[Yk,1] =

1

2kM

2k∑
i=1

E[Y0,i]−
2

2kM

k−1∑
t=0

2k−t−1∑
i=1

E[bt,2i−1]

 .
The LHS converges to the escape rate λ as k →∞, and the first term of the RHS is always 1

M E[d(o, ωM o)].

Finally, since E[bt,2i−1] <
√
K for any t and i, the second term of the RHS is bounded by 2

√
K/M . Hence

we deduce |
√
nλ− 1√

n
E[d(o, ωn o)]| ≤ 2

√
K/
√
n as desired.

From now on we take M = 2m for positive integers m. Observe that

1√
2k+m

Yk,1 =
1√

2k+m

2k∑
i=1

Y0,i −
2√

2k+m

k−1∑
t=0

2k−t−1∑
i=1

bt,2i−1

 . (6.1.1)

The same type of identity holds for balanced versions also.
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o ω2m o ω2·2m o ωn o

{Y0,i}
{b0,2i−1}
{b1,2i−1}
{b2,2i−1}

Y0;n

b1;n

b3;n

Figure 6.1: {Yk,i}, {Yk;n}, {bk,i} and {bk;n} for 10 · 2m ≤ n ≤ 11 · 2m. Here b0;n = b2;n = 0 since

2m(2bn/2m+1c+ 1) = 11 · 2m ≥ n and 2m+2(2bn/2m+3c+ 1) = 12 · 2m ≥ n.

Let us investigate the error term
∑
t

∑
i b̄t,2i−1. For each t,

∑
i b̄t,2i−1/

√
2k+m is the sum of 2k−t−1

independent variables, each of whose variance is bounded by K/2k+m. Thus, this sum has variance less

than K/2m+t+1 and

P

Et :=


∣∣∣∣∣∣ 1√

2k+m

2k−t−1∑
i=1

b̄t,2i−1

∣∣∣∣∣∣ ≥ 2−m/32−t/4


 ≤ K

2m/3+t/2+1

holds by Chebyshev. Thus, 1√
2k+m

∑
t

∑
i b̄t,2i−1 is bounded by 7 · 2−m/3 outside ∪tEt, where P(∪tEt) ≤

8K · 2−m/3.

Meanwhile, by the classical CLT, 1√
2k+m

∑2k

i=1 Ȳ0,i converges to a Gaussian law N (0, σm) as k

increases. Hence, the random variables 1√
2k

[d(o, ω2k o)−E[d(o, ω2k o)]] are eventually (16K+15) ·2−m/3-

close to N (0, σm) in the Lévy metric. This implies that N (0, σm) are Cauchy, they converge to a

Gaussian law N (0, σ) (and limm σm = σ).

To deal with distributions at general steps, we consider auxiliary variables

Yk;n = d(ω2k+mbn/2k+mc o, ωn o),

bk;n =

{
(ω2k+m+1bn/2m+k+1c o, ωn o)ω2k+m(2bn/2m+k+1c+1)

o if 2k+m(2bn/2m+k+1c+ 1) < n

0 otherwise.

Here, E[b2k;n] ≤ 4K still holds for any k and n. We now realize that

1√
n

[d(o, ωn o)− E[d(o, ωn o)]]

=
1√
n

bn/2mc∑
i=1

Ȳ0,i +
1√
n
Ȳ0;n −

2√
n

∑
2m+t≤n

b̄t;n +

bn/2m+t+1c∑
i=1

b̄t,2i−1

 . (6.1.2)

As n→∞, the first term converges to N (0, σm) in law. The second term converges to 0 in probability,

and in fact, almost surely. This is because finitely many laws {Y0,1;i : i = 0, . . . , 2m − 1} have finite

variances. Moreover, for 2m+t ≤ n we have

V ar

 1√
n

bt;n +

bn/2m+t+1c∑
i=1

bt,2i−1

 ≤ 4K

n
·
[⌊ n

2m+t+1

⌋
+ 1
]
≤ 4K

2m+t
.

This implies that the final term is bounded by 7 · 2−m/3 outside an event with probability at most

16K ·2−m/3. In conclusion, 1√
n

[d(o, ωn o)−E[d(o, ωn o)]] is eventually (32K+15)2−m/3-close to N (0, σm)

for each m. Since N (0, σm)→ N (0, σ), we conclude 1√
n

[d(o, ωn o)− E[d(o, ωn o)]]→ N (0, σ).

Next, we establish the necessary and sufficient condition for the limiting Gaussian distribution to

be non-degenerate.
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Proposition 6.1.2. Let ω be the random walk on Mod(Σ) generated by a non-elementary measure µ

with finite second moment, and let N (0, σ(µ)) be the Gaussian law to which 1√
n

(d(o, ωn o)−nλ) converges

in law. Then σ(µ) is strictly positive if and only if µ is non-arithmetic.

Proof. First assume that µ is non-arithmetic. Then there exists g, h ∈ suppµ∗M that has distinct

translation lengths. By taking powers if necessary, we may assume that d(o, go)− d(o, ho) ≥ 104E0. Let

η, η′ ∈ (suppµ)M be the sequences with Π(η) = g and Π(η′) = h.

Note that at least N0− 2 choices s′ ∈ S satisfies that (g−1o,Γ(s′)) and (h−1o,Γ(s′)) are K0-aligned.

We gather N0/3 choices out of them to define a Schottky subset S2 ⊆ S. Now, we consider the condition

for s ∈ S that: (
gΠ(s′)o,Γ−1(s),

)
,
(
hΠ(s′)o,Γ−1(s)

)
are K0-aligned for all s′ ∈ S2. These are 2N0/3 alignment conditions, and by the property of Schottky

set S, there exist at least N0/3 elements of s ∈ S that satisfy the above condition. We gather them and

name S1 ⊆ S.

We now consider the decomposition

µ4M0+M = α
(
µ2
S1
× (1/2{η} + 1/2{η′})× µ2

S2

)
+ (1− α)ν

for some 0 < α < 1 and a probability measure ν. This is the first model described in Section 4.2, and

we have

P(#Pn(ω) ≤ Kn) ≤ Ke−n/K

for some K > 0. Let E be an equivalence relation made by v-pivoting at the first 2m pivotal times till

step n, where m = blog2Knc. We observe:

Claim 6.1.3. V ar
[
d(o, ωn)

∣∣∣ E] ≥ 900E2
02m ≥ 450E2

0Kn.

Proof of Claim 6.1.3. Let P(E) = {i(1) < . . . < i(2m) < . . .}. We define

x2l−1 := ωi(l)+2M0
o, x2l := ωi(l)+2M0+M o (l = 1, . . . , 2m − 1)

and

x2m+1−1 := ωi(2m)+2M0
o, x2m+1 := ωn o, x0 := o.

We then have (xi, xk)xj < E0 for all i < j < k due to Lemma 4.1.1 and Proposition 3.1.4. Moreover,

d(x2l−2, x2l−1) is always fixed and {d(x2l−1, x2l)}2
m−1
l=1 is the collection of 2m − 1 independent RVs that

have value d(o, go) for probability 1/2 and d(o, ho) for probability 1/2.

We will inductively prove that

V ar
[
d(x2k(l−1), x2kl)

∣∣∣ E] ≥ E2
0

[
900 · 2k + 240 · 2k/2

]
.

for k = 1, . . . ,m+1 and l = 1, . . . , 2m−k+1. The claim follows when k arrives at m+1 and the conditional

variances are summed up.

Let us consider the case k = 1. The value d(x2l−2, x2l) only depends on the choice of (gi(l)+2M0+1, . . . , gi(l)+2M0+M )

between η and η′, each for probability 1/2. If we let

w =

{
(ωi(l−1)+2M0+M )−1 ωi(l)+2M0

= gi(l−1)+2M0+M+1 · · · gi(l)+2M0
1 < l ≤ 2m,

ωi(1)+2M0
= g1 · · · gi(1)+2M0

l = 1,
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we have

V ar[d(x′2l−2, x
′
2l)] =

[
1

2
|d(o, wgo)− d(o, who)|

]2

=
1

4

∣∣∣[d(o, wo) + d(o, go)− 2(o, wgo)wo]− [d(o, wo) + d(o, ho)− 2(o, who)wo]
∣∣∣2

≥ 1

4
(|d(o, go)− d(o, ho)| − 2E0)

2

≥ 2500E2
0 ≥ E2

0 ·
[
1800 + 240

√
2
]

for l = 1, . . . , 2m − 1. For l = 2m we can obtain the conclusion in a similar way by also considering

w′ := gi(l)+2M0+M+1 · · · gn.

Suppose now that Y1 = d(x2k(2l−2), x2k(2l−1)) and Y2 = d(x2k(2l−1), x2k·2l) satisfy the estimation

for some 1 ≤ k ≤ m and 1 ≤ l ≤ 2m−k. We now estimate the variance of Y = d(x2k+1(l−1), x2k+1l) =

Y1 + Y2 − b, where b = 2(x2k(l−2), x2kl)x2k(l−1)
. Since Y1, Y2 are independent and 0 ≤ b ≤ 2E0,

V ar(Y ) ≥ V ar(Y1) + V ar(Y2)− 2E0 ·
√
V ar(Y1)− 2E0 ·

√
V ar(Y2)

= V ar(Y1)

[
1− 2E0√

V ar(Y1)

]
+ V ar(Y2)

[
1− 2E0√

V ar(Y2)

]

≥ 2 · E2
0

[
900 · 2k + 240 · 2k/2

] [
1− 2E0

E0 · 30 · 2k/2

]
≥ 2 · E2

0

[
900 · 2k + 180 · 2k/2 − 16

]
≥ E2

0

[
900 · 2k+1 + 240 · 2(k+1)/2 + (360− 240

√
2)2k/2 − 16

]
holds. Since 360− 240

√
2 ≥ 16, we have the desired conclusion for k + 1.

Since the equivalence classes that have more than Kn pivotal times take up probability at least

1−Ke−n/K , we have

V ar[d(o, ωn o)] ≥ E[V ar[d(o, ωn o)|E ]] ≥ (1−Ke−n/K) · 450E2
0Kn

and σm := 1√
2m

√
V ar(d(o, ω2m o)) is bounded away from zero. This concludes that limn σn = σ is

strictly positive.

Let us now establish the converse direction. Consider the inequality

|d(o, go)− d(o, ho)| ≤ 104E0.

If this holds for all g, h ∈ suppµ∗n for all n, then we have

|d(o, go)− λn| ≤ 104E0

for all g ∈ suppµ∗n for all n and the limiting distribution will be degenerate. In other words, if the limiting

distribution is non-degenerate, then there exist n and g, h ∈ suppµ∗n such that |d(o, go) − d(o, ho)| >
104E0. As in the beginning of the proof, we can find s′ ∈ S such that (g−1o,Γ(s′)) and (h−1o,Γ(s′)) are

K0-aligned, and then find s ∈ S such that(
gΠ(s′)o,Γ−1(s),

)
,
(
hΠ(s′)o,Γ−1(s)

)
are K0-aligned. Then

(Γ(s),Π(s)gΓ(s′)), (Γ(s),Π(s)hΓ(s′))
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are D0-aligned by Lemma 3.1.2, and consequently, that

(o, gΓ(s′), gΠ(s′)Γ(s), gΠ(s′)Π(s)gΓ(s′), . . . , (gΠ(s′)g)n−1gΠ(s′)Γ(s), (gΠ(s′)Π(s))no),

(o, gΓ(s′), hΠ(s′)Γ(s), hΠ(s′)Π(s)hΓ(s′), . . . , (hΠ(s′)h)n−1hΠ(s′)Γ(s), (hΠ(s′)Π(s))no)

are D0-aligned. In particular, the Gromov products among the endpoints are bounded by E0 and we

deduce
|τ(gΠ(s)Π(s′))− d(o, go) + d(o,Π(s)o) + d(o,Π(s′)o)]| ≤ 3E0,

|τ(hΠ(s)Π(s′))− d(o, ho) + d(o,Π(s)o) + d(o,Π(s′)o)]| ≤ 3E0.

In summary, we have obtained two elements gΠ(s)Π(s′), hΠ(s)Π(s′) in the support of µ∗(n+2M0) whose

translation lengths are distinct; µ is non-arithmetic.

6.2 Berry-Esseen type estimates

We now establish a quantitative control of the error term in the CLT.

Theorem 6.2.1. Let ω be the random walk generated by a non-elementary, non-arithmetic measure µ

on G. Suppose that µ has finite third moment, and let Fn(x) be the distribution of [d(o, ωn o)−nλ]/σ
√
n.

Then there exists K > 0 such that

|Fn(x)−N (x)| ≤ K
5
√
n

holds for all x and n.

Proof. Let us denote 1√
n

√
V ar[d(o, ωn o)] by σn. In the proof of Proposition 6.1.1, we proved that:

1. the RVs
(

1√
n
d(o, ωn o)− E[d(o, ωn o)]

)
n>0

converges to N (0, σ) for some σ > 0, and

2. for each k > 0, the RVs { 1√
k2n

d(o, ωk2n o) − E[d(o, ωk2n o)]}n>0 are eventually K/ 3
√
k-close to

N (0, σk).

These two imply that N (0, σk) and N (0, σ) are K/ 3
√
k-close. Moreover, since we have uniform 6-th

moment deviation inequality, we have E |d(o, ωn) − E[d(o, ωn)]|3 ≤ K ′n3/2 for some K ′ > 0 ([MS20,

Theorem 4.9]).

Given n, we fix the following notations throughout the proof:

yi := ωi o (i = 0, . . . , n),

N2 := bn2/5c,

N3 := bn/N2c,

Yi,n := d(y(i−1)N3
, yiN3), (i = 1, . . . , N2)

Y ∗n := d(yN2N3
, yn),

c∗ := (o, yn)yN2N3
.

Next, we define a family of sequences {(m(i; k))2k

i=0}
blog2N2c
k=0 as follows. First we set m(0; 0) = 0, m(1; 0) =

N2. Now given (m(i; k−1))2k−1

i=0 for k ≤ log2N2, we define m(2i; k) := m(i; k−1) for i = 0, . . . , 2k−1 and

m(2i− 1; k) := m(i− 1; k − 1) +

⌊
m(i; k − 1)−m(i− 1; k − 1)

2

⌋
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for i = 1, . . . , 2k−1. Then

2blog2N2c−k ≤ m(i; k)−m(i− 1; k) ≤ 2blog2N2c−k+1 (6.2.1)

holds for k = 0, . . . , blog2N2c and i = 1, . . . , 2k.

From this sequences we define

bi;k := (yN3·m(2i−2;k), yN3·m(2i;k))yN3·m(2i−1;k)

for k = 1, . . . , blog2N2c − 1 and i = 1, . . . , 2k−1. Finally, note that(
m (0; blog2N2c) ,m (1; blog2N2c) , . . . ,m

(
2blog2N2c; blog2N2c

))
is a sequence that increases by 1 or 2 at each step. Let m′(1) < . . . < m′(N2−2blog2N2c) be the numbers

in the sequence that differs with the previous step by 2, and define

ct := (yN3·m′(t), yN3·m′(t)−2)yN3·m′(t)−1
.

We then observe that

d(o, ωn o) = d(o, ωN2N3
o) + d(ωN2N3

o, ωn o)− 2(o, ωn o)ωN2N3
o

= d(o, ωN2N3 o) + Y ∗n − 2c∗

=

N2∑
i=1

Yi,n + 2

blog2N2c∑
k=1

2k−1∑
i=1

bi;k

+ 2

N2−2blog2 N2c∑
i=1

ci

+ Y ∗n − 2c∗.

(6.2.2)

For convenience, let us denote by Ȳ the centered version Y − E[Y ] of an RV Y . We then also have

1

σ
√
n

[d(o, ωn o)− λn] =
1

σ
√
n

N2∑
i=1

Ȳi,n −
2

σ
√
n

blog2N2c∑
k=1

2k−1∑
i=1

b̄i;k

− 2

σ
√
n

N2−2blog2 N2c∑
i=1

c̄i


+

1

σ
√
n
Ȳ ∗n −

2

σ
√
n
c̄∗ +

(
1

σ
√
n
E[d(o, ωn o)]−

√
nλ

σ

)
.

(6.2.3)

We now deal with each term of Equation 6.2.3. First, note that

E
[√

N2

σ
√
n
Ȳ 3
i,n

]
≤ K ′N

3/2
3 N

3/2
2

n3/2
≤ K ′

and

E
[√

N2

σ
√
n
Ȳ 2
i,n

]
≥ 0.9s2N3 ·N2

n
≥ 0.8s2

for large enough n. Then the classical Berry-Esseen estimate asserts that there exists K > 0 (that works

for all large n) such that

|F (1)
n (x)−N ′(x)| ≤ K 1

5
√
n

holds for all x ∈ R, where F
(1)
n (x) is the distribution of 1

σ
√
n

∑N2

i=1 Ȳi,n and N ′ is the distribution of

N
(

0, (σN3
/σ) ·

√
(N2N3)/n

)
. Since N (0, σN3) and N (0, σ) are K/ 5

√
n-close, we have

|N ′(x)−N1(x)| ≤ K
5
√
n

for all x where N1(x) is the distribution of N (0,
√

(N2N3)/n). Moreover, we note 1 −
√
N2N3/n ≤

K/n2/5; this implies |N ′(x) −N (x)| ≤ K/ 5
√
n for all x also. Since N (x) is Lipschitz, it now suffices to

show that the remaining terms are O(1/ 5
√
n) outside a set of probability O(1/ 5

√
n).
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To deal with the second summation, let us recall that {b̄i;k}i is a family of independent RVs that

have uniformly bounded 6th moment. Hence,

E

2k−1∑
i=1

b̄i;k

6

≤ K(2k−1)3

for some K that does not depend on k and n. Using the Chebyshev inequality, we have | 1
σ
√
n

∑
i b̄i;k| <

n−1/52−k/6 outside a set of probability O(n−9/524k). Summing up these effects, we have

P

 2

σ
√
n

blog2N2c∑
k=1

2k−1∑
i=1

b̄i;k

 >
1
5
√
n

 ≤ 2 · 24 log2N2 ·O(n−9/5) = O(n−1/5).

Similarly, the third term of Equation 6.2.3 has 6th moment of order O(n−9/5) and is bounded

by 1/ 5
√
n outside a set of probability O(n−3/5). Moreover, the fourth term is a sum of at most N2

independent RVs with uniformly bounded variance, so its variance is bounded by O(N2/n) = O(n−3/5).

Again, it is bounded by 1/ 5
√
n outside a set of probability O(n−1/5). The fifth term has variance O(1/n)

and can be handled similarly.

Finally, recall the proof of Proposition 6.1.1 that the error arising from the average, i.e., |
√
nλ −

1√
n
E[d(o, ωn o)]|, is of order O(1/

√
n). This finishes the proof.

6.3 Converse of the central limit theorem

Proposition 6.3.1. Let µ be a non-elementary measure on Mod(Σ) with infinite second moment. Then

for any sequence (cn)n of real values, { 1√
n

[d(o, ωn o)− cn]}n does not converge in law.

Proof. For each pair of subsets S1, S2 of S with cardinality N0/2, we define

A(S1, S2) :=
{
g ∈ G : (gΠ(s2)o,Γ−1(s1)) and (g−1o,Γ(s2)) are K0-aligned for all s1 ∈ S1, s2 ∈ S2

}
.

Given an element g of G, there exist at least N0 − 1 Schottky choices s2 ∈ S that makes (g−1o,Γ(s2))

K0-aligned. Choosing N0/2 choices s
(1)
2 , . . . , s

(N0/2)
2 among them, we now want (gΠ(s

(i)
2 )o,Γ−1(s1)) to

be K0-aligned for each i = 1, . . . , N0/2: there exist at least N0/2 Schottky choices realizing them. As a

result, each g ∈ G belongs to A(S1, S2) for some subsets S1, S2 ∈
(

S
N0/2

)
. Hence, we have∑

S1,S2⊆S
#S′=N0/2

∑
g∈A(S1,S2)

µ(g)d(o, go)2 ≥
∑
g∈G

µ(g)d(o, go)2 = +∞,

which implies that

E
[
d(o, go)2 | g ∈ A(S1, S2)

]
= +∞

for some S1, S2 ⊆ S with cardinality N0/2. Let µS1 and µS2 be the uniform measure on S1 and S2,

respectively, and

µ′ :=

{
µ(g)/µ(A(S1, S2)) g ∈ A(S1, S2)

0 otherwise.

Then Eµ′ [d(o, go)2] = +∞ and µ′ ≤ 1
µ(A(S1,S2))µ hold. We now consider the decomposition

µ(4M0+1) = α(µ2
S1
× µ′ × µ2

S2
) + (1− α)ν
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for some 0 < α < 1 and ν. We employ the first model described in Section 4.2 and deduce that

P(#Pn(ω) ≤ Kn) ≤ Ke−n/K

for some K > 0.

We now gather all sample paths with at least 2m pivotal times till n, where m = blog2Knc. By venti-

pivoting at the first 2m−1 pivotal times, these sample paths are grouped into equivalence classes; let E be

such an equivalence class. As in the proof of Proposition 6.1.2, we label P(E) = {i(1) < . . . < i(2m) < . . .}
and define x0, . . . , x2m+1 . Then the following hold.

1. {d(x2l−2, x2l−1)}2ml=1, d(x2m+1−1, x2m) are uniform in the equivalence class E .

2. {d(x2l−1, x2l)}2
m−1
l=1 are i.i.d. with infinite second moment.

3. For any i < j < k, xi and xk are endpoints of a D0-aligned sequence of Schottky segments, one of

whose endpoint is xj . By Proposition 3.1.5, we have (xi, xk)xj < E0 always.

4. For any i < j < k ≤ i′ < j′ < k′, (xi, xk)xj and (xi′ , xk′)xj′ are independent.

Now observe the equality

d(o, ωn o) =

2m∑
i=1

d(x2i−2, x2i−1) + d(x2m+1−1, x2m+1)︸ ︷︷ ︸
I1

+

2m−1∑
i=1

d(x2i−1, x2i)︸ ︷︷ ︸
I2

−2

m∑
l=0

2m−l∑
k=1

(x2l(2k−2), x2l·2k)x
2l(2k−1)︸ ︷︷ ︸

I3

.

The third term I3 is composed of sums of 2m−l independent RVs bounded by E0. Using the estimation

of the variance and Chebyshev’s inequality, one can deduce that

P
(
I3 − E[I3 | E ] > 800E0 · 2m/2

)
≤ 1/2000.

Meanwhile, I1 is constant on E .

At the moment, we consider another random walk ω̌, independent from ω but with the same distri-

bution with ω. We copy the exact same procedure to pick an independent equivalence class Ė and define

ẋl’s, İ1, İ2 and İ3.

We now compare I1 +E[I3 | E ] and İ1 +E[İ3 | Ė ]. Since the situation is symmetric, the former will win

or tie with the latter for probability at least 0.5. We fix a combination (E , Ė) falling into this case and

compare I2 and İ2. Since I2− İ2 is the sum of 2m− 1 i.i.d.s {d(x2i−1, x2i)− d(ẋ2i−1, ẋ2i)}i of symmetric

distribution with infinite second moment, for any K ′ > 0 we have

P(I2 − İ2 ≥ K ′2m/2) ≥ 3/40

for sufficiently large m. We briefly explain this well-known trick (e.g., in Exercise 3.4.3, [Dur19]) for

the sake of completeness. We truncate the RV Yi := d(x2i−1, x2i) − d(ẋ2i−1, ẋ2i) into two parts, Ui =

Yi1|Yi|≤M and Vi = 1|Yi|>M for some large threshold M such that V ar(Ui) ≥ K ′2. Since Yi has infinite

second moment, such a threshold always exists. Now, we note that
∑2m−1
i=1 Yi is greater than K ′

√
n

if
∑2m−1
i=1 Ui is so and

∑2m−1
i=1 Vi is nonnegative. Since the parity of Vi is independent of Ui,

∑
i Vi is

nonegative for probability at least 1/2 for any prior combination of Ui’s. Hence, we obtain

P

(
2m−1∑
i=1

Yi ≥ K ′
√

2m

)
≥ 0.5P

(
2m−1∑
i=1

Ui ≥ K ′
√

2m

)
.
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Here, we can apply CLT on Ui since it has finite variance:

lim
m→∞

P

(
2m−1∑
i=1

Ui ≥ K ′2m/2
)

= lim
m→∞

P

(
1

√
2m − 1

√
V ar(Ui)

2m−1∑
i=1

Ui ≥
K ′√

V ar(Ui)
·
√

2m

2m − 1

)
≥ P(χ ≥ 1) ≥ 0.15,

where χ has the standard normal distribution.

Combining all these, for arbitrary K ′ > 0, d(o, ωn o) − d(o, ω̇no) ≥ 0.5K ′2m/2 ≥ 0.25K ′
√
n for

probability at least (1−2Ke−n/K−2/1000) · (3/40) ≥ 1/20 for sufficiently large n. However, this cannot

happen for arbitrary K ′ > 0 if 1√
n

[d(o, ωn o)− d(o, ω̇no)] converged in law. Hence, 1√
n
d(o, ωn o) cannot

converge in law even after suitable translation.

6.4 Law of the iterated logarithm

Throughout this section we set

LLn :=

{
log log n n ≥ 3

1 n < 2,
α(n) := (2nLLn)1/2, β(n) := (n/LLn)1/2.

In this section, we adapt de Acosta’s argument for the classical LIL in [dA83] to prove our LIL. Let

us briefly summarize de Acosta’s strategy before entering the proof. Let {Xi} be a sequence of balanced

i.i.d. with V ar(Xi) < K. In order to investigate the deviation of
∑n
i=1Xi in the order of α(n), de

Acosta first truncated Xn to obtain Yn := Xn1{|Xn|≤β(n)}, Zn := Xn1{|Xn|>β(n)} (assume E[Yn] = 0 at

the moment for convenience).

The truncation threshold τβ(n) is so designed that the a.e. convergence of
∑n
i=1 |Zi|/α(i) follows

from finite variances of Xi. Kronecker’s lemma then implies that the term (
∑n
i=1 Zi)/α(n) does not

contribute significantly. For Yn, we make use of the independence of Yn, truncation bounds of Yn and

Chebyshev’s inequality to deduce

P

{
n∑
i=1

Yi/α(n) > t

}
≤ exp

[
−λt+

λ2K

4LLn
exp

(
λ√

2LLn

)]
for any t, λ > 0. The final trick is to couple the sequence of events En := {

∑n
i=1Xi/α(n) > t} with a

geometric subsequence Ebpkc, in the sense that

P
(
∪n≥pk0En

)
≤ C

∑
k≥k0

P
(
Ebpkc

)
. (6.4.1)

Choosing suitable t and λ, one can make this series convergent and Borel-Cantelli leads to the a.e. upper

bound of lim sup(
∑n
i=1Xi)/α(n).

Let us now return to our setting. The second term in Equation 6.1.2 still converges to 0 when

the denominator is replaced with α(n). It is the final term in Equation 6.1.2 that requires de Acosta’s

argument. The additional obstacle here is that we deal with the infinite sequence {
∑
i b̄t,2i−1}t of sums

of i.i.d.; we should not only establish a bound on RHS of Inequality 6.4.1 for each family {b̄t,2i−1}i, but

also that the bound is summable for t.
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Claim 6.4.1. For any K ′ > 0, there exists T > 0 such that

P

lim sup
n

1

α(n)

∣∣∣∣∣∣
∑
t≥T

bn/2m+t+1c∑
i=1

b̄t,2i−1

∣∣∣∣∣∣ > K ′

 ≤ K ′.
Proof. Let us consider

Et,i :=
{
ω : |b̄t,2i−1| > β(2t+m+1i)/2t/4

}
,

Bt,2i−1 := b̄t,2i−11Et,i , B
′
t,2i−1 := b̄t,2i−11Ect,i , B̄

′
t,2i−1 := B′t,2i−1 − EB′t,2i−1.

Note that ∣∣EB′t,2i−1

∣∣ = |EBt,2i−1| ≤ E |Bt,2i−1| ≤ E |b̄t,2i−1|

= E |bt,2i−1 − (E bt,2i−1)| ≤ 2E |bt,2i−1| ≤ 2
√
K,

|B̄′t,2i−1| ≤ |B′t,2i−1|+ |EB′t,2i−1| ≤ 2 · β(2t+m+1i)/2t/4,

E(B̄′t,2i−1)2 ≤ E(|B′t,2i−1|+ E |B′t,2i−1|)2

≤ 4E |B′t,2i−1|2 ≤ 4E b̄2t,2i−1 ≤ 16K.

Our first aim is to show ∑
t≥T

∞∑
i=1

E |Bt,2i−1|/α(2t+m+1i) <∞. (6.4.2)

Given this, Kronecker’s lemma will then imply that

lim
n

1

α(n)

∣∣∣∣∣∣
∑
t≥T

bn/2m+t+1c∑
i=1

Bt,2i−1

∣∣∣∣∣∣ = 0 a.s. (6.4.3)

In order to show Inequality 6.4.2, we observe

∞∑
i=1

E |Bt,2i−1|/α(2t+m+1i)

≤
∞∑
i=1

∞∑
k=0

1

α(2t+m+1i)

β(2t+m+1(i+ k + 1))

2t/4
P
[
β(2t+m+1(i+ k))

2t/4
< |b̄t,2i−1| ≤

β(2t+m+1(i+ k + 1))

2t/4

]

=

∞∑
j=1

β(2t+m+1(j + 1))

2t/4
P
[
β(2t+m+1j)

2t/4
< |b̄t,1| ≤

β(2t+m+1(j + 1))

2t/4

]
·
j∑
i=1

1

α(2t+m+1i)

(6.4.4)

for sufficiently large t. Here are used the facts that β(x) is increasing for x ≥ 8 and that {b̄t,2i−1}i are

i.i.d. Moreover, we have

j∑
i=1

1

α(2t+m+1i)
≤ 10

2t+m+1
β(2t+m+1j), β(2t+m+1(j + 1)) ≤ 1.1β(2t+m+1j)

for each j. Hence the last quantity in Inequality 6.4.4 is bounded by

11

∞∑
j=1

2−5t/4−m−1β2(2t+m+1j)P
[
β(2t+m+1j)

2t/4
< |b̄t,1| ≤

β(2t+m+1(j + 1))

2t/4

]
≤ 11 · 2−3t/4V ar(b̄t,1) ≤ 44K · 2−3t/4,

which is clearly summable. Note that Inequality 6.4.2 also implies∑
t≥T

∑
i

|EB′t,2i−1|/α(2t+m+1i) =
∑
t≥T

∑
i

E |Bt,2i−1|/α(2t+m+1i) <∞.
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Again by Kronecker’s lemma, this implies that

lim
n

1

α(n)

∣∣∣∣∣∣
∑
t≥T

bn/2m+t+1c∑
i=1

EB′t,2i−1

∣∣∣∣∣∣ = 0. (6.4.5)

We now handle {B̄′t,2i−1}i for t ≥ T . Since these are balanced i.i.d. with

E(B̄′t,2i−1)2 ≤ 16K and |B̄′t,2i−1| ≤ 21−t/4 · β(2t+m+1i),

we can apply the proof of Lemma 2.2 of [dA83] and deduce that

P

{
n∑
i=1

B̄′t,2i−1 > 2−t/8
√
Kα(2m+t+1n)

}
≤ exp

[
−
(

2 · 2t/8 − 16

2t/2+m+1
e2
√

2/
√
K

)
LL(2m+t+1n)

]
,

(6.4.6)

which is bounded by exp[−2t/8LL(2t+m+1n)] for sufficiently large t. Note also that Chebyshev’s inequal-

ity also implies

P

∣∣∣∣∣∣
2k∑
i=n

B̄′t,2i−1

∣∣∣∣∣∣ ≥ 2−t/8
√
Kα(2m+t+1 · 2k)

 ≤ 16 · 2kK
2−t/4α2(2m+t+1 · 2k)K

≤ 1/2 (6.4.7)

for any k ≥ 1 and n ≤ 2k.

We now estimate the probability that |
∑bn/2m+t+1c
i=1 B̄′t,2i−1| > 3 · 2−t/8

√
Kα(n) occurs for at least

one n. This is bounded by

∞∑
k=0

P

[
max

2k≤n<2k+1

∣∣∣∣∣
n∑
i=1

B̄′t,2i−1

∣∣∣∣∣ > 3 · 2−t/8
√
Kα(2m+t+1 · 2k)

]
.

By Inequality 6.4.7 and Ottaviani’s inequality, this is bounded by

2

∞∑
k=0

P

2k+1∑
i=1

∣∣B̄′t,2i−1

∣∣ > 2 · 2−t/8
√
Kα(2m+t+1 · 2k)

 .
Since 2α(2m+t+1 · 2k) ≥ α(2m+t+1 · 2k+1) for sufficiently large t and all k, we can rely on Inequality 6.4.6

to bound this with

2

∞∑
k=0

([k +m+ t+ 2] log 2)−2·2t/8 ≤ 2

∞∑
k=t

(k log 2)−4 ≤ 1

t3(log 2)4

Taking T large enough, we have
∑
t≥T t

−3(log 2)−4 < K ′. Outside this event, we have

1

α(n)

∑
t≥T

bn/2m+t+1c∑
i=1

B̄′t,2i−1 ≤ 3
√
K
∑
t≥T

2−t/8 ≤ 30
√
K · 2−T/8 < K ′ (6.4.8)

for all n, once again by taking T large enough. Combining this with Equation 6.4.3 and 6.4.5 yields the

conclusion.

We should also cope with the remaining terms b̄t;n’s: note that for each t, only one copy of b̄t;n

arises at step n. This forces us to handle each deviation event {b̄t;n > K ′α(n)} separately (for example,

it is hard to rely on Ottaviani’s inequality to reduce to subsequential events).

Claim 6.4.2.

lim sup
n

1

α(n)

∣∣∣∣∣∣
∑

2m+t≤n

b̄t;n

∣∣∣∣∣∣ = 0 a.s.
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Proof. Let K ′ > 0. Given t ≥ 0 and 1 ≤ k ≤ 2t+m, {b̄t;2t+m(2i−1)+k}i is a family of i.i.d. In this case,

Proposition 5.3.1 gives a uniform constant K ′3 such that

E[b3t;2t+m+k] ≤ K ′3.

By taking K3 = 8K ′3, we also have

E |b̄t;2t+m+k|3 ≤ E(|bt;2t+m+k|+ |E bt;2t+m+k|)3 ≤ K3.

Let us now define

Et,k,i :=

{
ω : |b̄t;2t+m(2i−1)+k| >

K ′
√

2t+m(2i− 1)

2t/8

}
.

Then for Yt,k = |b̄t;2t+m+k|/(23t/8+m/2K ′), we have

∞∑
i=1

P[Ek,t,i] ≤
∞∑
i=1

i · P

{
K ′
√

2t+mi

2t/8
< |b̄t;2t+m+k| ≤

K ′
√

2t+m(i+ 1)

2t/8

}

≤
∫
Y 2
t,k1Yt,k≥1 dP ≤

∫
Y 3
t,k dP ≤

1

29t/8+3m/2K ′3
E |b̄t;2t+m+k|3

≤ K3

K ′3
2−9t/8−3m/2.

We sum them up to deduce
∞∑
t=1

∑
0≤k≤2t

∞∑
i=1

P[Ek,t,i] <∞.

Then by Borel-Cantelli, we conclude that for almost every ω,

|b̄t;n(ω)| ≤ K ′α(n)

2t/8

for all t for all but finitely many n. Hence, for those ω we have

1

α(n)

∣∣∣∣∣∑
t

b̄t;n

∣∣∣∣∣ ≤ 16K ′

eventually.

We now finish the proof of the LIL. Fix K ′ > 0 and let T > 0 be as in Claim 6.4.1. The classical

LIL tells us that

lim sup
n

1

α(n)

∣∣∣∣∣∣
bn/2m+t+1c∑

i=1

b̄t,2i−1

∣∣∣∣∣∣ ≤ 4K√
2m+t+1

a.s.

for each t ≤ T . Combining this with Claim 6.4.1 and Claim 6.4.2 gives

lim sup
n

1

α(n)

∣∣∣∣∣∣
∑

2m+t≤n

b̄t,2bn/2m+t+1c+1;n +

bn/2m+t+1c∑
i=1

b̄t,2i−1

∣∣∣∣∣∣ ≤ K ′ + 20K√
2m

outside a set with probability at most K ′. This is promoted to the almost sure statement by sending

K ′ → 0. Finally, the classical LIL implies that

lim sup
n
± 1

α(n)

bn/2mc∑
i=1

Ȳ0,i = σm a.s.

Together with the fact 1
α(n) Ȳ0,bn/2mc+1;n → 0 a.s., we conclude that

lim sup
n
± 1

α(n)
[d(o, ωn o)− E[d(o, ωn o)]] ∈

[
σm −

20K√
2m

, σm +
20K√

2m

]
a.s.

Since σm → σ as m→∞, the desired conclusion follows.
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6.5 Geodesic tracking

Given a random path ω = (ωn)n with the set of eventual pivotal times Q(ω) = {i(1) < i(2) < . . .},
we consider the concatenation Γ = Γ(ω) of

(η1, η2, . . .) := ([o, ωi(1) o], [ωi(1) o, ωi(1)+M0
o], [ωi(1)+M0

o, ωi(2) o], [ωi(2) o, ωi(2)+M0
o], . . .).

By Lemma 3.1.7, Γ is a quasigeodesic. We now show the geodesic tracking with doubled exponent.

Proposition 6.5.1. Suppose that µ has finite p-th moment for some p > 0. Then for almost every

sample path ω = (ωn)n, we have

lim
k→∞

d(ωk o,Γ)

k1/2p
= 0.

Proof. By Corollary 5.3.2, min[d(o, ωυ o), d(o, ω̌υ̌o)]
2p is dominated by an integrable RV. This implies

that ∑
k

P (min[d(o, ωυ o), d(o, ω̌υ̌o)] > g(k)) <∞ (6.5.1)

for some g such that limk g(k)/k1/2p = 0. Note that the probabilities in the summation do not change

after the Bernoulli shift T . Note also that P(max{υ, υ̌} ≥ k) is summable and is invariant under the

Bernoulli shift. By the Borel-Cantelli lemma, we deduce the following for a.e. (ω̌, ω). For each large k,

there exists j = j(k) ∈ Z such that |j| ≤ k, d(ωk o, ωk+j o) ≤ g(k) and either:

1. there exists 0 < i ≤ j −M0 such that

• α := (gk+i+1, . . . , gk+i+M0) is a Schottky sequence,

• (ωk o, ωk+i Γ(α), ωk+n o) is D1-aligned for all n ≥ j, and

• (ωk−n′ o, ωk+i Γ(α)) is D2-aligned for all n′ ≥ 0,

or;

2. there exists 0 > i ≥ j +M0 such that

• α := (g−1
k+i, g

−1
k+i−1, . . . , g

−1
k+i−M0+1) is a Schottky sequence,

• (ωk o, ωk+i Γ(α), ωk+n o) is D1-aligned for all n ≤ j,

• (ωn′+k o, ωk+i Γ(α)) is D2-aligned for all n′ ≥ 0.

The first case is where j equals υ(T k(ω̌, ω)) and the second case is where j equals −υ̌(T k(ω̌, ω)). In both

cases, the second item for n = j leads to

d(ωk o, ωk+i Γ(α)) ≤ d(ωk o, ωk+j o) ≤ g(k).

We now let N = k+ |j|; note i(N) > N . In the first case of the dichotomy, (o, ωk+i Γ(α), ωi(N) o) is

D2-aligned. In the second case, (ωi(N) o, ωk+i Γ(α), o) is D2-aligned. We now claim that d(ηm, ωk+i Γ(α))

is bounded for some m.

The projections of the beginning point of η1 and the terminating point of η2N−1 onto ωk+i Γ(α) are

far away. Hence, one of the following holds.

(a) some ηm has a large projection on ωk+i Γ(α): more precisely, there exists ηm with endpoints

{xm, ym} such that

d(πωk+i Γ(α)(xm), ωk+i o) ≤ 2K0 +K3 + 2E0 +D2,

d(πωk+i Γ(α)(ym), ωk+i+M0 o) ≤ 2K0 +K3 + 2E0 +D2,
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o ωnt o

ωnt o o

ηi

p

ωk+i Γ(α)

Figure 6.2: Dichotomy in the proof of Proposition 6.5.1. o and ωnt o are distant when seen from

ωk+i Γ(α), so either an ηi is seen large (the upper case) or an endpoint p of some ηi is seen in the middle

(the lower case).

(b) an endpoint p of some ηm projects onto ωk+i Γ(α) in the middle, i.e.,

d(πωk+i Γ(α)(p), ωk+i o), d(πωk+i Γ(α)(p), ωk+i+M0
o) > 2K0 +K3 + 2E0 +D2.

Recall that

d(ωk+i o, ωk+i+M0 o) ≥ 2

(
M0

K0
−K0

)
≥ 6K0 + 2K3 + 4E0 + 2D2.

Hence, in Case (a), we deduce d
(
πωk+i Γ(α)(xi), πωk+i Γ(α)(yi)

)
≥ 2K0 and ηi is within a neighborhood

of ωk+i Γ(α) by the K0-BGIP of Γ(α).

In Case (b), recall that the Schottky axes at eventual pivotal times are parts of a D0-aligned

sequence; by Proposition 3.1.5, p is within distance E0 from some q ∈ [o, ωnt o]. Then q also projects

onto ωk+i Γ(α) in the middle:

d(πωk+i Γ(α)(q), ωk+i o), d(πωk+i Γ(α)(q), ωk+i+M0
o) > 2K0 +D2.

Since the projections of [o, q] and [q, ωnt o] onto ωk+i Γ(α) are both large, we can apply Lemma 2.2.5 and

obtain q1 ∈ [o, q], q2 ∈ [q, ωnt o] such that d(q1, πωk+i Γ(α)(q)), d(q2, πωk+i Γ(α)(q)) < K3. This forces that

p is also near ωk+i Γ(α).

In the previous lemma, we only assumed p > 0. Namely, sublinear tracking occurs even when µ has

finite (1/2)-th moment only. When µ has finite exponential moment, the exact same proof works with

g(k) = C log k for some suitable C. This leads to the following:

Proposition 6.5.2. Suppose that µ has finite exponential moment. Then there exists C > 0 such that

for almost every sample path ω = (ωn)n, we have

lim sup
k→∞

d(ωk o,Γ)

log k
≤ C.
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Chapter 7. Translation length

In this chapter, we develop the theory for translation length. We present two approaches: the first

one utilizing the deviation inequalities, and the second one with more concrete access to the pivotal

times.

7.1 First approach

In Chapter 5, we defined RVs υ, υ̌ and the probabilistic estimations on them. Using them, we prove

the following theorem:

Theorem G. Let ω be the random walk generated by a non-elementary measure µ on G.

1. If µ has finite p-th moment for some p > 0, then

lim
n→∞

1

n1/2p
[d(o, ωn o)− τ(ωn)] = 0 a.s.

2. If µ has finite first moment, then there exists K > 0 such that

lim sup
n→∞

1

log n
[d(o, ωn o)− τ(ωn)] ≤ K a.s.

Proof. Let κ1,K1 > 0 be as in Lemma 5.2.3.

Suppose first that µ has finite p-th moment for some p > 0. Let Z be an integrable RV that

dominates min{d(o, ωυ o), d(o, ω̌υ̌o)}2p. Let also κ1,K1 > 0 be the constants as in Lemma 5.2.3.

Let us fix n > 0. We temporarily define

hnk+i := gi (k ∈ Z, i ∈ {1, . . . , n}),

ωi :=

{
h1 · · ·hi i ≥ 0,

h−1
0 · · ·h

−1
i+1 i < 0.

For t = 0, 1, 2, 3, we also define

gi;t := hi+bnt/4c ǧi;t := h−1
bnt/4c−i+1

ωi;t := g1;t · · · gi;t, ω̌i;t := ǧ1;t · · · ǧi;t.
(i = 1, . . . , bn/2c)

(ǧi;t, gi;t)i’s for t = 0, 1, 2, 3 have the same distribution with (ǧi, gi)i, although they are not mutually

independent. Let

υ(t) := υ
(
(ω̌i;t)0≤i≤bn/2c, (ωi;t)0≤i≤bn/2c

)
, υ̌(t) := υ̌

(
(ω̌i;t)0≤i≤bn/2c, (ωi;t)0≤i≤bn/2c

)
and observe that

P
(
An;t := {ω : max{υ(t), υ̌(t) ≥ n/10}

)
≤ K1e

−κ1n/10,

min
{
d
(
o, ωυ(0)

o
)
, d
(
o, ω̌υ̌(0)

o
)}2p ≤ Z.

We now claim that for ω /∈ A(0)
n ∪A(1)

n ∪A(2)
n ∪A(3)

n , we have

[d(o, ωn o)− τ(ωn)]2p ≤ 22pZ.
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We explain the case that d
(
o, ωυ(0)

o
)2p ≤ Z, since the other case can be discussed in a similar manner.

By the definition of υ(t), there exist i(0), i(1), i(2), i(3) such that nt/4 ≤ i(t) ≤ nt/4 + υ(t)−M0 and

the following holds. If we define

st = (gi(t)+1, . . . , gi(t)+M0
),

then st’s are Schottky sequences and(
ωbnt/4c−j o, ωi(t) Γ(st), ωbnt/4c+k

)
is D2-aligned for 0 ≤ j ≤ n/2 and υ(t) ≤ k ≤ n/2. Note also that υ(t) ≤ n/10 since w does not belong

to any of An;t. This implies that(
o, ωi(0) Γ(s0), . . . , ωi(3) Γ(s3), ωn ωi(0) Γ(s1), . . . , ωk−1

n ωi(3) Γ(s3), ωkn o
)

is D2-aligned for each k > 0. Using Proposition 3.1.5 we can control the Gromov products among points,

which imply

d(o, ωkn o) ≥ d(o, ωi(0) o) +

k−1∑
j=1

d
(
ωj−1
n ωi(0) o, ω

j
n ωi(0) o

)
+ d(o, ωk−1

n ωi(0) o, ω
k
n o)− (k + 1)E0.

Hence, we have

τ(ωn) ≥ d(ωi(0) o, ωn ωi(0) o)− E0,

[d(o, ωn o)− τ(ωn)]2p ≤ (2d(o, ωi o) + E0)
2p
.

Note that (o, ωi(0) Γ(s0), ωυ(0)
o) is also D2-aligned so we have

d(o, ωi(0) o) ≤ d(o, ωυ(0)
o)− 10E0,

[d(o, ωn o)− τ(ωn)]2p ≤ (2d(o, ωi o))
2p ≤ 22pd(o, ωυ(0)

o)2p ≤ 22pZ.

This implies

P(d(o, ωn o)− τ(ωn) ≥ Cn1/2p) = P
(

[d(o, ωn o)− τ(ωn)]
2p ≥ C2pn

)
≤ P

(
22pZ ≥ C2pn

)
+ 2Ke−κn/10.

Since Z is integrable, the above probability is summable and the Borel-Cantelli lemma leads to the

conclusion.

Now suppose that µ has finite first moment. This time, we define

An;t := {ω : υ(t) ≥ K ′ log n}

for some large K ′ such that
∑
nK1e

−κ1K
′ logn < +∞. Then the Borel-Cantelli lemma tells us that

almost every path ω eventually lies outside A
(1)
n ∪ A(2)

n ∪ A(3)
n ∪ A(4)

n , say for n ≥ N . In such case, we

have

d(o, ωn o)− τ(ωn) ≤ d(o, ωυ(0)
o) ≤ d(o, ωK′ logn o)

for n ≥ N . Finally, the subadditive ergodic theorem tells us that d(o, ωm o) ≤ 2λm eventually holds for

almost every path. Hence we conclude that

d(o, ωn o)− τ(ωn) ≤ 2λK ′ log n

eventually for almost every path.
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Corollary 7.1.1 (SLLN for finite first moment). Let ω be the random walk generated by a non-elementary

measure µ on G with finite first moment. Then

lim
n

1

n
τ(ωn) = λ (7.1.1)

for almost every ω, where λ = λ(µ) is the escape rate of µ.

Corollary 7.1.2 (CLT). Let ω be the random walk generated by a non-elementary measure µ on G.

If µ has finite second moment, then 1√
n

(τ(o, ωn o)− nλ) and 1√
n

(d(o, ωn o)− nλ) converge to the same

Gaussian distribution N (0, σ(µ)2) in law. We also have

lim sup
n→∞

±τ(o, ωn o)− λn√
2n log log n

= σ(µ) almost surely.

Theorem G also implies Corollary 7.1.1 for measures with finite (1/2)-th moment, and the converse of

CLT for measures with finite (1/4)-th moment. However, for general non-elementary measures, the SLLN

and the converse of CLT cannot be deduced from Theorem G and we need more explicit information.

We now present the second approach that explicitly refers to the pivotal time structure.

7.2 Second approach

We discuss pivoting on random paths for translation length. Given (wj)
∞
j=0, (vj)

∞
j=0, we consider

an equivalence class E ⊆ S4n made by pivoting. E has a well-defined set of pivotal times Pn(E) =

{i(1), . . . , i(M)}, and a choice s ∈ E is determined by the choices (αi(l), βi(l), γi(l))
M
l=1. We also denote

w−n+1,2(s) by w for convenience throughout the subsection.

Recall that we have constructed S̃l ⊆ S3 that depends on
(
αi(j), βi(j), γi(j)

)l−1

j=1
. We now define new

subsets:
S∗1 (s) = S∗1 (γi(M)),

S∗M (s) = S∗M (αi(1), γi(M)),

S∗2 (s) = S∗2 (αi(1), βi(1), γi(1), αi(M), βi(M), γi(M), γi(M−1)),

S∗M−1(s) = S∗M−1(αi(1), βi(1), γi(1), αi(M), βi(M), γi(M), αi(2), γi(M−1)),

...

for 1 ≤ k ≤ bM/2c. To define them we first consider

φk := (w−i(M−k+1),0)−1ww−i(k),2

= vi(M−k+1)ci(M−k+1)di(M−k+1)wi(M−k+1) · · · anbnvncndnwn

· w0a1b1v1c1d1w1 · · · ai(k)−1bi(k)−1vi(k)−1ci(k)−1di(k)−1wi(k)−1

for 1 ≤ k ≤ bM/2c. It is clear that φk depends on γi(M−k+1), αi(M−k+2), . . ., γi(M), αi(1), βi(1), . . .,

γi(k−1). Then we set

S∗k(s) :=
{
αi(k) ∈ S :

(
w−1y−i(M−k+1),0, Υ(αi(k))

)
is K0-aligned

}
,

S∗M−k+1(s) :=
{
βi(M−k+1) ∈ S :

(
w−1 Υ(βi(M−k+1)), y

−
i(k),1

)
is K0-aligned

}
.

Here, the conditions above can be expressed as

diam
(
πΓ(αi(k))(φ

−1
k o) ∪ o

)
< K0, (7.2.1)

diam
(
πΓ−1(βi(M−k+1))(φkai(k)o) ∪ o

)
< K0, (7.2.2)
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o

y−i(1),2

w−1y−i(M),0

y−i(2),2
w−1y−i(M−1),0

φ1

φ2

w′0

w′M

vi(1)

w′1

w′M−1

vi(2)

αi(1)

βi(M)

αi(2)

βi(M−1)

w′0 := w−i(1),2

w′1 :=
(
w+
i(1),2

)−1

w−i(2),2

...

Figure 7.1: Defining φk’s used in the pivoting for translation length.

respectively. For each l, S \ S∗l (s) consists of at most 1 element thanks to the property of the Schottky

set S.

Lemma 7.2.1. Let 1 ≤ k ≤M/2. Suppose that s = (αi(l), βi(l), γi(l))
M
l=1 ∈ En satisfies

αi(k) ∈ S∗k(s), βi(M−k+1) ∈ S∗M−k+1(s).

Then w = w−n+1,2 is a BGIP isometry and satisfies

τ(w) ≥ d(o, wo)−
[
d
(
o, y−i(k),1

)
+ d
(
y−i(M−k+1),1, wo

)]
− 4E0.

Proof. Suppose that s ∈ En satisfies the hypothesis. Then by Lemma 3.1.2,
(
w−1 Υ(βi(M−k+1),Υ(αi(k))

)
is D0-aligned. Recall also that(

Υ(αi(k)),Υ(βi(k)),Υ(γi(k)),Υ(δi(k)), . . . ,Υ(αi(M−k+1)),Υ(βi(M−k+1)),Υ(γi(M−k+1)),Υ(δi(M−k+1))
)

is a subsequence of a D1-aligned sequence by Lemma 4.1.1. Hence, if we define

κ2t+1 := wt Υ(αi(k)),

κ2t+2 := wt Υ(βi(M−k+1))

for t ∈ Z, we observe that (o, κ1, κ2, . . . , κ2i−1, ω
i o) is a subsequence of a D1-aligned sequence. Propo-

sition 3.1.5 then tells us that the Gromov products among the endpoints of κi’s are bounded by E0.
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Hence, we have

d(o, wio) ≥ d(o, y−i(k),1) +

i∑
j=1

d(wj−1y−i(k),1, w
j−1y−i(M−k+1),1)+

i−1∑
j=1

d(wj−1y−i(M−k+1),1, w
jy−i(k),1) + d(wi−1y−i(M−k+1),1, w

io)− 4iE0.

Dividing the both hand sides by i, we conclude that

τ(w) ≥ d(y−i(k),1, y
−
i(M−k+1),1)− 4E0

≥ d(o, wo)− d(o, y−i(k),1)− d(y−i(M−k+1),1, o)− 4E0.
(7.2.3)

Moreover, since [y−i(k),1, y
−
i(M−k+1),1] is E0-witnessed by Schottky axes and longer than 4E0, Inequality

7.2.3 also tells us that τ(w) > 0. Similarly we have τ(w−1) > 0, so w is a bi-quasigeodesic.

It remains to show that the orbit of w has BGIP. Since {wio}i and (κi)i are close to each other,

it suffices to establish the BGIP of the latter one. Since (κi)i is D1-aligned sequence of Schottky axes,

we can apply Lemma 3.1.6. In particular, consider x, y ∈ X and n ∈ Z. If J0(x; (κi)i, D2) contains an

element smaller than (larger than, resp.) n and J0(y; (κi)i, D2) contains an element larger than (smaller

than, resp.) n, then the projection of [x, y] onto κn is large and [x, y] passes near κn. Such a phenomenon

happens when the diameter of the projection of [x, y] onto ∪iκi exceeds max{diam(κi−1 ∪ κi) : i ∈ Z},
which is actually the maximum among finitely many numbers and thus finite. Hence, ∪iκi has BGIP

and we are led to the conclusion.

We now estimate the probability for the event described in Lemma 7.2.1. Given a choice

s̄ = (ᾱi(l), β̄i(l), γ̄i(l))l=1,...,k−1,M−k+2...,M ∈ S̃i(1) × · · · × S̃i(k−1) × S̃i(M−k+2) × · · · × S̃i(M),

we define

S†k :=


(αi(k), βi(k), γi(k), αi(M−k+1), βi(M−k+1), γi(M−k+1)) ∈ S̃i(k) × S̃i(M−k+1)

:
αi(k) ∈ S∗k(s̄, γM−k+1) and

βi(M−k+1) ∈ S∗M−k+1(s̄, αi(k), γi(M−k+1))


Then we have the following:

Lemma 7.2.2. For each 1 ≤ k ≤ bM/2c, the cardinality of S̃†k is at least (#S)6 − 8(#S)5.

Proof. First, there are at least (#S − 1) choices of γi(k) and (#S − 1) choices of γi(M−k+1) in S that

satisfy Inequality 4.1.2. Fixing those choices, at least (#S − 1) choices of βi(k) in S satisfy Inequality

4.1.4. Finally, fixing those choices, there are at most 1 choice of αi(k) in S that violates Inequality 4.1.5

and at most 1 choice that violates Inequality 7.2.1. In other words, at least (#S − 2) choices of αi(k)

satisfy both inequalities.

Fixing the above choices, at most 1 choices of βi(M−k+1) in S violates Inequality 4.1.4 and at

most 1 choice in S violates Inequality 7.2.2. In other words, at least (#S − 2) choices of βi(k) satisfy

both inequalities. Finally, fixing those choices, there are at least (#S − 1) choices of αi(k) in S that

satisfy Inequality 4.1.5. Overall, we conclude that S̃∗i(k) has cardinality at least (#S − 1)4(#S − 2)2 ≥
(#S)6 − 8(#S)5.
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7.3 SLLN with and without moment conditions

In Section 4.3, we proved that random walks escapes to infinity almost surely. This leads to the

SLLN for finite first moment. In this section, we obtain finer estimates with and without moment

conditions, by realizing Gouëzel’s estimation in [Gou21, Section 5] with Schottky sets.

Lemma 7.3.1 ([Gou21, Proposition 5.1]). Let ρ1, ρ2, . . . be probability measures on G and R be a

nonnegative RV such that for all i and M ≥ 0 we have

Pρi(d(o, go) ≥M) ≥ P(R ≥M).

Now let w0, w1, . . . ∈ G and si be independent RVs that are sampled according to µ∗2S ∗ ρi ∗ µ∗2S . Let

w = w0s1w1 · · · snwn and y = wo. Then there exists K = K(N0) > 0 such that for all M ≥ 0,

P(wn does not have BGIP or τ(wn) ≤M) ≤ P(R1 + · · ·+R(1−150/N0)n ≤M) + e−n/K .

Proof. Following the notation in Chapter 4, we consider RVs {αi}ni=1, {βi}ni=1, {γi}i, {δi}i with the law

of µS , and vi with the law of ρi for i = 1, . . . , n, all independent. We also let ai, bi, ci, di as in Equality

4.1.1. Then aibivicidi serves as si.

Let E(1) be an equivalence class by the pivoting as in the second model of Section 4.2, with at least

(1−10/N0)n pivoting times. Fix the values of vi’s, and then the values of (αi, βi, γi)’s, at the first and the

last n/N0-pivotal times of E(1). This process divides E(1) into finer equivalence classes {E(2)
1 , . . . , E(2)

N }
made by pivoting at the intermediate n′ ≥ (1 − 12/N0)n pivotal times; we denote these intermediate

pivotal times by {i(1) < i(2) < . . . < i(n′)}. Let us consider the condition for E(2)
i ’s:

wn ∈ E(2)
i are all BGIP with τ(ωn) ≥ d(y−i(1),0, y

−
i(n′),2). (7.3.1)

Then Lemma 7.2.2 asserts that the equivalence classes E(2)
i that satisfy the above condition take up at

least 1− (8/N0)n/N0 of the probability of E(1).

Let us now fix an equivalence class E(2) that satisfy Condition 7.3.1. For s ∈ E(2) we consider points

(x3k−2, x3k−1, x3k) := (y−i(k),0, y
+
i(k),0, y

+
i(k),1)

for k = 1, . . . , n′. Then Proposition 3.1.4 and Lemma 4.1.1 asserts that (xi, xk)xj ≤ E0 for all i < j < k.

This implies that

τ(ωn) ≥
3n′∑
i=1

d(xi−1, xi)− 2E0 · 3n′

≥
n′∑
k=1

[d(x3k−2, x3k−1) + d(x3k−1, x3k)− 6E0]

≥
n∑
k=1

[
d(o, vi(k)o) + (M0/K0 −K0 − 6E0)

]
≥

n′∑
k=1

d(o, vi(k)o).

We now estimate the expectation of d(o, vi(k)o) for each k. The proof of Lemma 4.1.4 implies that

for each choice of vi(k), we have (αi(k), βi(k), vi, γi(k)) ∈ S̃′i(k) for all (αi(k), βi(k), γi(k)) ∈ S3 except at

most 3(#S)2 choices. Hence, we have

P
[
vi(k) = g

∣∣ (αi(k), βi(k), vi(k), γi(k)) ∈ S̃′i(k)

]
≥ ρi(g) · [(#S)3 − 3(#S)2]

#S3
≥ ρi(g) ·

(
1− 3

N0

)
.
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Consequently, d(o, vi(k)o) conditioned on E(2) dominates BkRk; here, {Bk}k are Bernoulli RVs that have

value 1 with probability 1− 3/N0 and value 0 with probability 3/N0, {Rk}k have the same law with R,

and {Bk, Rk}k are independent. This implies that

P
[
τ(ωn) ≤M

∣∣ E(2)
]
≤ P

 n′∑
k=1

BkRk ≤M

 .
Note that

∑n′

k=1Bk ≥ (1−6/N0)n′ outside a set of probability e−n
′/K3 for some K3 > 0 that depends on

N0. Conditioned on the event where Bk1 , . . . , Bk(1−6/N0)n′ = 1 for some 1 ≤ k1 < . . . < k(1−6/N0)n′ ≤ n′,
we have

P
[
d(o, y(s)) ≤M |E(2)

]
≤ P

[
Rk1 + . . .+Rk(1−6/N0)n′ ≤M

]
≤ P

[
R1 + . . .+R(1−100/N0)n ≤M

]
.

This implies that

P
[
d(o, y(s)) ≤M

∣∣ E(2)
]
≤ P

[
R1 + . . .+R(1−100/N0)n ≤M

]
+ e−n

′/K3 .

Note that such E(2) takes up large portion of E(1), and we have

P
[
d(o, y(s)) ≤M

∣∣ E(1)
]
≤ P

[
R1 + . . .+R(1−100/N0)n ≤M

]
+ e−n

′/K3 + (8/N0)n/N0 .

Finally, such E(1) takes up large portion of the entire space and we have

P
[
d(o, y(s)) ≤M

∣∣ E(2)
]
≤ P

[
R1 + . . .+R(1−100/N0)n ≤M

]
+ e−n

′/K3 + (8/N0)n/N0 + e−K4n

where K4 = K is as in Corollary 4.1.8.

Theorem 7.3.2. Let ω be a non-elementary random walk with infinite first moment. Then for any

K > 0, there exists K ′ > 0 such that

P(τ(ωn) ≤ Kn or ωn does not have BGIP) ≤ K ′e−n/K
′
.

Proof. We employ the model with the decomposition

µ(4M0+1) = α(µ2
S × µ× µ2

S) + (1− α)ν.

and consider the independent RVs {ρi, ηi, νi}i. We have P(N (ωn) ≤ K3n) ≤ K3e
−n/K3 for some K3 > 0.

Fixing the values of ρi’s that make N (ω) ≥ K3n, and also the values of νi’s, we can now employ Lemma

7.3.1.

Lemma 7.3.1 implies that P(τ(ωn) ≤ Kn) ≤ P(R1 + . . . + R(1−150/N0)K3n ≤ Kn), where Ri are

independent copies of the RV d(o, go) for g following the law of µ. Since we assumed that µ has infinite

first moment, we know that the latter probability decays exponentially. To be explicit, one can truncate

Ri at M so that min(Ri,M) has expectation greater than K
K1(1−100/N0) , and apply the large deviation

theory for bounded variables. Hence, we conclude that

P(τ(ωn) ≤ Kn| N (ωn) ≤ K3n)

decays exponentially. We now sum up the above conditional probability for various equivalence classes

corresponding to the event {N (ωn) ≤ K3n}. Since P(N (ωn) ≤ K3n) also decays exponentially, we can

finish the proof.
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Let us now establish an exponential bound for random walks with finite first moment.

Lemma 7.3.3 ([Gou21, Lemma 4.14]). For each ε > 0, there exists C > 0 such that

P
(

inf
n
d(x, ωn o) ≥ d(x, o)− C

)
≥ 1− ε

holds for any x ∈ X.

Proof. Note that the pivotal time construction works even if we replace the beginning point o with

arbitrary point x ∈ X. Indeed, it amounts to setting z0 = x instead of z0 = o, and resetting zn as

x instead of o when there is no sequence qualifying Criterion (B) during the pivot construction. After

this modification, we obtain K > 0 (independent of the choice of x) such that the following holds: for

ω ∈ Ω outside a set of probability Ke−n/K , we have d(x, ωm o) ≥ d(x, ωi1 o) for all m ≥ n for some

i1(ω) < Kn (we may take i1 to be the first element in Qn(ω)). Given ε > 0, we can now take n such

that Ke−n/K < ε/2, and C > 0 such that max[d(o, ωi o) : i = 1, . . . , n] ≤ C outside a set of probability

ε/2.

Theorem 7.3.4. Let ω be a non-elementary random walk with finite first moment, and λ be its escape

rate. Then for any 0 < K < λ, there exists K ′ > 0 such that

P(τ(ωn) ≤ Kn or ωn does not have BGIP) ≤ K ′e−n/K
′
.

Proof. Recall that the third model involves constants 0 < α < 1 and Ksleep > 0. We can also begin by

taking large enough N0 when deciding the Schottky set S. However, recall that K0 = K0(N0), D0, D1,

L1, E1 and L2 are all depending on N0. Since we are requiring Inequality 3.2.5, this will also increase

M0. However, it will be apparent that the increase of M0 does not harm the forthcoming argument. We

now explain how small α should be and how large N0, Ksleep should be.

Since K < λ, the subadditive ergodic theorem provides K, ε1 > 0 such that

λ′ :=
1

2M0Ksleep
Eµ∗2M0 Ksleep [d(o, go)] > K + ε1 (7.3.2)

holds when 2M0Ksleep ≥ K4. Moreover, we have

K

1− 200/N0
< (1− 2ε2)(K + ε1)

for large enough N0 and small enough ε2 > 0. We first decide such large N0 and an associated K0-

Schottky set S with #S ≥ N0. We then take large enough M0 > 1 that satisfies Inequality 3.2.5.

At the moment, we can determine the decomposition as in Equation 4.4.1 for some 0 < α < 1 and

non-elementary ν. Let C = C(ε2) be as in Lemma 7.3.3 for this ν, and we take K5 > 0 such that

K

1− 200/N0
< (1− 2ε2)(K + ε1)− C

K5
. (7.3.3)

Finally, let {Xj}j be independent geometric RVs whose distributions satisfy

P(Xj = i) = α(1− α)i−1 (i = 1, 2, . . .).

Since Xj ’s have uniform exponential moment, There exists K6,K7 > 0 such that

P

 m∑
j=1

Xj ≥ K6m

 ≤ e−K7m.
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We then require Ksleep to be larger than K4,K5 and N0(K6 + 1).

Given n, let n′ = bn/2M0c and

wi−1 := g2M0[t′i−1+1]+1 · · · g2M0ti ,

αi := (g2M0ti+1, . . . , g2M0ti+M0),

βi := (g2M0ti+M0+1, . . . , g2M0ti+2M0
),

vi := g2M0ti+2M0+1 · · · g2M0t′i
,

v
(core)
i := g2M0ti+2M0+1 · · · g2M0ti+2M0+2M0Ksleep ,

v
(tail)
i := g2M0ti+2M0+2M0Ksleep +1 · · · g2M0t′i

,

γi := (g2M0t′i+1, . . . , g2M0t′i+M0
),

δi := (g2M0t′i+M0+1, . . . , g2M0t′i+2M0
)

for i = 1, . . . ,N (n′); we also define wN (n′) = g2M0[t′N(n′)+1]+1 · · · gn.

We first determine the values of ρj ’s. Observe that N (n′) and {tj , t′j}j depend solely on {ρj}j , and

P
(
N (n′) ≤ (1− 1/N0)

n

2M0Ksleep

)
≤ 1

K11
e−K11n

′
(7.3.4)

for some K11 > 0 due to our assumption Ksleep ≥ N0(K6 + 1) ([Gou21, Lemma 5.13]). We fix values of

{ρj}j that makes Inequality 7.3.4 hold.

Meanwhile, Corollary 4.1.8 asserts that

P(#Pn ≤ (1− 20/N0)N (n′)) ≤ 1

K12
e−K12n

′
(7.3.5)

for some K12 > 0 that depends on N0. Let En be an equivalence class made by the extended pivoting as

in Lemma 4.2.2 that has pivotal times {i(1) < . . . < i(m)} where m ≥ (1− 10/N0)N (n′). We can then

apply Lemma 7.3.1 once we determine the distribution of d(o, vi)’s for i = i(1), . . . , i(m).

Note that regardless of the choice of v
(core)
i , Lemma 7.3.3 for ν asserts that d(o, vio) ≥ d(o, v

(core)
i o)−

C outside a set of probability ε2. This implies that d(o, vio) dominates B · [d(o, v
(core)
i o)− C], where B

is the Bernoulli distribution with B = 1 for probability 1− ε2 and B = 0 for probability ε2, independent

from v
(core)
i . If we denote this distribution by R, we have

ER ≥ (1− ε2)Eµ∗2M0 Ksleep [d(o, go)− C] ≥ (1− ε2)2N0Ksleep λ
′ − C.

Moreover, Lemma 7.3.1 implies that

P(d(o, ωn o) ≤ A|En) ≤ P(R1 + . . .+R(1−100/N0)m ≤ A) + e−n/K13

for any A some K13 > 0. Now the standard large deviation theory for the addition of real i.i.d. provides

a constant K14 > 0 such that

P
(
R1 + . . .+R(1−100/N0)m ≤ [(1− 2ε2)2M0Ksleep λ

′ − C]

(
1− 100

N0

)
m

∣∣∣∣ En) ≤ e−K14m. (7.3.6)

Due to our choices that satisfy Equation 7.3.2 and 7.3.3, we also have

(1− 2ε2)2M0Ksleep λ
′ − C ≥ (1− 2ε2)2M0Ksleep(K + ε1)− C

≥ K

1− 200/N0
· 2M0Ksleep .

(7.3.7)
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We now combine Inequality 7.3.4, 7.3.5, 7.3.6 and 7.3.7 to deduce that

P
(
d(o, ωn o) ≤

K

1− 200/N0
2M0Ksleep ·

(
1− 100

N0

)(
1− 20

N0

)(
1− 1

N0

)
n

2M0Ksleep

)
decays exponentially. This implies that P(d(o, ωn o) ≤ Kn) decays exponentially.

For the translation length and the BGIP of a random mapping class, we employ the estimation in

Lemma 7.3.1. Namely, we have

P(ωn does not have BGIP or τ(ωn) ≤ A|En) ≤ P(R1 + . . .+R(1−150/N0)m ≤ A) + e−n/K13

for some K13 > 0. Then by a similar reason as above, we deduce that

P

 ωn does not have BGIP or

τ(ωn) ≤ K
1−200/N0

2M0Ksleep ·
(

1− 150
N0

)(
1− 20

N0

)(
1− 1

N0

)
n

2M0Ksleep


decays exponentially.

7.4 Completion of Theorem C

We now explain the converse of CLT for translation length, hence finishing the proof of Theorem C.

Proposition 7.4.1. Let µ be a non-elementary measure on Mod(Σ) with infinite second moment. Then

for any sequence (cn)n of real values, { 1√
n

[τ(ωn)− cn]}n does not converge in law.

Proof. We continue from the proof of Proposition 7.4.1. Namely, we pinpoint subsets S1, S2 of S with

cardinality N0/2 such that Eµ′ [d(o, go)2] = +∞, where µ′ is the normalized restriction of µ on A(S1, S2).

Then we consider the decomposition

µ(4M0+1) = α(µ2
S1
× µ′ × µ2

S2
) + (1− α)ν

for some 0 < α < 1 and ν and employ the first model described in Section 4.2; we have that

P(#Pn(ω) ≤ Kn) < Ke−n/K

for some K > 0.

We now gather all sample paths with at least 2m+1 pivotal times till n, where m = blog2Knc − 1;

this misses only a set of probability less than K2−n/K . At the moment, we consider the usual pivoting

(as in Section 4.1) at the first and the last 2m−2 pivotal times and the v-pivoting (as in Section 4.2) at

the intermediate pivotal times to construct an equivalence class E . On E , we have ω ∈ S†k holds for some

k ≤ 2m−1 with probability at least 1− (8/N0)2m−2

by Lemma 7.2.2. We freeze such choices for the usual

pivoting at the first and the last 2m−2 pivotal times, and freeze some more choices for the v-pivoting at

some intermediate pivotal times, to leave the freedom of 2m v-pivotal choices at the intermediate pivotal

times i(1) < . . . < i(2m). On the finer equivalence class E1 after this freezing, let us define xi’s as

x2m+1k+2l−1 := ωi(l)+2M0
o, x2m+1k+2l := ωi(l)+2M0+M o (k ∈ Z, l = 1, . . . , 2m).

Then as before, we have that (xi, xk)xj ≤ E0 for all i < j < k Here, note that d(x0, x1) = d(x2m+1 , x2m+1+1) =

. . . is constant over E1, since it only depends on the pivotal choices that we have already frozen. We have

that

τ(ωn) =

2m∑
i=1

d(x2i−2, x2i−1)︸ ︷︷ ︸
I1

+

2m∑
i=1

d(x2i−1, x2i)︸ ︷︷ ︸
I2

−2

m∑
l=0

2m−l∑
k=1

(x2l(2k−2), x2l·2k)x
2l(2k−1)︸ ︷︷ ︸

I3

+I4,

76



where

I4 := lim
k

1

k

k−1∑
l=1

(x0, x(l+1)2m+1)xl2m+1

is bounded by E0. Now the rest of the proof of Proposition 6.3.1 applies.
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Chapter 8. Counting problem

The main purpose of this chapter is to prove the following:

Theorem 8.0.1 (Translation length grows linearly). For each λ > 1, there exists λ0 > 0 such that the

following holds. Let G be a finitely generated non-elementary subgroup of Mod(Σ) and S′ ⊆ G be a finite

symmetric generating set. Then there exists a set S′′ ⊇ S′ of G with #S′′ ≤ (1 + λ)#S′ + λ0 such that

#{g ∈ BS′′(n) : τX(g) ≤ Ln}
#BS′′(n)

≤ Ke−n/K

holds for some L > K.

Our strategy is to add Schottky isometries to S′. We encounter one technicality: the K0-Schottky

set S that we have in hand can never be symmetric, considering Lemma 3.2.10. Hence, in the following

construction, we should allow choosing αi, βi, γi, δi from S ∪ Š for the pivotal time construction. Here,

recall again that

Š := {s−1 : s ∈ S} = {(a−1
M0
, . . . , a−1

1 ) : (a1, . . . , aM0 ∈ S}.

Lemma 8.0.2. Let si ∈ S and εi ∈ {±1} for i = 1, . . . , k. Suppose that there does not exist i such that

si = si+1 and εiεi+1 = −1. Then:

1. the sequence (
Γ(sε11 ), Π(sε11 )Γ(sε22 ), . . . , Π(sε11 ) · · ·Π(sεkk−1)Γ(sεkk )

)
is D0-aligned, and

2. Π(sε11 ) · · ·Π(sεkk ) is not the identity element.

Proof. This is a variant of Lemma 3.2.10. Recall again that

diam
(
πΓ(sε)(Π(sε)o) ∪ o

)
= diam (Π(sε)o ∪ o) ≥M0/K0 −K0 > K0

holds for each s ∈ S and ε ∈ {±1}. This implies that

diam
(
πΓn(s′)(Π(sε)o) ∪ o

)
≤ K (8.0.1)

holds for all n if s 6= s′ (Property (2)), and for nε ≤ 0 if s = s′ (Property (3)).

Now for each i, we have the following cases.

1. si 6= si+1: then we have

diam
(
π

Γ(s
εi+1
i+1 )(Π(s−εii )o) ∪ o

)
≤ K0, diam

(
πΓ(s

εi
i )(Π(sεii )o) ∪ Π(sεii )o

)
= 0.

Here, the first inequality is Inequality 8.0.1 and the second inequality is immediate. Hence,(
Γ(sεii ), Π(sεii )Γ(s

εi+1

i+1 )
)

is D0-aligned by Lemma 3.1.2.

2. si = si+1: then εi = εi+1, and the above inequalities similarly hold.

This concludes the D0-alignment. Now the nontriviality of Π(sε11 ) · · ·Π(sεkk ) follows from this D0-

alignment, namely,

d(o,Π(sε11 ) · · ·Π(sεkk )o) ≥

[
k∑
i=1

d (o,Π(sεkk )o)

]
− 2(k − 1)E0 ≥ E0k.
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This leads to the following corollary:

Corollary 8.0.3. S and Š are disjoint. Moreover, if we define

T := {(s1, s2, s3, s4) ∈
(
si ∈ S ∪ Š

)4
: si 6= s−1

i+1 for i = 1, 2, 3} (8.0.2)

and the map

Φ : T → G, Φ(s1, s2, s3, s4) := Π(s1)Π(s2)Π(s3)Π(s4), (8.0.3)

then f is injective.

Proof of Theorem 8.0.1. Let us first observe the function

f(x) :=
1

1 +
√
λ

(√
λ

x

)x(
1

1− x

)1−x

.

We have limx→0+ f(x) = 1/(1 +
√
λ) < 0.5 so there exists 0 < ε1 < 1/3 such that f(ε1) ≤ 1/2. We then

set

λ0 =

⌈(
24
√
λ
)4
(

220/ε1 +

(
1√
λ− 1

)4
)⌉

.

Our choice of λ0 satisfies that:

1− 12
4
√
λ0

≥ 1− 1

2
√
λ/(
√
λ− 1)

=
1 + 1/

√
λ

2
≥ 1/

√
λ, (8.0.4)

λ0/
√
λ ≥ 12 · 220/ε1 . (8.0.5)

Given S′, let S be the K0-Schottky set with cardinality b 1
2

4
√
λ#S′ + λ0c. We then define T and

Φ : T → G as in Equation 8.0.2 and 8.0.3. We then have

N0 := #Φ(T ) = #T =

(
2

⌊
1

2
4
√
λ#S′ + λ0

⌋)(
2

⌊
1

2
4
√
λ#S′ + λ0

⌋
− 1

)3

≤ λ#S′ + λ0

and

N0 ≥
(

4
√
λ#S′ + λ0 − 3

)4

≥ (λ#S′ + λ0)

(
1− 12

4
√
λ#S′ + λ0

)
≥
√
λ#S′ + λ0/

√
λ ≥
√
λ#S′ + 8 · 220/ε1 .

Here, we used Inequality 8.0.4 and 8.0.5 at the second and the third inequalities, respectively.

We consider the simple random walk on S′ ∪ Φ(T ). We have

µ = αµΦ(T ) + (1− α)ν,

where µΦ(T ) is the uniform measure on Φ(T ) and ν is the uniform measure on the remaining choices.

Here, note that α ≥
√
λ/(1 +

√
λ). This decomposition enables us to employ the model in Section 4.3.

Namely, we define Bernoulli RVs ρi with expectation α, η′i with the law µΦ(T ) and νi with the law ν, all

independent, and define gi+1 = η′i when ρi = 1 and gi+1 = νi otherwise. Then (gi)
∞
i=1 has the law µ∞.

We define N (k) :=
∑k
i=0 ρi and ϑ(i) := min{j ≥ 0 : N (j) = i} as before.

Let us now estimate the probability that N (n− 1) ≤ ε1n. Since N (n− 1) is greater in distribution

than the sum of n independent Bernoulli distribution with expectation
√
λ/(1 +

√
λ), we have

P (N (n− 1) ≤ ε1n) ≤
ε1n∑
i=0

(
n

i

)( √
λ

1 +
√
λ

)i(
1

1 +
√
λ

)n−i
.
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Since ε1/(1 − ε1) ≤ 1/
√
λ, the term ai =

(
n
i

) ( √
λ

1+
√
λ

)i (
1

1+
√
λ

)(1−ε1)n

is monotonically increasing for

i = 0, . . . , ε1n. Hence, the probability is bounded by

ε1n ·
(
n

ε1n

)( √
λ

1 +
√
λ

)ε1n(
1

1 +
√
λ

)(1−ε1)n

.

The growth rate of this term is f(ε1), which is smaller than 1/2. Hence, we can conclude that

P (N (n− 1) ≤ ε1n) ≤ C

2n

for some C > 0.

Now given the choices of {ρi}i that gives N (n − 1) ≥ ε1n, we further fix the values of νi’s. At

the moment, we define ηi := (αi, βi, γi, δi) ∈ T such that Φ(αi, βi, γi, δi) = η′ϑ(i)+1; note that the

correspondence ηi ↔ η′ϑ(i)+1 is one-to-one. Then ηi’s are chosen with the uniform measure TN (n−1).

Following the convention in Section 4.3, we define

wi := gϑ(i−1)+2 . . . gϑ(i).

We also set w(n) := gϑ(N (n−1))+2 · · · gn and ai = Π(αi), . . . , di = Π(δi). Then we have

ωn = w0νϑ(1)w2 · · · νϑ(N (n−1))w
(n)

= w0a1b1c1d1w1 · · · aN (n−1)bN (n−1)cN (n−1)dN (n−1)w
(n).

In this setting, we define the set of pivotal times as in Section 4.1 (with vi = id identically).

Since (αi, βi, γi, δi)
N (n−1)
i=1 is chosen with the uniform measure on TN (n−1), not SN (n−1), the following

modifications are needed.

• For choices (αi, βi, γi, δi) ∈ T , Observation 4.1.2 still holds thanks to Lemma 8.0.2.

• In Lemma 4.1.4, we first pick δi ∈ S∪Š, and then γi ∈ (S∪Š)\{δi}−1, and then βi ∈ (S∪Š)\{γ−1
i },

and then αi ∈ (S ∪ Š) \ {β−1
i }. First, there exists at most 1 candidate for δk that violates

Condition 4.1.3; this rules out at most (N0 − 1)3 choices in T . Picking δk that satisfies Condition

4.1.3, Condition 4.1.2 and 4.1.4 are automatically guaranteed for any valid γk and βk due to the

definition of T and Lemma 8.0.2. Finally, there exists at most 1 candidate for αk that violates

Condition 4.1.5. This rules out at most N0(N0 − 1)2 choices in T . Overall, we have

P
(

#Pk(s, αk, βk, γk, δk) = #Pk−1(s) + 1
)
≥ 1− (2N0 − 1)(N0 − 1)2

N0(N0 − 1)3
≥ 1− 2

N0 − 1
.

• Let us investigate the proof of Lemma 4.1.6. We first have

P(A|T ) ≥ 1− 2

N0 − 1
.

Next, in the case of j = 1 we similarly set l < m as the last 2 elements of Pk−1(s). Fixing

(αk, βk, γk, δk) ∈ T and s̃ ∈ Ek−1(s), we define Ã = Ã(s̃, αk, βk, γk, δk) ∈ S̃m(s) as in the proof

of Lemma 4.1.6. In other words, for (α̃m, β̄m, γ̃m) ∈ Ã, β̄m is now subject to Condition 4.1.7 in

addition to the standing condition that β̄m 6= α̃−1
m , γ̃−1

m . Since the additional Condition 4.1.7 rules

out at most 1 choice, we have the conditional expectation

#[E(s̃, S̃m) \ E(s̃, Ã)]

#E(s̃, S̃m)
≤ 1

N0 − 2
≥ 2

N0 − 1
.
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This leads to the estimation

P
(

#Pk(s̃, αk, βk, γk, δk) < #Pk−1(s)− 1
∣∣∣ s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4

)
≤ 2

N0 − 1
· 2

N0 − 1
.

By similar induction steps, we get

P
(

#Pk(s̃, αk, βk, γk, δk) < #Pk−1(s)− j
∣∣∣ s̃ ∈ Ek−1(s), (αk, βk, γk, δk) ∈ S4

)
≤
(

2

N0 − 1

)j+1

• For the pivoting for translation length, let us compare the proportion of S†k in S̃∗i(k)× S̃
∗
i(M−k+1) for

an equivalence class E withM pivotal times. Fixing valid choices for βi(k), γi(k), αi(M−k+1), γi(M−k+1),

we now have three constraints for αi(k): αi(k) 6= β−1
i(k), Condition 4.1.5 and Condition 7.2.1. In other

words, among at least N0 − 2 choices of αi(k) that makes (αi(k), βi(k), γi(k)) ∈ S̃∗i(k), all choices but

at most one satisfy Condition 7.2.1. Fixing such αi(k), we obtain a similar estimate for βi(M−k+1)

and we conclude

P
(
αi(k) ∈ S†k(s), βi(M−k+1) ∈ S†M−k+1(s) for some k ≤ m

∣∣ E) ≥ 1−
(

2

N0 − 2

)m
.

Having these modifications, we now estimate

P
(

#Pn(ω) ≥ ε1n/2
∣∣∣ N (ωn) ≥ ε1n

)
.

If N (ωn) = N , then #Pn(ω) is greater in distribution than the sum of N i.i.d. Xi with the distribution

P(Xi = j) =


1− 2

N0−1 if j = 1,(
1− 2

N0−1

)(
2

N0−1

)−j
if j < 0,

0 otherwise.

(8.0.6)

Note that

E

[√
2

N0 − 1

Xi
]

=

(
1− 2

N0 − 1

)[√
2

N0 − 1
+

∞∑
i=1

√
2

N0 − 1

i
]
≤ 2.1

√
2

N0 − 1
.

We then calculate:

P

(
N∑
i=1

Xi < ε1n/2

)
·
√

2

N0 − 1

ε1n/2

≤ E

√ 2

N0 − 1

∑N
i=1Xi

 =

N∏
i=1

E

[√
2

N0 − 1

Xi
]
≤ 2.1ε1n·

√
2

N0 − 1

ε1n

.

This implies that

P

(
N∑
i=1

Xi < ε1n/2

)
≤ 2.1ε1n ·

(
2

N0 − 1

)ε1n/4
≤
(

2 · 20

N0

)ε1n/4
≤ 1

2n
.

At the final stage we used N0 ≥ 40 · 25/ε1 .

Now, for an equivalence class En with Pn(En) ≥ ε1n/2, we know that ω is BGIP with τ(ω) ≥ ε1n/10

except probability (
2

N0 − 2

)ε1n/5
≤ 1

2n
.

In summary, P(ωn is not BGIP or τ(ωn) ≥ ε1n/10) ≤ 1− (1/2)n; the number of sample paths cor-

responding to this event is at most ((#S′ +N0)/2)n.
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Meanwhile, the ball Bn(e) contains all

{Π(s1) · · ·Π(s4n) : si ∈ S0, si 6= s−1
i+1}.

Their number is at least

( 4
√
λ#S′ + λ0 − 3)4n ≥

(
(λ#S′ + λ0)

(
1− 12

4
√
λ0

))n
≥

(
(λ#S′ + λ0)

(
1 + 1/

√
λ

2

))n
.

Since

#S′ +N0 ≤ (1 + λ)#S′ + λ0 ≤ (
√
λ+ λ)#S′ + λ0(1 + 1/

√
λ),

we conclude that the growth rate of #Bn(e) is strictly greater than the growth rate of elements w in

#Bn(e) such that w is not BGIP or τ(w) ≥ ε1n/10.
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Chapter 9. Spaces with contracting isometries

We discuss spaces other than Teichmüller space that possess BGIP isometries. At least two impor-

tant spaces arise in geometric group theory and geometric topology: CAT(0) spaces and Outer space.

9.1 CAT(0) spaces

CAT(0) spaces are geodesic spaces where geodesic triangles are not fatter than Euclidean triangles

with the same side lengths. A typical example is a complete Riemannian manifold with non-positive

sectional curvature. In particular, Euclidean spaces and n-dimensional hyperbolic spaces are CAT(0)

spaces, and products of CAT(0) spaces (with l2 metric) are also CAT(0).

Definition 9.1.1 (Isometries of CAT(0) spaces). Let X be a CAT(0) space. An isometry g of X is

said to be semisimple if x 7→ d(x, gx) attains its minimum in X. If the minimum is 0, then g is said to

be elliptic. Otherwise, g is said to be axial. g is said to be rank-1 if it is axial and its axis is strongly

contracting.

In view of Lemma 2.2.6, rank-1 isometries have BGIP. In the setting of proper CAT(0) spaces, the

following propositions guarantee the existence of non-elementary subgroups of Isom(X).

Proposition 9.1.2 ([BF09, Theorem 5.4]). Let X be a proper CAT(0) space. Then an axial isometry g

is rank-1 if and only if its axis does not bound a flat half-plane.

Proposition 9.1.3 ([BF09, Theorem 6.5]). Let X be a proper CAT(0) space. Suppose that the action

of Γ ≤ Isom(X) satisfies WPD (see [BF09, Definition 6.4]). Then Γ is non-elementary.

Proposition 9.1.4 ([Ham09, Corollary 5.4]). Let X be a proper CAT(0) space that admits a rank-

1 isometry. Suppose that the limit set of Isom(X) on the visual boundary has at least 3 points and

Isom(X) does not globally fix a point in ∂X. Then Isom(X) is non-elementary.

Proposition 9.1.5 ([CF10, Proposition 3.4]). Let X be a proper CAT(0) space that admits a rank-1

isometry. Suppose that Isom(X) does not globally fix a point in ∂X nor stabilize a geodesic line. Then

Isom(X) is non-elementary.

As mentioned in Section 2.3, the Weil-Petersson metric is an (incomplete) CAT(0) metric on Te-

ichmüller space.

9.2 CAT(0) cube complices

It is expected that many irreducible CAT(0) spaces (i.e., those that are not products of two spaces)

contain a rank-1 isometry. In particular, Ballmann and Buyalo conjectured in [BB08] the following: if

X is an irreducible, locally compact, complete CAT(0) space and Γ is an infinite discrete group acting

properly and cocompactly on X, then either X is a higher-rank symmetric space, is a Euclidean building

of higher dimension, or has a rank-1 isometry. Although this conjecture is not settled in full generality,

it has been established for the following class of spaces called CAT(0) cube complices by Caprace and

Sageev.
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Proposition 9.2.1 ([CS11, cf. Theorem A]). Let X be an irreducible, finite-dimensional CAT(0) cube

complex and Γ ≤ Aut(X) be a group that does not globally fix a point nor stabilize a 1-dimensional

flat in X ∪ ∂∞X. Then X contains a convex Γ-invariant subcomplex Y on which the action of Γ is

non-elementary.

This follows by combining Theorem A, Theorem E, Lemma 6.2, Lemma 7.1 and the Double Skew-

ering Lemma in [CS11].

We now give a remark on two different metrics on CAT(0) cube complices. Traditionally, CAT(0)

cube complices come equipped with either the metric induced by gluing Euclidean cubes or the metric

induced by gluing cubes with l1-metrics. The first metric is referred to as the l2-metric or the CAT(0)

metric, and the second metric is referred to as the l1-metric or the combinatorial metric. In finite-

dimensional CAT(0) cube complices, these two metrics are quasi-isometric. The previous theorem was

with respect to the l2-metric, but one can also discuss the same result with respect to the l1-metric.

More precisely, the proof of Proposition 9.2.1 guarantees the existence of the following objects:

• half-spaces h′1, h′′1 , h′2, h′′2 such that h′1, h′∗1 , h′2, h′∗2 are mutually strongly separated;

• automorphisms g1 that sends h′1 to g1h
′
1 ⊇ h′′1 and g2 that sends h′2 to g2h

′
2 ⊇ h′′2 .

Then by a classic ping-pong lemma, one can construct translates of the ones associated with h′1,

h′2 in between g±n1 o and g±m2 o, whose number increases as n,m→ +∞. Moreover, using Lemma 3.5 of

[CFI16] instead of Lemma 6.1 of [CS11] implies that g1, g2 are strongly contracting. Hence we deduce

that g1, g2 are independent strongly contracting isometries with respect to the l1-metric also.

We also note the characterization of contracting isometries (with respect to the l1-metric) of (not

necessarily finite-dimensional) CAT(0) cube complices by Genevois [Gen20]. In the same paper, Genevois

also detects contracting isometries of a locally finite CAT(0) cube complex from the structure of the so-

called combinatorial boundary.

An important family of examples comes from right-angled Artin groups (RAAGs). Recall that a

RAAG Γ is associated with a simply connected CAT(0) cube complex X̃Γ; Γ acts properly and cocom-

pactly on X̃Γ, and the resulting quotient is called the Salvetti complex XΓ of Γ. It is proved in [BC12]

that if Γ is not a direct product, then the universal cover X̃Γ of the Salvetti complex admits a rank-1

isometry. This is proved by finding g ∈ Γ that has infinite join length, or equivalently, infinite separation

length. This implies that a suitable power of g serves as a double skewer; given the previous discussion,

g is strongly contracting with respect to the l1-metric also. Moreover, since the action of Γ on XΓ is

properly discontinuous, one can employ Proposition 9.1.3 and conclude that the action of Γ on XΓ is

non-elementary with respect to both l2-metric and l1-metric.

9.3 Outer space and the Lipschitz metric

In this subsection, we gather facts regarding the outer automorphism group and Outer space. For

detailed definitions and theories, see the general exposition of Vogtmann [Vog15] or individual papers,

e.g. [BH92], [FM11], [FM12], [AKB12], [AK11], [DT18] and [KMPT22].

Let X be the Culler-Vogtmann Outer space CVN of rank N ≥ 3, which is the space of unit-volume

marked metric graphs with fundamental group FN . In other words, a point p ∈ CVN corresponds to the

homotopic class of a homotopy equivalence h : RN → Γ, where RN is a fixed rose with N petals and Γ

is a unit-volume metric graph. The corresponding space without the volume normalization is called the

unprojectivized Outer space cvN , and there is a projectivization from cvN to CVN by dilation.
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Outer space comes equipped with a canonical metric, the Lipschitz distance, which is defined as

follows: for two markings h1 : RN → Γ1 and h2 : RN → Γ2, the distance from Γ1 to Γ2 is defined by

dCV (Γ1,Γ2) := inf{log Lip(f) : f ∼ f2 ◦ f−1
1 },

where Lip(f) is the (maximal) Lipschitz constant of f . We now make a convention that differs from the

traditional one. Namely, the outer automorphism group Out(FN ) of rank N acts on CVN by changing

the basis of the marking with the inverses: given φ ∈ Out(FN ) and h : RN → Γ representing a point of

CVN , φ moves h to h ◦ φ−1 : FN
φ−1

→ FN
h→ Γ. This is a left action by isometries. We denote action by

X 3 h 7→ φ · h ∈ X.

It is known that the Lipschitz distance is asymmetric [FM11] and not uniquely geodesic. However,

distances among ε-thick points (i.e., those with systole at least ε) have the coarse symmetry: there

exists a constant C = C(ε) < +∞ such that for any ε-thick points x and y, one has d(x, y) ≤ Cd(y, x)

[AKB12]. In particular, distances among the translates of the reference point o by Out(FN ) satisfy the

coarse symmetry.

Just as Teichmüller space T (Σ) is accompanied by the curve complex C(Σ) and the coarse projection

πC : T (Σ)→ C(Σ), CVN is accompanied by the complex of free factors FFN and the coarse projection

πFF : CVN → FFN . This projection is coarsely Out(FN )-equivariant and coarsely Lipschitz. Moreover,

geodesics in CVN projects to K-unparametrized bi-quasigeodesics for some uniform K > 0 [BF14,

Proposition 9.2].

Outer space also accommodates lots of BGIP isometries. We say that an outer automorphism

φ ∈ Out(FN ) is reducible if there exists a free product decomposition FN = C1 ∗ · · · ∗ Ck ∗ Ck+1, with

k ≥ 1 and Ci 6= {e}, such that φ permutes the conjugacy classes of C1, . . . , Ck. If not, we say that φ is

irreducible. We also say that φ is fully irreducible (or iwip) if no power of φ is reducible, or equivalently,

no power of φ preserves the conjugacy class of any proper free factor of FN . We also say that φ is atoroidal

(or hyperbolic) if no power of φ fixes any nontrivial conjugacy class in FN . When φ is fully irreducible, it

is non-atoroidal if and only if it is geometric, i.e., induced by a pseudo-Anosov ϕ : Σ→ Σ on a compact

surface Σ with one boundary component, via identification of FN with π(Σ). Bestvina and Feighn proved

in [BF14] that φ ∈ Out(FN ) is fully irreducible if and only if it acts on FFN loxodromically.

We say that a subgroup G ≤ Out(FN ) is non-elementary if it acts on FFN in a non-elementary

way, or equivalently, contains two fully irreducibles with mutually distinct attracting/repelling trees. It

is known that if G ≤ Out(FN ) does not fix any finite subset of FFN ∪ ∂FFN , or equivalently, if it

is not virtually cyclic nor virtually fixes the conjugacy class of a proper free factor of FN , then G is

non-elementary [Hor16]. Since πFF is coarsely Lipschitz, the independence of two fully irreducibles in

FFN is lifted to the independence in CVN .

We refer the readers to [BH92], [AK10], [BF14] and [AKKP19] for the precise definition of a train-

track representative f : Γ → Γ of an outer automorphism φ. Roughly speaking, a train-track represen-

tative of φ is a self-map f : Γ → Γ in the free homotopy class of φ on a simplicial graph Γ that sends

vertices to vertices, restricts to immersion on each edge of Γ and sends edges to immersed segments after

iterations. It is due to Bestvina and Handel [BH92] that every irreducible outer automorphism admits a

train-track representative, although it may not be unique.

Given such a structure, one can endow Γ with a metric such that f stretches each edge of Γ by

the same constant λ > 1, which is called the expansion factor of f . This expansion factor is uniquely

determined by the choice of φ and does not depend on the choice of f . Moreover, in view of Skora’s

interpretation of Stallings fold decompositions, one obtains a continuous path on cvN from Γ to Γ ◦ φ
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by folding a single illegal turn at each time (cf. [AKKP19]). This descends to a geodesic segment of

length log λ (after a reparametrization) and the concatenation of its translates by powers of φ becomes

a bi-infinite, φ-periodic geodesic. We call this a (optimal) folding axis of φ. Algom-Kfir observed the

following:

Theorem 9.3.1 ([AK11]). Folding axes of fully irreducible outer automorphisms are strongly contracting.

Unfortunately, we need BGIP instead of the strongly contracting property in our setting, and the

author does not know a way to promote the latter to the former. Meanwhile, I. Kapovich, Maher, Pfaff

and Taylor observed the following version of BGIP in Outer space. This requires the notion of greedy

folding paths, whose accurate definition can be found in [FM11], [BF14] and [DH18]. In short, a greedy

folding path γ : I → cvN is obtained by folding every illegal turn at each time with speed 1, where

the illegal turn structures at different forward times are identical and define a well-defined illegal turn

structure. This also descends to a geodesic on CVN , and we have the following theorem:

Theorem 9.3.2 ([KMPT22, Theorem 7.8]). Let φ ∈ Out(FN ) be a fully irreducible outer automorphism.

Suppose that γ is a bi-infinite, φ-periodic greedy folding path. Then there exists C > 0 such that the

following holds.

Let x, y ∈ X be points such that dsym(πγ(x), πγ(y)) ≥ C, and satisfy dsym(πγ(x)) = γ(t1), dsym(πγ(y)) =

γ(t2) for some t1 < t2. Then any geodesic [x, y] between them contains a subsegment [z1, z2] such that

dsym(z1, πγ(x)) < C, dsym(z2, πγ(y)) < C.

This uni-directional version of BGIP is designed for outer automorphisms that have an invariant

greedy folding line. It seems not shown that all fully irreducibles have such a line. (The author thanks

Sam Taylor for pointing this out.) Nonetheless, by adapting Dowdall-Taylor’s idea and Kapovich-Maher-

Pfaff-Taylor’s proof of Theorem 9.3.2, we can obtain the following result. This proof was kindly informed

by Sam Taylor.

Proposition 9.3.3. Let ϕ ∈ Out(FN ) be a fully irreducible outer automorphism. Then the orbit {ϕio}i∈Z
of o by ϕ is a BGIP axis.

Proof. Before we begin, we recall the following facts regarding a geodesic δ-hyperbolic space Y .

1. (Morse property) A K-quasigeodesic and a geodesic with the same endpoints are within Hausdorff

distance K2 = K2(K, δ).

2. The closest point projections onto a K-quasigeodesic and a geodesic on Y with the same endpoints

are within distance K3 = K3(K, δ).

3. If the projections of x, y ∈ Y to K-quasigeodesic γ contain γ(s) and γ(t), respectively, and

d(γ(s), γ(t)) > K4 = K4(K, δ), then [x, y] and [x, πγ(x)] ∪ γ|[s,t] ∪ [πγ(y), y] are within Hausd-

off distance K4.

4. If K-quasigeodesics γ, γ′ are within Hausdorff distant K and the distance between starting points

is at most K, then γ′ crosses γ up to a constant K5 = K5(K, δ), i.e., γ and γ′ ◦ ρ K5-fellow travel

for some orientation-matching reparametrization ρ.

Let T+, T− be the attracting and repelling trees of ϕ, respectively. There exist optimal greedy

folding lines γ± : R→ CVN such that

lim
t→+∞

γ±(t) = T±, lim
t→−∞

γ±(t) = T∓ (9.3.1)
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([BR15], Lemma 6.7 and Lemma 7.3). Since {ϕio}i is a quasigeodesic whose endpoints agree with γ+,

Theorem 4.1 of [DT18] asserts that dH({ϕio}i, γ+) < K1 and πFF (γ+) is a K1-quasigeodesic for some

K1. Similarly, by comparing {ϕ−io}i and γ−, we deduce that dH({ϕio}i, γ−) < K1 and πFF (γ−) is a

K1-quasigeodesic. Also, γ± are uniformly thick.

Let us now take x+
i ∈ πγ+(ϕio) and x−i ∈ πγ−(ϕio) for each i. We recall the following result of

Dahmani and Horbez ([DH18, Proposition 5.17, Corollary 5.22]; see also Section 7 of [KMPT22]): there

exist B,D > 0 such that γ± are (B,D)-contracting at x±i ’s (with a suitable crossing constant κ). In

other words, a geodesic η on CVN projects to a path that κ-crosses up a large enough subsegment of

πFFγ± that begins from πFF (x±i ), then η has a point p whose distance to γ± is bounded by D. Since

γ± are thick, the distance from γ± to such point p is also controlled and η intersects a neighborhood of

γ± in such a case.

We now observe that πFFπγ+ , πFFπγ− and ππFF ({ϕio}i) ◦ π are coarsely equivalent. First, Lemma

4.11 of [DT18] asserts that πγ± and Prγ± are equivalent, where Pr stands for the Bestvina-Feighn left

projection. Then Lemma 4.2 of the same paper asserts that πFFPrγ± and ππFF (γ±) ◦ π are equivalent.

These are then equivalent to ππFF ({ϕio}i) ◦ π, since πFF (γ±) and πFF ({ϕio}i) are close to each other

and πFF ({ϕio}i), a quasi-geodesic on the Gromov hyperbolic space FF , is strongly contracting.

We now lift these projections: we claim that πγ+ , πγ− and π{ϕio}i are equivalent. First, suppose

that πγ+(x) and πγ−(x) are far from each other for some x ∈ X. Since γ+, γ−, {ϕio}i are close to each

other, we may take ϕio and ϕjo near πγ+(x) and πγ−(x), respectively, and conclude that |i− j| is large.

This implies that πFF (ϕio) and πFF (ϕjo) are also far from each other (since ϕ is loxodromic on CVN ),

and consequently πFF (πγ+(x)), πFF (πγ−(x)) are far from each other. (∗) Since we have proved that

πFFπγ+ and πFFπγ− are equivalent, this cannot happen. Hence, πγ+ and πγ− are equivalent.

Now suppose that π{ϕio}i(x) and πγ±(x) are far from each other for some x ∈ X. We take ϕjo ∈
π{ϕio}i(x) and ϕj

′
o near πγ±(x) and conclude that |j′ − j| is large. If j is much larger than j′, then

πFF ([x, ϕjo]) is a quasigeodesic whose endpoints project onto πFF ({ϕio}i) near πFFϕj
′
o and πFFϕjo,

respectively. Since j′ − j is large enough, this quasigeodesic crosses up long enough subsegments of

πFF ({ϕio}i) and πFF (γ+) that begin at πFF (ϕj
′
o) and πFF (xj′), respectively. Using the (B,D)-

contraction at x+
j′ of γ+, we conclude that [x, ϕjo] contains a point p nearby x+

j′ , which makes d(x, ϕj
′
o)

shorter than d(x, ϕjo) and leads to a contradiction. Similar contradiction occurs due to the contracting

property of γ− at x−i ’s when j′ is much larger than j. Hence, π{ϕio}i(x) and πγ±(x) are equivalent.

Now if a geodesic η on CVN has a large projection on {ϕio}i, then it also has large projections on γ±.

This also forces large πFF (πγ±(η)), due to the argument as in (∗). When πFF (πγ±(η)) progresses in the

forward direction with respect to {ϕio}i, then we employ the contracting property of γ+ to conclude. If

it progresses in the backward direction, then we employ the contracting property of γ− to conclude.

9.4 BGIP axes in asymmetric metric spaces

In this section, we prove Lemma 2.2.4, 2.2.5, 2.2.6, 2.2.7 and 2.2.8 for asymmetric metrics. Let us

first fix the convention of asymmetric metrics.

Definition 9.4.1 (Metric space). An (asymmetric) metric space (X, d) is a set X equipped with a

function d : X ×X → R≥0 that satisfies the following:

• for any x, y ∈ X, d(x, y) = 0 if and only if x = y;

• (triangle inequality) for any x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z);
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• (local symmetry) for each x ∈ X, there exist ε,K > 0 such that d(y, z) ≤ Kd(z, y) holds for

y, z ∈ {a ∈ X : min (d(x, a), d(a, x)) < ε}.

In this situation, we say that d is a metric on X. d is said to be symmetric if d(x, y) = d(y, x) holds for

all x, y ∈ X. We define a symmetric metric called the symmetrization of d by

dsym(x, y) := d(x, y) + d(y, x).

We endow (X, d) with the topology induced by dsym.

From now on, we fix a geodesic space X endowed with a possibly asymmetric metric. We begin

with the following technical lemma.

Lemma 9.4.2. Let γ be a K-bi-quasigeodesic such that πγ(y) 6= ∅ for any y ∈ X. Let also x ∈ NK(γ).

Then d(x, p) ≤ K and d(p, x) ≤ 3K3 + 2K hold for any p ∈ πγ(x).

Proof. Let us take ε > 0 and y ∈ Nε(x)∩NK(γ). For p ∈ πγ(x) and q ∈ γ such that dsym(q, y) ≤ K, we

observe
d(x, p) ≤ d(x, q) ≤ d(x, y) + d(y, q) ≤ ε+K,

d(p, x) ≤ d(p, q) + d(q, y) + d(y, x)

≤ [K2d(q, p) +K3 +K] +K + ε

≤ K2[d(q, y) + d(y, x) + d(x, p)] +K3 + 2K + ε

≤ K2[K + ε+ (K + ε)] +K3 + 2K + ε.

By decreasing ε down to zero, we deduce d(x, p) ≤ K and d(p, x) ≤ 3K3 + 2K for any p ∈ πγ(x).

Proof of Lemma 2.2.4. We first show diam(πγ(w)) ≤ 3K3 + 3K for any w ∈ X. If w /∈ NK(γ) then

diam(πγ(w)) < K by K-BGIP, and if w ∈ NK(γ) then for any w′, w′′ ∈ πγ(w) we have d(w′, w′′) ≤
d(w′, w) + d(w,w′′) ≤ K + (3K3 + 2K) by Lemma 9.4.2.

Let us now prove the lemma. If one of [x, y] and [y, x] is disjoint from NK(γ), then diam(πγ({x, y})) <
K by the BGIP. If not, we take z ∈ [x, y] ∩NK(γ) and z′ ∈ [y, x] ∩NK(γ) such that [x, z), [y, z′) are

disjoint from NK(γ). In other words, we take z, z′ to be the ‘leftmost’ ones among the candidates.

Then for any q′ ∈ πγ(z) and q ∈ πγ(y), we have

d(q′, q) ≤ d(q′, z) + d(z, y) + d(y, q)

≤ 3K3 + 2K + d(z, y) + d(y, πγ(z′))

≤ 3K3 + 2K + d(z, y) + d(y, z′) + d(z′, πγ(z′))

≤ 3K3 + 3K + ε.

Moreover, we have diam(πγ([x, z])) ≤ 3K3 + 3K since either x = z ∈ NK(γ) or [x, z] is disjoint from

NK(γ). Hence, we have d(p, q) ≤ 6K3 + 6K + ε for any p ∈ πγ(x) and q ∈ πγ(y).

By symmetry, we also have d(q, p) ≤ 6K3+6K+ε for such pair. Finally, we know that diam(πγ(x)) ≤
3K3 + 3K and diam(πγ(y)) ≤ 3K3 + 3K. Combining these, we conclude that diam(πγ(x) ∪ πγ(y)) ≤
12K3 + 12K + ε.

Corollary 9.4.3 (Continuity of projections II). Let X be a geodesic space. For each K > 1 there exists

a constant K ′ = K ′(K) that satisfies the following property.

Let γ be a K-BGIP axis, A ⊆ X be a connected set and a ∈ R. If γ−1πγ(A) is contained in the

union of I1 := (−∞, a] and I2 := [a+K ′,+∞) then it is contained in either I1 or I2.
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NK(γ)

γ

η(JL) η(JR)

η(J1)

γ(m) γ(M)

Figure 9.1: Schematics for the proof of Lemma 2.2.5. The projection of η(J ′) onto γ is small for each

component J ′ of J \ J0.

Proof of Lemma 2.2.5. Let K0 = K ′(K) be as in Corollary 9.4.3. Let also J0 = {s ∈ J : η(s) /∈ NK(γ)},
which is open since geodesics are continuous with respect to the dsym-topology on X.

For each component J ′ of J0, η
(
J̄ ′
)

is disjoint from NK(γ) so we have diam
(
πγη

(
J̄ ′
))
≤ K. In

particular, the assumption diam(πγ(η)) > K forces that J0 has more than 1 component; hence J \ J0 is

nonempty. We now let

A := inf J \ J0, B := supJ \ J0

and claim that γ([m,M ] ∩ I) and η([A,B] ∩ J) are close to each other.

First observe that each component of J0, except the leftmost and the rightmost ones, are shorter than

a uniform bound. For such a component J ′ = (α, β), we have η(α), η(β) ∈ ∂NK(γ) and diam (πγη ([α, β])) <

K. This implies that

|β − α| = d(η(α), η(β))

≤ d(η(α), πγη(α)) + diam (πγη(α) ∪ πγη(β)) + d(πγη(β), η(β))

≤ K +K + [3K3 + 2K] =: K1.

Now let s ∈ J be such that A ≤ s ≤ B. By its construction, s either belongs to J \J0 or a component

J ′ = (α, β) of J0 such that α, β ∈ J \ J0. In the former case, we have dsym(η(s), πγη(s)) ≤ 3K3 + 3K by

Lemma 9.4.2. In the latter case, for any p ∈ πγη(β) we have

d(η(s), p) ≤ d(η(s), η(β)) + d(η(β), πγη(β))

≤ K1 +K,

d(p, η(s)) ≤ diam (πγ(J ′)) + d(πγη(α), η(α)) + d(η(α), η(s))

≤ K + [3K3 + 2K] +K1.

Since πγη(β) ⊆ γ([m,M ] ∩ I), this establishes one direction.

For the other direction, let us take t ∈ I ∩ [m,M ]. Let JL := J ∩ (−∞, A), JR := J ∩ (B,+∞) and

J1 := J ∩ [A,B]. Then we have

γ−1πγ(η) ⊆ γ−1πγ(η(JL)) ∪ γ−1πγ(η(J1)) ∪ γ−1πγ(η(JR)).
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Also note that γ−1πγ(η(J1)) is aK0-connected set by Corollary 9.4.3, and that γ−1πγ(η(JL)), γ−1πγ(η(JR))

have diameters bounded by 2K2. This implies that there exists t0 ∈ I, s0 ∈ J1 such that γ(t0) ∈ πγ(η(s0))

and |t− t0| ≤ K0 + 2K2.

If s0 ∈ J \J0, then dsym(γ(t0), η(s0)) < 3K3 + 3K by Lemma 9.4.2; since γ(t) and γ(t0) are close to

each other, we are done in this case. If s0 ∈ J0, it belongs to a component J ′ = (α, β) of J0 that is not the

leftmost or the rightmost one. We then have β ∈ J \ J0 and dsym(γ(t0), πγ(η(β)) ≤ 2 diamπγ(J ′) ≤ 2K.

By replacing s0 with β and t0 with an element of πγ(η(β)), we similarly deduce the conclusion.

Proof of Lemma 2.2.6. Let γ : I → X be a K-BGIP axis, γ′ = γ|I′ : I ′ → X be its subsegment and

η : J → X be a geodesic. Let also IL := {x ∈ I : x < I ′}, IR := {x ∈ I : x > I ′}. Let K1 = K ′(K) be as

in Lemma 2.2.5, K2 = K ′(K) be as in Lemma 2.2.4, R = 3K(K1 +K2 +K), R1 = K1 + 2(R + 1) and

K ′ = KR1 +K2.

Let z ∈ η. We first claim that if γ−1(πγ(z)) ∩ IR 6= ∅, then γ−1πγ′(z) ⊆ [sup I ′ − R, sup I ′]. If not,

then there exists w ∈ πγ′(z) such that γ−1(w) intersects (−∞, sup I ′ − R). Then diam(πγ(z) ∪ w) ≥
R/K − K > K + 1 so [z, w] passes through NK1(γ(sup I ′)) by Lemma 2.2.5. Let p ∈ [z, w] be that

intersection point. Then

d(z, γ(sup I ′ − ε)) ≤ d(z, γ(sup I ′)) +Kε+K

≤ d(z, p) + d(p, γ(sup I ′)) +Kε+K

≤ d(z, w)− d(p, w) + d(p, γ(sup I ′)) +Kε+K

≤ d(z, w)− d(γ(sup I ′), w) + d(γ(sup I ′), p) + d(p, γ(sup I ′)) +Kε+K

≤ d(z, w) +K1 +Kε+K − (R/K −K) < d(z, w)

for sufficiently small ε > 0, which is a contradiction.

By a similar reason, γ−1(πγ(z))∩IL 6= ∅ implies πγ′(z) ⊆ γ([inf I ′, inf I ′+R]). Finally, if γ−1(πγ(z))∩
I ′ 6= ∅ then πγ′(z) = πγ(z) ∩ γ′.

Let us now suppose that the diameter of πγ′(η) is greater than K ′. Without loss of generality, let

x, y ∈ η and s′ ∈ γ−1πγ′(x), t′ ∈ γ−1πγ′(y) be such that t′− s′ > K ′/K−K = R1. We then pick s to be

s′ if s′ ∈ γ−1πγ(x) and an arbitrary element of γ−1πγ(x) if not. Similarly we take t = t′ or an element

of γ−1πγ(y).

We claim that s ≤ s′ + R + 1. If not, we have either s ∈ IR or s′ ≤ s− R − 1 ≤ sup I ′ − R − 1. In

the former case we have sup I ′−R ≤ s′ < t′ ≤ sup I ′ and t′− s′ ≤ R < R1, a contradiction. In the latter

case, the previous observation tells us that γ−1(πγ(x)) ∩ IR = ∅. This forces one of the following cases:

• γ−1(πγ(x))∩I ′ 6= ∅ holds, in which case πγ′(x) = πγ∩γ′(x) and |s−s′| ≤ K diam(πγ(x))+K2 ≤ R
hold; or,

• γ−1(πγ(x)) < I ′ and s ≤ s′; in either case we have a contradiction.

By a similar reason, we also deduce t ≥ t′ −R− 1. In conclusion, we have

t− s ≥ min(t, t′)−max(s, s′) ≥ t′ − s′ − 2(R+ 1) ≥ R1 − 2(R+ 1) ≥ K1 (9.4.1)

and NK(γ(s∗)) ∩ η 6= ∅ for all s ≤ s∗ ≤ t by K-BGIP of γ. Also, Inequality 9.4.1 implies that

s∗ ∈ [min(t, t′),max(s, s′)] exists, which clearly belongs to I ′. This establishes K ′-BGIP of γ′.

We now investigate the second assertion. Let

K3 := 2K2(10K3 +K1 +K2) +K2.

90



As before, let γ : I → X be a K-BGIP axis and A be a K-bi-quasigeodesic that is within Hausdorff

distance K from γ. For x ∈ X, we claim that πγ(x) ∪ πA(x) is bounded. To see this, let z ∈ πγ(x)

and z′ ∈ πA(x). Since γ and A are within Hausdorff distance K, there exist w ∈ γ, w′ ∈ A such that

dsym(w, z′), dsym(w′, z) ≤ K. Then for any w∗ ∈ πγ(z′) we have

diam(z′ ∪ w∗) ≤ d(z′, w∗) + d(w∗, z′)

≤ d(z′, w) + d(w∗, w) + d(w, z′)

≤ dsym(w, z′) +K2d(w,w∗) +K3 +K

≤ dsym(w, z′) +K2[d(w, z′) + d(z′, w∗)] +K3 +K

≤ (K2 + 1)dsym(w, z′) +K3 +K ≤ 2K3 + 2K.

Now, if d(z, z′) ≥ 2K3 + 3K +K1 +K2, then

diam(πγ([x, z′])) ≥ diam(z ∪ πγ(z′)) ≥ diam(z ∪ z′)− diam(πγ(z′) ∪ z) ≥ K

and [x, z′] passes through NK1
(z) by K-BGIP of γ. Let p ∈ [x, z′] be a point in the intersection. This

implies that

d(x,w′) ≤ d(x, p) + d(p, w′)

≤ d(x, z′)− d(p, z′) + d(p, z) + d(z, w′)

≤ d(x, z′)− [d(z, z′)− d(z, p)] + d(p, z) + d(z, w′)

≤ d(x, z′)− (2K3 + 3K +K1 +K2) +K1 +K < d(x, z′),

which contradicts the fact that z′ ∈ πA(x). Hence, we conclude that d(z, z′) < 2K3 + 3K+K1 +K2 and

d(z, w) ≤ 2K3 + 4K +K1 +K2. Since γ is a K-bi-quasigeodesic, we have

d(w, z) ≤ K2(2K3 + 4K +K1 +K2) +K3 +K,

d(z′, z) ≤ K2(2K3 + 4K +K1 +K2) +K3 + 2K

≤ K2(10K3 +K1 +K2).

In short, we have dsym(z, z′) ≤ K3 −K2. Since diam(πγ(x)) ≤ K2 by Lemma 2.2.4, we conclude that

diam(πγ(x) ∪ πA(x)) ≤ K3.

Now suppose diam(πA([x, y])) > 2K3+K. By the previous argument, we deduce that diam(πγ([x, y])) >

K and [x, y] passes through NK(γ) ⊆ N2K(A). Hence, A has (2K3 + 2K)-BGIP.

From the previous proof we obtain the following corollary.

Corollary 9.4.4 (BGIP is hereditary II). For each K > 1 there exists a constant K ′ = K ′(K) such that

the following hold. Let y ∈ X, γ : I → X be a K-BGIP and γ′ : I ′ → X be a subsegment of γ defined on

I ′ ⊆ I. Then the diameters of πγ′(y) ∪ πγ′(πγ(y)) and γ−1πγ′(y) ∪ πI′γ−1πγ′(y) are both smaller than

K ′.

Proof of Lemma 2.2.7. Let K1 = K ′(K) be as in Lemma 2.2.5 and K2 = K ′(K) be as in Lemma 2.2.4.

We claim that K ′ = K(2K + 3K1 + 1) works.

Suppose first that a1, a3 ∈ [a2 + K ′,+∞). Let a := min{a1, a3}. We then have a ∈ [a2, a1],

γ(ai) ∈ πγη(αi) and

diam(πγη([α1, α2])) ≥ diam(πγη(α2) ∪ πγη(α1)) >
1

K
|a1 − a2| −K > K + 1. (9.4.2)
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γ(a)γ(a2)
γ

Figure 9.2: Schematics for the proof of Lemma 2.2.7.

Hence, by Lemma 2.2.5, there exists w1, w2 ∈ [α1, α2] such that

dsym(η(w1), γ(a)) < K1, dsym(η(w2), γ(a2)) < K1.

Similarly, we have w′1, w
′
2 ∈ [α2, α3] such that

dsym(η(w′1), γ(a)) < K1, dsym(η(w′2), γ(a2)) < K1.

Meanwhile, Inequality 9.4.2 also shows that diam(πγ([η(α1), γ(a2)])) is larger than K + 1. Since a2 ≤
a ≤ a1, Lemma 2.2.5 implies that [η(α1), γ(a2)] passes through NK1

(γ(a)). Let p be the intersection

point and note that

d(η(α1), η(α2)) ≥ d(η(α1), η(w2))

≥ d(η(α1), γ(a2))− d(η(w2), γ(a2))

= d(η(α1), p) + d(p, γ(a2))− d(η(w2), γ(a2))

≥ [d(η(α1), γ(a))− d(p, γ(a))] + [d(γ(a), γ(a2))− d(γ(a), p)]− 2K1

≥ d(η(α1), γ(a)) +

[
1

K
|a− a2| −K

]
− dsym(p, γ(a))− 2K1

≥ d(η(α1), γ(a)) +
K ′

K
−K − 3K1.

By a similar reason, [γ(a2), η(α3)] passes through NK1(γ(a)) and we can deduce

d(η(α2), η(α3)) ≥ d(γ(a), η(α3)) +
K ′

K
−K − 3K1.

Since η(α1), η(α2) and η(α3) are aligned on the same geodesic η, we deduce

d(η(α1), η(α3)) = d(η(α1), η(α2)) + d(η(α2), η(α3))

≥ d(η(α1), γ(a)) + d(γ(a), η(α3)) + 2

(
K ′

K
−K − 3K1

)
≥ d(η(α1), η(α3)) + 2

(
K ′

K
−K − 3K1

)
.

Since K ′ > K(K+3K1), this gives a contradiction. Similar investigation also prevents a1, a3 ∈ (−∞, a2−
K ′].
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Proof of Lemma 2.2.8. For each 0 ≤ s1 ≤ L1, let t ∈ I be such that dsym(η1(s1), γ(t)) < K and let

s2 ∈ [0, L2] be such that dsym(η2(s2), γ(t)) < K. Then we have

|s1 − s2| = |d(η1(0), η1(s1))− d(η2(0), η2(s2))|

≤ dsym(η1(0), η2(0)) + |d(η2(0), η2(s2))− d(η2(0), η2(s2))|+ dsym(η2(s2), η1(s1))

≤ 4K.

In particular, this implies that L2 ≥ L1 − 4M . By symmetry, L1 ≥ L2 − 4M also holds.

Now for 0 ≤ s1 ≤ min{L1, L2}, define t and s2 as above. Let also t′ ∈ I be such that dsym(η2(s1), γ(t′)) <

K. We then have

d(η1(s1), η2(s1)) ≤ d(η1(s1), η2(s2)) + d(η2(s2), η2(s1))

≤ 2K + d(η2(s2), γ(t)) + d(γ(t), γ(t′)) + d(γ(t′), η2(s1))

≤ 2K + 2K +K|t− t′|+K

≤ 5K +K2d(γ(t′), γ(t)) +K2

≤ (5K +K2) +K2[d(γ(t′), η2(s1)) + d(η2(s1), η2(s2)) + d(η2(s2), γ(t))]

≤ (5K +K2 + 2K3) +K2d(η2(s1), η2(s2)).

Since one of d(η2(s2), η2(s1)) and d(η2(s1), η2(s2)) is bounded by |s1 − s2| ≤ 4K, we conclude that

d(η1(s1), η2(s1)) ≤ 6K +K2 + 6K3. Similar estimate holds for d(η2(s1), η1(s1)).

9.5 Limit laws on CAT(0) spaces and Outer space

Thanks to the proofs of Lemma 2.2.5, 2.2.6 and Lemma 2.2.7 in the language of BGIP and asym-

metric metrics, the concatenation lemmata in Section 3.1 can be immediately brought to CAT(0) spaces

and Outer space. We end this dissertation by considering the following general theorems.

Convention 9.5.1. We assume the following:

• (X, d) is a (possibly asymmetric) geodesic metric space;

• G is a countable group of isometries of X, and

• G contains two independent isometries that satisfy the bounded geodesic image property (BGIP).

We fix a reference point o ∈ X. µ denotes a non-elementary discrete probability measure on G, and µ̌

denotes its reflected version µ̌(g) := µ(g−1). ω = (ωn)∞n=1 denotes the random walk generated by µ.

Remark 9.5.2. The setting as in Convention 9.5.1 includes the following situations:

1. (X, d) is a geodesic Gromov hyperbolic space and G contains two independent loxodromics, e.g.

(X, d) is the curve complex of a finite-type hyperbolic surface and G is the corresponding mapping

class group, or

2. (X, d) is the complex of free factors of the free group of rank N ≥ 3 and G is the outer automorphism

group Out(FN );

3. X is Teichmüller space of finite type, G is the corresponding mapping class group, and d is either

the Teichmüller metric dT or the Weil-Petersson metric dWP ;
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4. X is Culler-Vogtmann Outer space CVN for N ≥ 2, G is the outer automorphism group Out(FN ),

and d is the (asymmetric) Lipschitz metric dCV ;

5. (X, d) is the Cayley graph of a braid group modulo its center Bn/Z(Bn) with respect to its Garside

generating set, and G is the braid group Bn [CW21];

6. (X, d) is a (not necessarily proper nor finite-dimensional) CAT(0) space and G contains two in-

dependent strongly contracting isometries; e.g., G is an irreducible right-angled Artin group and

(X, d) is the universal cover of its Salvetti complex.

Theorem H (SLLN). Let ω be the random walk on G generated by a non-elementary measure µ. Then

there exists a constant λ = λ(µ) ∈ (0,+∞] such that

lim
n

1

n
d(o, ωn o) = lim

n

1

n
τ(ωn) = λ (9.5.1)

for almost every ω. Moreover, λ(µ) is finite if and only if µ has finite first moment.

We call λ(µ) in Theorem A the escape rate of µ.

Theorem I. Let ω be the random walk on G generated by a non-elementary measure µ. If µ, µ̌ has

finite first moment, then there exists K > 0 such that

lim sup
n→∞

1

log n
|d(o, ωn o)− τ(ωn)| ≤ K a.s.

Theorem J (CLT and LIL). Let ω be the random walk on G generated by a non-elementary measure µ. If

µ has finite second moment, then there exists a Gaussian law with variance σ(µ)2 to which 1√
n

(d(o, ωn o)−
nλ) and 1√

n
(τ(ωn) − nλ) converge in law. Here, σ(µ) > 0 if and only if µ is non-arithmetic. If µ̌ has

finite second moment also, then we have

lim sup
n→∞

±d(o, ωn o)− λn√
2n log log n

= lim sup
n→∞

± τ(ωn)− λn√
2n log log n

= σ(µ) almost surely.

Conversely, suppose that µ has infinite second moment. Then for any sequence (cn)n, both 1√
n

(d(o, ωn o)−
cn) and 1√

n
(τ(ωn)− cn) do not converge in law.

Theorem K (Genericity of pseudo-Anosovs I). Let ω be the random walk on G generated by a non-

elementary measure µ. Let λ = λ(µ) be the escape rate of µ and 0 < L < λ. Then there exists K > 0

such that

P
(
ωn has BGIP and τ(ωn) ≥ Ln

)
≥ 1−Ke−n/K

holds for all n.

Theorem L (Geodesic tracking). Let ω be the random walk on G generated by a non-elementary measure

µ.

1. Suppose that µ, µ̌ has finite p-th moment for some p > 0. Then for almost every path ω = (ωn)n,

there exists a quasigeodesic γ such that

lim
n

1

n1/2p
dsym(ωn o, γ) = 0.

2. Suppose that µ has finite exponential moment. Then there exists K < ∞ satisfying the following:

for almost every path ω = (ωn)n, there exists a quasigeodesic γ such that

lim sup
n

1

log n
dsym(ωn o, γ) < K.
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Theorem M (Genericity of pseudo-Anosovs II). Let G be a finitely generated non-elementary subgroup

of G. Then there exists a finite generating set S ⊆ G such that the proportion of non-BGIP elements in

the ball BS(n) decays exponentially as n→∞.
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Chapter 10. Discussion and further questions

So far, we have developed a systematic approach to random walks on Teichmüller space using the

contracting properties of pseudo-Anosov mapping classes. Our theory culminated in Theorem F that

pseudo-Anosovs are generic in the Cayley graph of Mod(Σ) for some generating set.

Many results presented here have been partially observed or predicted by other authors. Never-

theless, exponential bounds for the set of pivotal times are so strong that it leads to the optimal limit

laws and deviation inequalities at once; this draws a striking contrast with traditional approaches that

required more restrictive moment conditions for the same results. As shown in the proof of Theorem

F, these exponential bounds can have other ramifications related to the growth of groups and counting

problems.

Still, the genericity of pseudo-Anosov mapping classes in Mod(Σ) has not been settled for an arbi-

trary generating set. While our strategy is powerful, it requires a considerable proportion of the Schottky

set in the generating set. One idea to remove this condition is to cleverly use the acylindrical action of the

mapping class group on the curve complex or Teichmüller space. Indeed, the theory of Pierre Mathieu

and Alessandro Sisto [MS20] suggests that the word metric on an acylindrically hyperbolic group can be

probed by the metric of the hyperbolic space. We hope to expand this idea and construct an effective

counting method for an arbitrary generating set.

Another promising direction is to complete a QI-invariant random walk theory, i.e., the theory that

relies on the intrinsic geometry of the group itself and does not rely on its action on the ambient space.

Unfortunately, the strong contracting property is not QI-invariant (whereas a weaker notion called the

weak contracting property is indeed QI-invariant), making our theory not QI-invariant. Hence, although

some groups possess strongly contracting isometries for word metrics with respect to particular generating

sets (such as braid groups), our random walk theory will not apply to an arbitrary word metric on such

groups. Hence, an independent approach using a different hyperbolic-like QI-invariant property is desired.

Recently, Antoine Goldsborough and Alessandro Sisto initiated this program [GS21]. It would be great

if this direction of research shed light on a new geometric aspect of the mapping class group.
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Orsay, With an English summary.

[FM11] Stefano Francaviglia and Armando Martino. Metric properties of outer space. Publ. Mat.,

55(2):433–473, 2011.

[FM12] Stefano Francaviglia and Armando Martino. The isometry group of outer space. Adv. Math.,

231(3-4):1940–1973, 2012.

[Gen20] Anthony Genevois. Contracting isometries of CAT(0) cube complexes and acylindrical hy-

perbolicity of diagram groups. Algebr. Geom. Topol., 20(1):49–134, 2020.

[Gou17] Sébastien Gouëzel. Analyticity of the entropy and the escape rate of random walks in hy-

perbolic groups. Discrete Anal., (7), 2017.
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